
A Continuous Genetic Algorithm for Optimizing
Pruning Function for Lattice Enumeration

Trong-Thuc Trang1 Yoshinori Aono2 Tsuyoshi Takagi3

Abstract: In 2010, Gama et al. proposed a sophisticated version of lattice enumeration called enumera-
tion with extreme pruning. It has been used in several practical implementations of the well-known BKZ
algorithms which are used in many records in the Darmstadt challenges. On the other side of success,
some crucial open problems about the pruning functions have still remained: how to efficiently generate a
near-optimal function satisfying requirements for the input of enumeration with extreme pruning or how
to estimate how far a function from the optimal is. In the latest practical implementations, there are two
optimization methods have been used without theoretical analysis for their convergence: Nelder-Mead and
cross-entropy methods. In this paper, we propose a new approach for optimizing pruning function based on
the continuous genetic algorithm. Though our work to make practically faster method is still in progress, to
our best knowledge, it can be the first candidate method whose convergence is theoretically guaranteed by
the theory of Harris chain.

Keywords: enumeration, extreme pruning, optimizing pruning function, continuous genetic algorithm.

1. Introduction

Lattice-based cryptography has been rising as a promising

candidate for post-quantum cryptography instead of classi-

cal ones such as RSA and elliptic curve cryptography due to

Shor’s algorithm [27] used on quantum computer for solv-

ing integer factorization and discrete logarithm problems.

Technically, most of lattice-based cryptosystems are based

on Learning with Errors (LWE) and Short Integer Solutions

(SIS) problems whose average cases are at least as hard as

the worst cases of Shortest Vector Problem (SVP) and Clos-

est Vector Problem (CVP) [1], [23]. Although both SVP and

CVP are proved to be NP-hard under some circumstances

[1], [2], [7], [18], there are a lot of efforts and improvements

to break their hardness and lattice enumeration is one of the

representative instances.

In the simplest form of lattice enumeration, it is just an

exhaustive search whose researches date back to the begin-

ning of 80s [14], [20], [22]. After that, it was still investigated

and improved with pruned enumeration of Schnorr, Euch-

ner, and Hörner [25], [26]. However, the picture of solving

hard lattice problems with reasonable time complexity was

actually changed when Gama et al. gave a technique [16],

which is called extreme pruning, to speed up pruned enu-

meration. In this technique, a pruning function consisting

of n radii R2
1 ≤ R2

2 ≤ · · · ≤ R2
n = R2 are used for the input

instead of only radius R2 as in the original enumeration (n

1 Graduate School of Mathematics, Kyushu University.
2 National Institute of Information and Communication Tech-

nology, Japan.
3 The University of Tokyo.

is the lattice dimension). On the other side of great success-

ful on performance improvements, they have left important

open problems that are not solved: a concrete mathemat-

ical form or family of pruning functions that are optimal

in terms of reducing the complexity of pruned enumeration,

or a measure which reveals how a given pruning function is

near the optimal.

With regard to the optimal pruning functions, there are

three methods are being used to heuristically generate them

in practice: Nelder-Mead and gradient descent methods [15],

and cross-entropy method [5], [9]. However, no one has

proved its convergence to the optimal. It is therefore worth

asking if there is any optimization method making its input

converge to the optimal in theory.

So far, a lot of numerical optimization methods have been

proposed. For improvement purpose, we investigated the

convergence of discrete genetic algorithm [13], [24] and found

out with a special setting it can converge to the desired op-

timal. Because of that motivation, we therefore propose a

new method for generating pruning function by applying

continuous genetic algorithm with elitist model [8]. The de-

tailed pseudocode of our proposed method can be found in

Algorithm 3 which uses Algorithm 1 and Algorithm 2 as

its subroutines. Besides that, we also give some heuristics

for modelling our method into a Harris chain, i.e. adapting

properties of our algorithm to the properties of Harris chain

(Section 2), in an effort to prove its convergence to the op-

timal pruning function. With regard to practical aspect, we

implemented our own continuous genetic algorithm based

method in basic C++ programming language. Experiments

are done to see how good or bad our method is at the mo-

c⃝ 2018 Information Processing Society of Japan

Computer Security Symposium 2018
22 - 25 October 2018

－307－

ment, compared to cross-entropy method implemented in

[6].

2. Preliminaries

In this section, we give some background needed for our

work, including probability theory (Section 2.1) which is

mainly about Harris chain, lattice theory (Section 2.2), enu-

meration algorithm (Sec 2.3) and extreme pruning technique

(Section 2.4).

2.1 Probability Theory

Let the triple (Ω,F ,P) denote the probability space,

where Ω is the sample space or the set of all possible out-

comes, F is σ-algebra over Ω or set of all events (each event

is equivalent to a subset of Ω), and P : F → [0, 1] is a

probability measure.

