
Towards Range Queries with Partial Dimensions in OLAP

Applications

Yaokai Feng, Zhibin Wang, Akifumi Makinouchi, and Ryu Hiroshi
Graduate School of Information Science and Electrical Engineering, Department of Intelligent Systems,

Kyushu University.
{fengyk,akifumi}@is.kyushu-u.ac.jp

Abstract

 Multidimensional indices are very helpful to improve query performance on multidimensional data including
relational data in ROLAP systems. The existing multidimensional indices are directed to "queries with all dimensions"
(called QAD in this study). That is, the dimensions used in each query are all the dimensions in the whole space. However,
in many applications, especially in OLAP-related ones, the queries may be only with some (partial) dimensions (not all) of
the whole space, which is called QPD (Queries with Partial Dimensions) in this study. This study focuses on range
queries with partial dimensions (RQPD), which is popular in OLAP applications. If the existing multidimensional indices
are used in RQPD, the dimensions unused in the query are thought as spanning the whole data ranges, which often lead to
not-good search performance. In these cases, certainly, we also can construct many indices with all the necessary
combination of dimensions. However, this is very space/time-consuming since many indices have to be constructed and
some dimensions may be used many times in different indices, which is not always feasible. In this study, we propose
a novel solution to RQPD problem. With our solution, only one index is necessary to such applications. The performance
of our solution is discussed in detail and is examined by experiments.

1. Introduction

There is increasing requirement for processing
multidimensional range queries on business data
usually stored in relational tables. For example,
Relational On-Line Analytical Processing (ROLAP)
in data warehouse is required to answer complex and
various types of range queries on large amount of
such data. Typical examples include “Select sum
(EXTENDEDPRICE* DISCOUNT) From

LINEITEM Where QUANTITY ≤ 25 and 0.1 ≤
DISCOUNT ≤ 0.3 and 2001-01-01 ≤ SHIPDATE ≤
2001-12-31”, where LINEITEM is a table having
sixteen attributes used in TPC-H benchmark [1]. In
this query, three attributes QUANTITY, DISCOUNT,
and SHIPDATE form the range condition. In order
to improve good performance for such

multidimensional range queries, multidimensional
indices are helpful [2,3], in which the tuples are
clustered among the leaf nodes to restrict the nodes to
be accessed for queries.

Many index structures have been proposed in the
last two decades. Examples include R*-tree [4],
X-tree [5], SR-tree [6], and so on.. Some of them (e.g.,
R*-tree) have been successfully used in many
researches on multidimensional data (GIS data,
multimedia data, etc.) and OLAP data [7]. In this
study, our proposal is based on the R*-tree, since the
R*-tree have been used in many researches and is
regarded as one of successful hierarchical index
structures. Here, we want to note that many other
hierarchical indices also can be used in this study.
 The existing multidimensional indices are
directed to "queries with all dimensions" (called QAD
in this study). That is, the dimensions used in each

事務局
社団法人 情報処理学会　研究報告IPSJ SIG Technical Report

事務局
2004－DBS－134　(I)　(5)

事務局
2004／7／13

事務局
－31－

query are all the dimensions in the whole space.
However, in many applications, especially in
OLAP-related ones, the queries may be only with
some (partial) dimensions (not all) of the whole index
space, which is called QPD (Queries with Partial
Dimensions) in this study. This study focuses on
range queries with partial dimensions (RQPD), which
is popular in OLAP applications. If the existing
multidimensional indices are used in RQPDs, the
dimensions of the index space that are not used in
the query are thought as spanning the whole data
ranges, which often lead to not-good search
performance. In these cases, certainly, we also can
construct many indices with all the necessary
dimension combination for each kind of QPDs.
However, this is very space/time-consuming since
many indices have to be constructed and managed,
and some dimensions may be used many times in
different indices. Actually, this is not always feasible.
In Section 3, QAD and QPD will be discussed in
detail. In this study, we propose a novel solution to
RQPD issue. With our solution, only one index is
necessary to such applications. Our proposal and
related algorithms will be presented in Section 4. Our
solution is discussed in Section 5 and is examined by
experiments in Section 6. Section 7 is current
conclusion and future work of this study.