Definition 1 (Markov chain, [12]). The collection of

random variables {Xi}i∈N defined on probability space

(Ω,F ,P) with respect to the filtration Fn (Fn =

σ(X0, . . . , XN), i.e. σ-algebra generated by X0, . . . , Xn)

is called a Markov chain with transition probability p if

P[Xn+1 ∈ A | Fn] = p(Xn, A)

where n ∈ N and A ∈ F .

Typically, when we mention Markov chain, we assume we

are dealing with countable state space Ω. Our problem,

however, has an uncountable state space. We therefore need

to consider a generalization of Markov chain, called Harris

chain.

Definition 2 (Harris chain, [12]). A Markov chain is

called Harris chain if there exists A,B ∈ F , a function

q(x, y) ≥ ϵ > 0 where (x, y) ∈ A × B, and a probability

measure ρ concentrated on B, i.e. ρ(B) = 1 satisfying

(i) P[τA < ∞ | X0 ∈ Ω] > 0 where τA = inf{n ≥ 0 : Xn ∈
A}.

(ii) p(x,C) ≥
∫
C
q(x, y)ρ(dy) ≥ ϵρ(C) where x ∈ A and

C ⊆ B.

Definition 3 ([12]). A Harris chain is recurrent if

P[τα < ∞ | X0 = α] = 1

where τα = inf{n ≥ 1 : Xn = α}.
Definition 4 ([12]). A recurrent Harris chain is aperiodic

if

gcd{n ≥ 1 : P[Xn = α | X0 = α] > 0} = 1.

Definition 5. A measure π : F → R ∪ {−∞,+∞} is a

stationary measure if ∀{y} ∈ F , simply write y,∑
{x}∈F

π (x) p (x, y) = π (y) .

If stationary measure π is also a probability measure then

we call it stationary distribution.

What we really consider on Harris chain is its convergence,

which is stated in the following theorem.

Theorem 1 ([12]). If {Xi}i∈N is a aperiodic recurrent

Harris chain with stationary distribution π and P[τα <

∞ | X0 = x] = 1 where τα = inf{n ≥ 1 : Xn = α}, then

lim
n→∞

dist(pn(x, ·)− π(·)) = 0,

where pn(x, ·) = P[Xn = · | X0 = x] and dist(·) is the total

variation distance between two measures.

Finally, there is a useful observation named 68–95–99.7

rule. Let X be a random variable drawn from normal dis-

tribution N (µ, σ2) with mean µ and standard deviation σ.

That observation gives us a rule about the data

P[|X − µ| ≤ σ] ≈ 0.6827,

P[|X − µ| ≤ 2σ] ≈ 0.9545,

P[|X − µ| ≤ 3σ] ≈ 0.9973.

2.2 Lattice

We use bold letters written in lower case as row vectors

and bold letters written in upper case as matrices through-

out this paper. The inner product of two real vectors and

the Euclidean norm of a real vector is denoted by ⟨·, ·⟩ and
||·||, respectively. Notation span(·) stands for the real vector
space spanned by a set of real vectors. The k-dimensional

ball centered at 0 with radius R > 0 is Bk(R).

Lattice of rank (or dimension) n is the set L =

{
∑n

i=1 xibi : xi ∈ Z} of all the linear integer combina-

tions of n linearly independent m-dimensional real vectors

b1, . . . ,bn (n ≤ m). This set of vectors is called lattice basis

and when n ≥ 2 there are infinitely many equivalent bases

up to element of GL(n,Z), i.e. ∃U ∈ GL(n,Z),UB = B′

where B,B′ are matrices representing lattice bases by the

row vectors. If n = m, the lattice is called full rank. Also,

we denote λ1(L) = min{||x|| : x ∈ L \ {0} and det(L) the

first minimum and the determinant of lattice L, respectively.

Let

πi : span(L) → span(b1, . . . ,bi−1)
⊥

be the orthogonal projection map from vector space spanned

by L to vector space that is the orthogonal complement of

vector space spanned by the the first i − 1 basis vectors.

The Gram-Schmidt orthogonalization b∗
i of a basis vec-

tor bi is exactly πi(bi) and it can be attained by taking

bi−
∑i−1

j=1 µi,jb
∗
j for 1 ≤ i ≤ n and µi,j = ⟨bi,b

∗
j ⟩/||b∗

j ||2.
Notice that one way to compute det(L) is taking

∏n
i=1 ||b

∗
i ||.