2. Indexing OLAP Data Using R*-tree

Now, we briefly recall how the traditional R*-tree to
index business data stored in a relational table and
give some terms. Let T be a relational table with n

attributes, denoted by T(A1, A2, …, An). Attribute Ai
(1 ≤ i ≤ n) has domain D(Ai), a set of possible values
for Ai.. Each tuple t in T is denoted by <a1,a2, …,an>,
where ai (1 ≤ i ≤ n) is an element of D(Ai). When the
R*-tree is used in T, some of the attributes are usually
chosen as index attributes, which are used to build the
R*-tree. For simplification of description, it is

supposed without loss of generality that the first k (1 ≤
i ≤ n) attributes of T, <A1,A2, … ,Ak>, are chosen as
index attributes. Since the R*-tree can only deal with

numeric data, an order-preserving transformation is
necessary for each non-numeric index attributes. After
necessary transformations, the k index attributes form
an k-dimensional space, called index space, where
each tuple of T corresponds to one point. It is not
difficult to find such a mapping function for Boolean
attributes and date attributes. For Boolean data,
“True” and “False” can be mapped onto 1 and 0,
respectively, if “True” > “False” is assumed forcedly.
This ordering has no practical problems, because the
predicate of “equality” such as “A = True” or “A =
False” is the only predicate pattern for the Boolean
attribute. Although implementation of “date” depends
on DBMS, typical example of “date” in TPC-H
benchmark consists of three integers representing year,
month, and day. A simple function to get a numeric
value for a “date” is to use the number of days from
some reference date to this ``date''. In this paper, the
day of Jan. 1, 1900 is used as the reference day, that is,
the number of days from Jan. 1, 1900 to Apr. 5, 1998
is used to represent the date of Apr. 5, 1998.
Anyway, it is not easy to map an arbitrary character
string to a unique numeric data. The work [8]
proposes an efficient approach that maps character
strings to real numeric values within [0,1], where the
mapping preserves the lexicographic order. This
approach is also used in this study to deal with
attributes of character string.

3. QPD and RQPD

As mentioned above, QPD means such queries that
used only partial dimensions in the whole index space
and this study focus on the range QPD (or say RQPD),
which is very popular in OLAP applications. In
contrast to QPD, the queries used all the dimensions
in the index space are called QADs. Fig.1 are
examples of QAD and QPD.

In Fig.1, the shaded regions are query range.
(a) and (b) are range queries like “WHERE a1 < X <
a2”, where only the attribute X is used in the queries
and the dimensionalities of the index spaces are two
and three, respectively. (c) is range query like

事務局
－32－

“WHERE a1 < X < a2 AND c1 < Z < c2”, where two
dimensions of the whole 3-dimensional index space
are used in the query. The cases of (a), (b) and (c)
are QPDs since only partial dimensions of the whole
index space are used in the queries. Certainly, the case
of (c) is a QAD since all the dimensions of the whole
index space are used in the query like “WHERE a1 <
X < a2 AND b1 < Y < b2 AND c1 < Z < c2”.
Let us see an instance using Table 1, where QPDs are
necessary.

Table 1. A relational table with 8 attributes.

A1 A2 A3 A4 A5 A6 A7 A8

Table 1 has 8 attributes A1~A8. And, the practical

attribute combinations possibly used in queries are
{{A1},{A2},{A3},{A4},{A5},{A6},
{A1,A2},{A2,A4},{A1,A3,A5},{A2,A4,A6}}. Thus, the
index attributes include A1 ~ A6.

X

Y

X

Y

X

Y

X

Y

(a) (b)

(c) (d)

Fig. 1. QPD and QAD

For this example, it is certainly not feasible for
large databases that one index is built for each
possible combination of query attributes since so
many indices need to be constructed and managed,
and, in these indices, there are many attributes used
repeatedly. One naïve idea is to build one
multidimensional index using the six possible index

attributes of A1 ~ A6. For each practical QPD, e.g., the
queries using the index attributes of A2 and A4 only,
the query ranges in the other four index attributes (i.e.,
A1, A3, A5, A6) are thought as the whole data ranges in
such attributes.

The above examples including Fig.1. and Table 1

are on query range, on which this study focuses since
the they are popular in OLAP applications. The range
QPD is denoted by RQPD in this study.

4. Our proposal: Array-node R*-tree and
its Algorithms

4.1 Structure of Our Proposal
In order to make our novel proposal: array-node
R*-tree easier to understand, let us briefly recall the
construction of the original R*-tree.

R*-tree is a hierarchy of nested multidimensional
MBRs (Minimum Bounding Rectangles). Each
non-leaf node of the R*-tree contains an array of
entries, each of which consists of a pointer and an
MBR. The pointer refers to one child node of this
non-leaf node and the MBR is the minimum bounding
rectangle of the child node refereed to by the pointer.
Each leaf node of the R*-tree contains an array of
entries, each of which consists of an object identifier
and its corresponding point (for point-object
databases) or its MBR (for extended object databases).
In R*-tree, the root node corresponds the whole
index space and each other node corresponds to one
sub-space (one rectangle region, i.e., the MBR of all
the objects in this region) of the space corresponded to
by its parent node. Note that, each MBR in the R*-tree
nodes is denoted by two points. One is the vertex with
the minimum coordinate in each axis and the other is
the vertex with the maximum coordinate in each axis.
Hereafter in this paper, no distinction is made between
R*-tree nodes and their corresponding MBRs in the
multidimensional index space. The Fig.2 is the
structures of each non-leaf R*-tree node, (a) non-leaf
node and (b) MBR. The structure of each leaf node is
omitted.

事務局
－33－

... ... ptr1 MBR1 ptr2 MBR2 ptrn MBRn

(a) Structure of each non-leaf node

one entry one entry one entry

Whe
node
acce
chec

d-dim
each
dime
R*-t
each
beco
using
(in F

F

Astu
num
of th
only

number of entries in each node of our proposal
increases greatly since the dimensionality of each
node becomes 1 from d and our proposal also follow
the principle of “one node one page”.
Now let us make a comparison between the structure
of the original R*-tree and that of our proposal. See
Fig. 4.

(ai1,ai2,...,aid) (bi1,bi2,...,bid)

p

p

p

(b) Structure of each MBR in the R*-tree nodes.

 d: dimensionality
Fig.2. Str

n the R*
s intersec
ssed and
ked.
The main
ensional

 of wh
nsion for
ree node
 MBR.
me one
 the nod
ig.2) in o

ig. 3. Str

te reader
ber of no
e origina
 a schem

tr (a11,b11)

tr (a12,b12)

tr (a1d,b1d)

MBR1
One vertex

ucture of each

-tree is used
ting with the

all the entries

 idea of our p
 R*-tree into
ich only hol
 each MBR, w
holds informa
That is, the
node group.
e in Fig.2. T
ur proposal is s

ucture of node

s may pay a
des in our prop
l R*-tree. We
atic drawing

 ptr (a21,b2

 ptr (a22,b

 ptr (a2d,b

… …

MBR2
One vertex
MBRi:
R*-tree non-leaf node

for range query, all the
 query range have to be
in such nodes have to be

roposal is to divide each
d one-dimensional nodes,
ds information in one
hile each of the original

tion in all dimensions for
previous one node will

 Let us see an example
he structure of that node
hown in Fig.3.

 group in our proposal

ttention to that the total
osal will become d times

 want to say that Fig.3 is
. In fact, the maximum

(a) Original R*-tree (b) Our proposal: Array-node R*-tree

Fig.4. Our proposal vs. the original R*-tree

Since the nodes in each group organized like an
array, our proposal is called Array-node R*-tree.