Gaussian Heuristic gives us a way to estimate the num-

ber of lattice points in a measurable subset of Rm. Par-

ticularly, if S is a “nice” set and S ∩ L ̸= ∅, then |S ∩
L| ≈ vol(S)/ det(L) holds. As a simple application of this

heuristic, we consider Bn(R), then the radius satisfying

vol(Bn(R)) = det(L) gives us an approximation of the first

minimum of lattice which is denoted by GH(L).

The lattice problem that is mostly considered is Short-

est Vector Problem (SVP). In this problem, one is given a

basis of lattice L and asked to find a lattice vector whose

length achieves λ1(L). There are several algorithms for solv-

ing SVP approximately or exactly such as lattice reduction

algorithms (LLL [21], BKZ [6], [10], [25]) and enumeration

[4], [14], [16], [20], [22], [25], [26].

c⃝ 2018 Information Processing Society of Japan
－308－

2.3 Lattice Enumeration

The original enumeration [14], [20], [22] aims to list all

the lattice vectors inside an n-dimensional ball of radius

R. Mathematically, given a basis b1, . . . ,bn of lattice L

and a bound R > 0, enumeration algorithm will output

{x ∈ L : ||x|| ≤ R}. Intuitively, in order to do that an

enumeration tree of depth n will be built. The root is

nil and the leaves are all lattice vector of length at most

R. At each depth k (for 1 ≤ k ≤ n), the nodes are

the vectors of projected lattice πn+1−k(L) of rank k whose

lengths are also at most R. It is well-known that the to-

tal number of nodes in the enumeration tree T ≈
∑n

k=1 Tk

where Tk = vol(Bk(R))/ det(πn+1−k(L)) and if b1, . . . ,bn

is LLL-reduced, then T ≲ 2O(n2).

It is not hard to see that the main reason of the existence

of variants of enumeration is to reduce its exponential time

complexity. Indeed, the pruned enumeration of Schnorr-

Euchner [25] and later investigated in Schnorr-Hörner [26]

is such a variant like that. The idea of this technique is

really simple: we enumerate a part of the nodes on the enu-

meration tree and ignore the rest. More precisely, in pruned

enumeration, we use bound Rk instead of bound R for each

depth k of enumeration tree, where 0 ≤ R1 ≤ · · · ≤ Rn = R

are n real numbers and the vector (R1, . . . , Rn) is the so-

called pruning function. Unfortunately, the proposed prun-

ing function in [25] has no analysis and limited practical ex-

periments, and even in the latter research [26] still has some

fundamental flaws shown in [16]. However, despite these

drawbacks, pruned enumeration still gave the core idea for

the work [16] of Gama-Nguyen-Regev.

2.4 Extreme pruning

Extreme pruning [16] is the name of the technique im-

proving the running time of pruned enumeration of Schnorr,

Euchner and Hörner [25], [26]. The key point of extreme

pruning and also the contribution of Gama-Nguyen-Regev

is that if a pruning function which gives a low probability

of successfully outputting the desired lattice vector, let us

denote it p, is used, the running time of pruned enumeration

will be surprisingly sped up by a factor much more than 1/p

times. As a consequence, even when we repeat pruned enu-

meration with extreme pruning for ⌊1/p⌋ equivalent bases

of the same lattice, the total running time is still signifi-

cantly less than the one obtained from pruned enumeration

without extreme pruning for only one lattice basis. Along

with providing a speed-up technique, the authors also gave

their own analysis on the running time and success probabil-

ity of pruned enumeration of Schnorr, Euchner, and Hörner

which is adaptable for any pruning function and related to

the optimization problem we are considering. In summary,

under some assumptions mentioned in [16], the running time

Tpruned and success probability psucc of pruned enumera-

tion are approximated as follows

T(R1,...,Rn) =
n∑

k=1

vol(Ck(R1, . . . , Rk))∏n
i=n+1−k ||b∗

i ||
, (1)

p(R1,...,Rn) = Pu∼Sn−1(Rn)

[
∀1 ≤ ℓ ≤ n,

ℓ∑
i=1

u2
i ≤ R2

ℓ

R2
n

]
(2)

where Ck(R1, . . . , Rk) is k-dimensional cylinder intersection

defined as {u ∈ Rk : ∀1 ≤ ℓ ≤ k,
∑ℓ

i=1 u
2
i ≤ R2

ℓ} and

Sn−1(Rn) is n-dimensional sphere of radius Rn. Further-

more, there are some ways to upper bound and lower bound

T(R1,...,Rn) and p(R1,...,Rn), which somehow may give more

information than (1) and (2). The first idea is described

in [16] and then an explanatory technical paper is given by

[3]. They are implemented in state-of-the-art BKZ libraries

[6], [15]. These both implementations also give us several

ways to generate a pruning function which optimizes the

running time bounds and satisfies some desired constraints,

which are essentially needed for lattice enumeration with ex-

treme pruning. Among those ways, Nelder-Mead and cross-

entropy methods can be seen as the best method of fpLLL

[15] and progressive BKZ [6], respectively. When it comes

to comparison, it is hard to know which one is better be-

cause they are dealing with two different kinds of optimiza-

tion problem. However, one can find some points of view

of Aono et al. in [5] about the drawbacks of Nelder-Mead

and gradient descent (also used in fpLLL) when we want to

apply them to the optimization problem that cross-entropy

method is being exploited.

3. Continuous Genetic Algorithm with

Elitist Model

The idea of genetic algorithms (GA) is introduced by De-

Jong [11] (1980), Goldberg [17] (1989), and Holland [19]

(1992), which is actually inspired by three natural processes:

recombination (cross-over), mutation, and natural selection.

In practice, GA is widely used in the field of solving search,

optimization problems, and machine learning. Typically, in

GA, we need to determine two basic things: population and

finess function. Population is a set of possible solutions

which “evolve” over generations toward better solutions.

Each solution in population, which is called individual, is

represented by its genetically encoding (e.g. binary, string,

or real numbers). One important point of genetic algorithm

is the fitness function which reveals how “fit” an individual

in a population is in terms of some certain conditions. If

one individual is less “fit” than the others, it tends to be

eliminated from the population. In order to evolve, the re-

combination, mutation, and selection operators are carried

out on population over generations. The specific ways that

these operators are performed or combined may differ from

algorithm to algorithm and from one encoding to another.

Based upon the way of encoding the representation of solu-

tion, we have two main kinds of genetic algorithms: discrete

and continuous. The outline of continuous GA, we will use

this term if genes were encoded by real-valued vectors, is the

same as the discrete version of GA (see [8] for more details).

Also, by elitist model, we mean nothing, but the algorithm

will save the elite individual from the previous generation to

c⃝ 2018 Information Processing Society of Japan
－309－

the current generation.

3.1 Recombination

This operator simulates the action of mating between two

individuals in a population of the same species. Notice that,

in the continuous cases, recombination is not just simply do-

ing swapping as in discrete cases (e.g. see Fig. 1). Roughly

speaking, in continuous GA, we will add a small value for

each position (behind crossing point) of one parent and sub-

tract that small value for each corresponding position of the

other. The small values we need are extracted from both

parents. This means the parents are exchanging their char-

acteristics which may contain some good factors for evolu-

tionary process.

Fig. 1 Example of recombination of discrete GA with binary en-
coding.

3.2 Mutation

This operator is used to avoid degeneration of population

which corresponds to getting trapped in local optimal when

dealing with optimization problem. This changes the char-

acteristics of target individual slightly or totally. We may

not know if this change is good, but we can be sure, with an

appropriate choice of parameters, mutation will help us get

out of being stuck in the area of local optimal. Mutation

of continuous GA is a bit more complicated than the one of

discrete GA.

3.3 Selection and Evaluation

During the execution of GA, we always need to determine

which pairs of individuals will take part in the recombination

process or which individual will alive for the next generation,

which are the purposes of selection operator. However, se-

lection should not work randomly, but should depend on

results of evaluation process. In general, to get better solu-

tions, one can follow this strategy: individuals adapting to

the fitness function more than the others have higher prob-

ability to be chosen for recombination or to be alive. It

is therefore important to choose the fitness function for a

specific problem carefully.

4. Proposed Method using Continuous

GA with Elitist Model

The problem that we consider throughout this section is

totally the same with the ones mentioned in [3] and [5],

Section 4.1, (i). Specifically, given basis b1, . . . ,bn of n-

dimensional lattice L, a radius R = αGH(L) > 0 (α is a

practical parameter), and a target probability p0 > 0, we try

to generate a monotonic vector (f(1), . . . , f(n)) ∈ [0, 1]n

(i.e. f(1) ≤ · · · ≤ f(n)) which can produce a pruning func-

tion (R1, . . . , Rn), minimizing (1) subject to (2) at least p0,

by multiplying a scalar R, i.e. we are simply trying to solve

argmin
{
T(Rf(1),...,Rf(n)) : p(Rf(1),...,Rf(n)) ≥ p0

}
.

(3)

We introduce several concepts from the continuous GA and

explain how do we adapt them for our purpose. We de-

note the j-th individual in population at i-th generation

by f
(i)
j , which is a monotonic vector in [0, 1]n. There-

fore, the population at i-th generation is denoted by the

set P(i) =
{
f
(i)
1 , . . . , f

(i)
N(i)

}
where N(i) is the number of in-

dividuals of P(i). Here P(0) is called the initial population.