4.2 Algorithms of Array-node R*-tree
In this section, the insert algorithm, delete algorithm,
range query algorithm will be discussed. Because the
insert and delete algorithms are similar as those of the
R*-tree, their details are not included in this paper.

4.2.1 Insert and delete algorithms
If the node groups are regarded as supernodes, the
ChooseInsertGroup algorithm of node group is the
same with the ChooseInsertNode algorithm of the
R*-tree.

The split algorithm is also similar to that of the
R*-tree. The only different point is that the nodes in
that node group must be split in the same time. In the
delete algorithm, all the nodes in the under-flowed
node group must be deleted in the same time.

4.2.2 Range query algorithm
The procedure of range query algorithm on
Array-node R*-tree can be described simply as
follows.

Algorithm: range query on Array-node R*-tree

1) Start from root node group

2) Check each entry in this node group to determine if its

1) … … ptr

22) … … ptr

2d) … … ptr

MBRn

事務局
－34－

MBR intersects with the query range.

a. For each entry to check, only the nodes in this node

group that correspond to the query dimensions are

necessary to visit.

b. If some entry does not intersect with the query

range in some query dimension, then the check of

this entry stops. That is, the child node group

corresponding to this entry does not need to visit.

c. If the current node group is not at the leaf level

then, for the entries that intersect with the query

range in all the query dimensions, this algorithm

is called in recursively.

If the current node group is at the leaf level, report

the entries that intersect with the query range in all

the query dimensions.

5. Discussion about Array-node R*-tree

In this section, the Array-node R*-tree is discussed in
detail by comparing with R*-tree and with
multi-B-trees.

5.1 Array-node R*-tree vs. R*-tree
What advantages does the Array-node R*-tree
actually have over the R*-tree? To answer this
question clearly, the following estimation is made
under the assumption of the multidimensional data
(tuples in this study) being distributed uniformly in
the index space.

The symbols with their descriptions are showed
in Table 2.

Table 2. Symbols and description

Symbols Description

S Size of the whole index space

Sq Size of the extended query range♣

Mr
Maximum number of entries in each
leaf node of R*-tree

Ma
Maximum number of entries in each
leaf node of Array-node R*-tree

C Total number of indexed data

Nl
Number of leaf nodes in the case of
R*-tree being used

Ng
Number of leaf node groups in the
case of Array-node R*-tree being used

d Number of dimensions used in query

n

Number of dimensions in the whole
index space
i.e., number of index attributes in this
study

♣ The extended query range means the range after extended
by spanning the ranges of the unused dimensions to the
whole data ranges.

In the case of the R*-tree being used to index this

database, the number of leaf nodes intersecting the
query range, Rl, can be given by

l
q

l N
S
S

R ×= .

If the Array-node R*-tree is used to this case, the
number of leaf node groups intersecting with the
query range, ARg, can be given by

g
q

g N
S
S

AR ×= .

In the case of the Array-node R*-tree, because
the inserting algorithm of the Array-node R*-tree is
the same with that of the R*-tree and the number of
objects in every leaf group is the same with that of
objects in every leaf node, we can say

a

r

l

g

M
M

N
N

≈ .

Since the number of dimensions of each R*-tree
leaf node is n, while that of each Array-node R*-tree
node is only 1, and the node size is the same between
the R*-tree and the Array-node R*-tree (one page),
we can say

nM
M

a

r 1
≈ .

In the same time, we know that the number of
dimensions used in the query is d. Thus, in each node

事務局
－35－

group that we have to access, at most d nodes are
necessary to visit. Thus, in the case of the Array-node
R*-tree, the maximum number of the leaf nodes that
we are necessary to visit, ARl, can be given by

dARAR gl ×= .

Considering the above equations , we can say

lll
q

l RR
n
ddN

nS
S

AR ≤×=×××≈
1

.