In our algorithm, the fitness value of f
(i)
j is defined by

∑N(i)
k=1 T

(Rf
(i)
k (1),...,Rf

(i)
k (n))

T
(Rf

(i)
j (1),...,Rf

(i)
j (n))

.

An outline of our algorithm using continuous GA with elitist

model [8] is shown in Algorithm 3 with subroutines Algo-

rithm 1 and Algorithm 2.

4.1 Recombination and Mutation

In this section, we will show how recombination and mu-

tation operators work explicitly in our method. A recom-

bination step at the i-th generation takes two chosen par-

ents f
(i)
j and f

(i)
k as input. We randomly choose a crossing

point ℓ ∈ {1, . . . , n} so that all the characteristics from this

crossing point ℓ of both parents will be slightly exchanged to

each other. More precisely, for each position h from crossing

point, we compute the difference between the characteristics

of f
(i)
j and f

(i)
k at position h and divide the difference by a

random M ∈ {1, . . . , 1000}, which is set as △. Then, we

subtract △ from f
(i)
j (h) add the △ to f

(i)
k (h). Intuitively,

f
(i)
j and f

(i)
k are exchanging a small amount to each other

just like recombination of gene in real life. The detailed

description is shown in Algorithm 1.

Algorithm 1 Recombination operator

Input: Two individuals f
(i)
j and f

(i)
k .

Output: Two new individuals f
(i)
j′ and f

(i)
k′ .

1: Choose a crossing point ℓ ∈ {1, . . . , n} and a parameter M ∈
{1, . . . , 1000} uniformly at random.

2: f
(i)
j′ = f

(i)
j and f

(i)
k′ = f

(i)
k . ▷ // taking copies

3: for h = ℓ, . . . , n do

4: △ = (f
(i)
j (h)− f

(i)
k (h))/M

5: f
(i)
j′ (h) = f

(i)
j′ (h)−△

6: f
(i)
k′ (h) = f

(i)
k′ (h) +△

7: end for

8: Adjust f
(i)
j′ and f

(i)
k′ as two monotonic vectors in [0, 1]n.

9: return f
(i)
j′ and f

(i)
k′ .

In mutation process, one characteristic of an individual

will be changed in the way as follows. The amount for

changing is defined by a ratio whose numerator is given by a

c⃝ 2018 Information Processing Society of Japan
－310－

Algorithm 2 Mutation operator

Input: An individual f
(i)
j .

Output: A new individual f
(i)
j′ .

1: Choose a sign parameter h ∈ {0, 1}, a mutation point ℓ ∈
{1, . . . , n}, and a parameter M ∈ {1, . . . , 10} uniformly at ran-

dom.

2: f
(i)
j′ = f

(i)
j . ▷ // taking copy

3: △ = (−1)h0.9999i/M

4: f
(i)
j′ (ℓ) = f

(i)
j′ (ℓ) +△

5: Adjust f
(i)
j′ as a monotonic vectors in [0, 1]n.

6: return f
(i)
j′ .

slightly decreasing function kmut(i) = 0.9999i and denom-

inator is random integer M ∈ {1, . . . , 10}. Then we ran-

domly add or subtract this amount of changing to a random

characteristic of chosen individual. The purpose of using

kmut(i) is that we heuristically want to “jump out” from

the trap of local optimal, but not so far from the global

optimal. Parameter M is needed just only for controlling

how large the amount of changing. Algorithm 2 defines our

mutation operator.

4.2 Selection and Evaluation

By selection, we want to mention both tasks of selection

arising in Algorithm 3: parent selection (step 9) and selec-

tion for the next generation (step 28–30). Clearly, we can see

in Algorithm 3, we are using selection methods that are pro-

portionate to some criteria. For choosing parents, we want

the children after recombination to be “fit” as much as pos-

sible, so we use fitness proportionate selection. In contrast,

when we want to reduce redundant individuals to determine

the population of the next generation, cost proportionate se-

lection is chosen to use. In practice, roulette wheel selection

technique is being used in our implementation.

4.3 Main Algorithm

In Algorithm 3, along with main operators of continuous

GA, we also exploit the strategy of [8] including two phases:

diversification and intensification. The algorithm starts with

the diversification phase where GA operators try to identify

“a promising area” [8]. Potentially, this area contains the

global optimal and will show up after a certain number of

generations (e.g. glocal in Algorithm 3). Once such an area

is found, algorithm changes to the intensification phase. In

our case, we reduce the number of individuals of population

and mutation probabilty over generations, and again con-

tinue using GA operators in order to localize the position of

the elite individual in this “promising” area until algorithm

reaches the target generation gmax. Most importantly, af-

ter selection process is done, we always need to compare the

elite individuals (smallest-cost individuals) of previous gen-

eration and current generation (step 32–36). If the previous

elite individual is better than current one in terms of com-

paring cost, then we replace the highest-cost individual in

current generation by previous elite individual.

Algorithm 3 Continuous GA Based Algorithm

Input: Basis b1, . . . ,bn of lattice L, radius R = αGH(L) > 0,

target probability p0 > 0, N(0), recombination probability

prec, mutation probability pmut, generation thresholds glocal

and gmax, localization parameter △, and distribution param-

eter β < 1.

Output: A pruning function (Rf(1), . . . , Rf(n)) satisfying (3).

1: i = 0 ▷ // #generation

2: Draw N(i) individuals for P(i) from Cartesian product of n

Gaussian distributions N (1/n, (β/n)2) × · · · × N (1, β2) satis-

fying (2) at least p0.

3: f = elite individual, whose cost (1) is smallest, from P(i)

4: while i < gmax do

5: // Evaluation

6: Compute fitness values of N(i) individuals of P(i).

7: // Recombination

8: for k = 1, . . . , ⌊precN(i)/2⌋ do

9: Choose 2 distinct individuals from P(i) based on fitness

proportionate selection.

10: Run Alg. 1 with parents and get 2 new individuals.

11: Save to P(i) any new individual that does not make (2)

be smaller p0.

12: end for

13: // Mutation

14: for each individuals in current P(i) do

15: Choose ϵ ∈ [0, 1] uniformly at random.

16: if ϵ ≤ pmut then

17: Run Alg. 2 with current individual and get new in-

dividual.

18: Save to P(i) if new individual does not make (2) be

smaller p0.

19: end if

20: end for

21: i = i+ 1 ▷ // move to next generation

22: // Intensification

23: if i ≥ glocal then

24: N(i) = N(i− 1)−△
25: pmut = pmut/ exp(1)

26: end if

27: // Selection

28: for k = 1, . . . , |P(i−1)| −N(i) do

29: Discard individual from P(i−1) based on cost (1) pro-

portionate selection.

30: end for

31: // Keeping elite individual

32: if f has smaller cost (1) than elite individual of P(i) then

33: Replace the individual whose cost (1) is maximum in

P(i) by f .

34: else

35: f = elite individual of P(i).

36: end if

37: end while

38: return f

5. Towards the Proof of Convergence

In this section, we give what we think about the spirit of

continuous GA in Algorithm 3 based on a stochastic pro-

cess in probability theory: Harris chain. We show that our

method is able to be viewed as a Harris chain (Section 5.1)

and has recurrence and aperiodicity properties (Section 5.2).

c⃝ 2018 Information Processing Society of Japan
－311－

To our best knowledge, we cannot find any previous work

on proving the convergence to the optimal of continuous GA

like that of discrete GA. By using Markov chain on countable

state space, discrete GA with elitist model corresponding to

a specific optimization problem is proved to always converge

to the desired optimal of that problem as in [13], [24]. It is

therefore natural to think of a “continuous” version of such

proofs and Harris chain is the most suitable answer.

5.1 Modelling Our Method as Harris Chain

Heuristic 1. With the choice of β = 0.3, the elite indi-

vidual of population P(0) of the continuous GA with elitist

model in Algorithm 3 will turn into an individual belong-

ing to
∏n

h=1[0.1µh,min{1.9µh, 1}] (where µh = h/n for

1 ≤ h ≤ n) with a nonzero probability right in the first

generation.

By using β = 0.3 and the 68-95-99.7 rule, the prob-

ability that values drawn from N (µh, (0.3µh)
2) lie inside

the interval [0.1µh, 1.9µh] is 0.997. However, as h grows,

1.9µh will exceed upper bound 1 and indeed it happens

when µh > 10/19 (approximately, µh > 1/2), which means

h > n/2. Notice that each individual of P(0) is drawn from∏n
h=1 N (µh, (0.3µh)

2) and it has to be a monotonic vector

in [0, 1]n. Therefore, an individual f
(0)
j must belong to the

set
∏n

h=1[0.1µh,min{1.9µh, 1}] which which can be lower

bounded by
∏⌊n/2⌋

h=1 [0.1µh, 1.9µh]×
∏n

h=⌊n/2⌋+1[0.1µh, µh].

Hence probability

P
[
f
(0)
j ∈

n∏
h=1

[0.1µh,min{1.9µh, 1}]

]

≳ P

f (0)j ∈
⌊n/2⌋∏
h=1

[0.1µh, 1.9µh]×
n∏

h=⌊n/2⌋+1

[0.1µh, µh]

≈ 0.997⌊n/2⌋0.499(n−⌊n/2⌋) > 0.