The meaning of Equation (6) is that, for the range
QPDs, the number of accessed leaf nodes of the
Array-node R*-tree is less than that of the R*-tree.
More important, the less the number of dimensions
used in queries is, the bigger the advantage of the
Array-node R*-tree, which is also verified by the
experimental results presented in Section 7.

5.2 Array-node R*-tree vs. multi-B-trees
The readers may ask “how about several B-trees (or
say multi-B-trees) are used in the case of QPD instead
of the Array-node R*-tree?”. Certainly, several
B-trees can also be used in QPDs instead of one
Array-node R*-tree. That is, we can construct one
B-tree (or its variant) using the projection of the
objects (tuples) on each index dimension. Totally, n
B-trees are necessary for n-dimensional index space.
When one QPD are executed, the corresponding
B-trees are used individually, and the final result can
be given by merging the respective query results. Let
us see the details.

Fig. 5. The case of multi-B-tree

Taking the following case as an example, we can
understand the advantages of our proposal (i.e.,
Array-node R*-tree). Assume that two dimensions, d1
and d2, are used in some query. See Fig. 5. For this
case, two B-trees are necessary, called d1-B-tree and
d2-B-tree, individually.

At first, the query on d1-B-tree is executed with
the query range “a<d1<b” and the result is the set of
result1. In this query, all the nodes intersecting with
Query range in d1-B-tree (see Fig. 5) have to be
accessed and all the objects located in Query range in
d1-B-tree are reported. In the same way, the query on
d2-B-tree is executed with the query range “d<d2<c”
and all the nodes intersecting with Query range in
d2-B-tree have to be visited. The query result is
result2. After that, the final result of this QPD, result,
with d1 and d2 is given by

21 resultresultresult I= .

The disadvantage of the above method is that the
two B-trees are queried independently. That is, the
two queries are respectively executed on the two
B-trees, where no mutual reference is possible. Many
unnecessary investigations are executed and many
unnecessary objects are reported. For example, the
final result of the QPD with d1 and d2 is only 10
objects, but several hundreds of objects may be
reported by each B-tree. This is obviously a problem.
Some other demerits of the multi-B-tree include that
the management of many B-trees and the final
merging both need extra cost. If the Array-node R* -
tree is used in the cases of QPDs, the above problems
all disappear. Index space in d1 and d2

The main advantage of the Array-node R*-tree
over multi B-trees is that only one index is needed and
many unnecessary investigation can be avoided. The
secret is just “mutual reference”. Let us see the
details.

In a n-dimensional Array-node R*-tree, every
node group consists of n one-dimensional nodes
corresponding to n dimensions of the index space.
Most importantly, every node group corresponds to

d

c

b a

d2
Query range in d1-B-tree

Query range in d2-B-tree

Query range

d1

事務局
－36－

one group of objects distributed in some subspace
(one MBR) of the whole index space. Thus, the node
groups also can be called “supernodes”. The main
features of the Array- node R*-tree include the
following two points. One is that, in each node group,
only the nodes of the query dimensions are necessary
to visit. The other is “mutual reference”. When
visiting one node group, each entry is checked in all
the query dimensions. Only the children whose MBRs
actually intersect with the query range in all the query
dimensions are followed. On the contrary, in the case
of multi-B-tree, only information in one dimension is
used to determine the children to follow and many
indices are necessary.

6. Experiments

Using the following two datasets, 6D-Uniform200000
and 6D-Zipf200000, the behaviors of Array-node
R*-tree are examined and comparison with the
original R*-tree is made.

6D-Uniform200000 200,000 uniformly distributed
6-dimensional floating data. From the view of OLAP
data, the dataset is a table of 200,000 tuples with 6
index attributes and the attribute values are uniformly
distributed in every attribute.
6D-Zipf200000 200,000 6-dimensional floating data
with zipf distribution. From the view of OLAP data,
the dataset is a table of 200,000 tuples with 6 index
attributes and the attribute values in every attribute are
zipf distributed.