After generating initial individuals, Algorithm 3 steps into

recombination process which calls Algorithm 1. By also us-

ing 68-95-99.7 rule, we can upper bound and lower bound

quantity △ by the interval [−1.8µh/M, 1.8µh/M] with

probability 0.997. Thus, with probability 0.994, f
(i)
j′ (h)

and f
(i)
k′ (h) fall into [0.1µh − 1.8µh/M, 1.9µh + 1.8µh/M].

After adjustment both f
(i)
j′ (h) and f

(i)
k′ (h) will be in

[max{0, 0.1µh − 1.8µh/M},min{1.9µh + 1.8µh/M, 1}] ⊃
[0.1µh,min{1.9µh, 1}]. Hence there will be a nonzero prob-

ability of new individuals reproduced from recombination

process that will turn into
∏n

h=1[0.1µh,min{1.9µh, 1}]. We

will not consider the individuals generated from mutation

process because they tend to “jump out” the desired area.

Notice that, before selection process, no individual in the

initial population P(0) before recombination is eliminated.

Also, it is disadvantageous that we do not know what kind

of the distribution of the individuals with high values of cost

(1) is. For an ideal circumstance, we assume the distribution

is “uniform”. By “uniform”, we want to describe that the

individuals with high values of cost (1) uniformly lie in three

parts of P(0) after mutation including the initial part before

recombination, the part added after recombination, and the

part added after mutation. Hence after selection and deter-

mining the next generation, there will be a nonzero probabil-

ity of individuals belonging to
∏n

h=1[0.1µh,min{1.9µh, 1}]
still “alive” in P(1) which completes the proof.

We believe it is possible to get the same result with other

desired area and other distribution of high cost individuals

as long as the number of these individuals lying inside the

initial part of P(0) before recombination is not too dominant

when compared to other parts.

Heuristic 2. The continuous GA with elitist model in Al-

gorithm 3 is a Markov chain with transition probability p.

It is not hard to see continuous GA is a Markov chain with

transition probability p because with f (0), . . . , f (n) are n+1

previous states outputted from continuous GA and B ⊂
[0, 1]n, p(f (n), B) = P[f (n+1) ∈ B | σ(f (0), . . . , f (n))] =

P[f (n+1) ∈ B | f (n)] where σ(f (0), . . . , f (n)) is the σ-algebra

generated by f (0), . . . , f (n).

We are close to what we believe, that is continuous GA

with elitist model in Algorithm 3 is actually a Harris chain.

Unfortunately, we do not know if the transition probability

function p is continuous or not. As far as we know, this

question is too complicated. We therefore assume Markov

chain in Heuristic 2 has continuous transition probability

function p such that p(g, dh) = p(g,h)dh (here p(g, dh)

means probability that current state g will transform to a

state in a very small partition dh of B, see Example 6.8.2

in [12]) to induce the following important heuristic.

Heuristic 3. As a consequence of Heuristic 2 under as-

sumption that transition probability p is continuous and

p(g, dh) = p(g,h)dh, there exist two sets A,B ⊂ [0, 1]n, a

function q on A×B with q(g,h) ≥ ϵ > 0 and a probability

measure ρ with ρ(B) = 1 such that they satisfy axiom (ii)

of Definition 2.

We choose two vectors g0 and h0 from∏n
h=1[0.1µh,min{1.9µh, 1}] as described in Heuristic

1. Assume g0 is of 0th generation and h0 is of 1st genera-

tion, we have p(f (0), f (1)) = p(g0,h0) > 0. The function q

is chosen as transition probability p. In order to do that,

we let A and B be two “small enough” neighborhoods that

lead to p(g,h) ≥ ϵ > 0 where (g,h) ∈ A × B. Also, we

define ρ(C) = |C|/|B| for every C ⊂ B. Hence

p(g, C) =

∫
C

p(g,h)dh ≥
∫
C

p(g,h)ρ(dh) ≥ ϵρ(C)

where g ∈ A.

5.2 Recurrence and Aperiodicity

Heuristic 1 and Heuristic 3 show that the continuous GA

with elitist model in Algorithm 3 satisfies axioms (i) and

(ii) of Definition 2 and hence can be modelled as a Har-

ris chain with transition probability p. Besides, thanks to

the elitist model, which is saving the elite individual (lowest

cost vector) found from the current generation and substi-

tuting to the highest cost vector found in the next genera-

tion if needed, we can easily find a lot of values g such that

c⃝ 2018 Information Processing Society of Japan
－312－

P[τg < ∞ | g] = 1 where τg = inf{i ≥ 1 : f (i) = g} when

we run Algorithm 3. Also, if g is saved, it will be saved

right at the next generation. Hence gcd{m′ = m − i ≥ 1 :

P[f (m) = g | f (i) = g]} = 1 where m > i. Therefore, con-

tinuous GA with elitist model in Algorithm 3 is a recurrent,

aperiodic Harris chain as in Definition 3 and Definition 4.