The number of query dimensions, or say, the
number of the dimensions used in queries is from 1 to
6, i.e., from the minimum number to the maximum
number. The pagesize of our system is 4096 bytes and
all the tests are repeated 100 with the query ranges of
different locations. The state of the Array-node
R*-tree and the number of node accesses of each
range query are examined and is reported in this
section. And, they are compared with the original
R*-tree.

Due to the limitation of pages, only the

experimental result using 6D-Zip200000 dataset is
included in this paper. The result using
6D-Uniform200000 dataset is similar.

The appearances of the R*-tree and the
Array-node R*-tree built with 6D-Uniform200000
dataset are shown in Table 2.

Table 2. Appearances of indices

Items R*-tree
Array-node
R*-tree

M 39 203

m 17 91

Height 4 3

Total number
of nodes

7331 8424

Memory usage 70.7% 70.32%

Note that, the numbers of M and m in Table 2
means the upper bound and the lower bound,
respectively, on the number of the entries in
each node for R*-tree. And, for the Array-node
R*-tree, they mean the upper bound and the
lower bound, respectively, on the number of the
entries in each node group.

The queries with different range size and with
different query dimensions are tested and given in
Figs. 6~11. In these figures, the x-axis: query range
side length means the side length of the query range in
each dimension. OR*-tree refers to the original
R*-tree and AR*-tree means the Array-node R*-tree.

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query range side length

N
od

e
ac

ce
ss

es

O R*-tree A R*-tree

Fig.6. The number of query dimensions=1

事務局
－37－

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Query range side length

N
od

e
ac

ce
ss

es
O R*-tree A R*-tree

Fig.7. The number of query dimensions=2

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query range side length

N
od

e
ac

ce
ss

es

O R*-tree AR*-tree

Fig.8. The number of query dimensions=3

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query range side length

N
od

e
ac

ce
ss

es

O R*-tree A R*-tree

Fig.9. The number of query dimensions=4

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Query range side length

N
od

e
ac

ce
ss

es

O R*-tree A R*-tree

Fig.10. The number of query dimensions=5

0

2000

4000

6000

8000

10000

12000

14000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Query range side length

N
od

e
ac

ce
ss

es

O R*-tree A R*-tree

Fig.11. The number of query dimensions=6

7. Conclusion

This study focuses on the queries with partial
dimensions (QPD in this study), which is very popular
in many applications, especially in OLAP ones. If the
traditional methods are used in the case of QPD, there
are some problems and performance is not good. This
study proposed a novel solution to the issue of QPD,
called Array-node R*-tree, which is discussed in
detail and is examined by experiments.

8. Reference

[1] TPC benchmark H standard specification.

http://www.tpc.org/tpch/

[2] N. Katayama, S. Satoh, “The SR-tree: An Index

Structure for High-Dimensional Nearest Neighbor

Queries”, Proc. ACM SIGMOD Intl. Conf. 1997.

[3] H. V. Jagadish, N. Koudas, and D. Srivastava, “On

Effective Multi-Dimensional Indexing for Strings”,

Proc. SIGMOD Conference, 2000.

[4] C. Chung, S. Chun, J. Lee, “Dynamic Update Cube for

Range-Sum Queries”, Proc. VLDB Conference, 2001.

[5] N. Beckmann, and H. Kriegel, “The R*-tree: An

Efficient and Robust Access Method for Points and

Rectangles”, Proc. ACM SIGMOD Intl. Conf.,1990.

[6] S.Berchtold, D.Keim, H.P.Kriegel, “The X-tree: An

Index Structure for High-dimensional data”, Proc.

VLDB Intl. Conf., 1996.

[7] V. Markl, “Processing Operations with Restrictions in

Relational Database Management Systems without

External Sorting”, Proc. ICDE Intl. Conf. 1999.

http://www.tpc.org/tpch/
事務局
－38－

	Graduate School of Information Science and Electrical Engineering, Department of Intelligent Systems,
	Kyushu University.
	{fengyk,akifumi}@is.kyushu-u.ac.jp
	Abstract
	S
	C
	Nl
	Ng
	d
	n
	M