6. Experimental Results

We do experiments for two purposes: to choose suitable

parameters for our algorithm (Section 6.1) and to compare

it with cross-entropy method implemented in [6] (Section

6.2). The target success probability p0 is set up as 0.0003

throughout all the experiments of both sections.

6.1 Parameter Setting

For the first purpose, we realize there are four parameters

that essentially affect to the running time of our algorithm,

that are glocal, gmax, prec, and pmut. In order to estimate

the running time, we count the number of calls (# calls) for

subroutine computing cost (1). We define the default param-

eters of our algorithm glocal = 3n, gmax = 5n, prec = 0.85,

and pmut = 0.9 so that when one parameter varies, the oth-

ers will stay as default setting. Lattice dimension n here is

fixed at 100.

Table 1 Experiment with glocal = n, 2n, 3n, and 4n.

glocal mean # calls mean log(cost (1))
n 8089 47.35
2n 12049 46.99
3n 16022 46.97
4n 19919 46.97

Table 2 Experiment with gmax = 4n, 5n, 6n, and 7n.

gmax mean # calls mean log(cost (1))
4n 15167 46.98
5n 16022 46.97
6n 16815 47.09
7n 17595 47.10

Table 3 Experiment with prec = 0.75, 0.8, 0.85, 0.9 and 0.95.

prec mean # calls mean log(cost (1))
0.75 15029 47.11
0.8 16027 46.96
0.85 16022 46.97
0.9 16540 46.94
0.95 17201 46.92

Table 4 Experiment with pmut = 0.75, 0.8, 0.85, 0.9 and 0.95.

pmut mean # calls mean log(cost (1))
0.75 14741 47.10
0.8 15155 47.07
0.85 15603 47.14
0.9 16022 46.97
0.95 16490 46.98

According to Table 1, Table 2, Table 3, and Table 4,

we can see the most suitable setting for the parameters is the

default setting. By the most suitable setting, we mean that

with this setting of parameters, our algorithm will generate

a pruning function with low cost in an acceptable number

of calls.

6.2 Comparison with Cross-Entropy

Now we can make a comparison between cross-entropy

method and our method based on the found suitable setting.

In order to compare them, we focus on two points of view:

the shape of the best pruning function found and the conver-

gence speed. It is straightforward to see from Fig. 2, Fig. 3,

Fig. 4, and Fig. 5, to achieve a pruning function that is near

to the pruning function generated by cross-entropy method,

our algorithm has to pay a larger cost and a longer runing

time.

Fig. 2 Shapes of some best pruning functions generated from
cross entropy-method (blue curve) and our method (red
curve) with lattice dimension n = 100, 120, and 140.

Fig. 3 Convergence speed of best pruning functions generated
from cross-entropy method (blue curve) and our method
(red curve) with lattice dimension 100.

7. Conclusion and Future Works

With regard to the theoretical aspect, the heuristics in

Section 5 are what we first think about the adaption be-

tween our algorithm and Harris chain. At the moment, we

have no clue about stationary distribution π to prove the

convergence of our method modelled as Harris chain, so we

leave it for our futher investigation. About practical aspect,

from the previous section, one can see that our algorithm

is outperformed by cross-entropy method in the perspective

of convergence speed. It happens because we are still in

progress of improving this algorithm to be more efficient.

c⃝ 2018 Information Processing Society of Japan
－313－

Fig. 4 Convergence speed of best pruning functions generated
from cross-entropy method (blue curve) and our method
(red curve) with lattice dimension 120.

Fig. 5 Convergence speed of best pruning functions generated
from cross-entropy method (blue curve) and our method
(red curve) with lattice dimension 140.

For future works, we will investigate more about contin-

uous GA and its connections with Harris chain so that we

can have some explicit theorems and corresponding proofs

for convergence analysis. We are continually improving the

implementation of our method so that it will have some good

aspects compared to cross-entropy method. In this paper,

we are supposed to compare our method with the meth-

ods implemented in [15] including Nelder-Mead and gradi-

ent descent, and cross-entropy method. However, because

of the difference between the target optimization problem of

the methods of [15] and that of our continuous GA based

method, we will try to figure out the circumstances such

that the equivalence between two problems exists. We hope

that our work will lead us to some interesting things around

the optimal shapes of pruning functions in terms of reducing

the cost (1) that are needed for our further researches.

References

[1] M. Ajtai, “Generating hard instances of lattice problems,”
Proc. 28th ACM STOC, pp. 99–108, 1996.

[2] M. Ajtai, “The shortest vector problem in L2 is NP-hard for
randomized reductions,” Proc. 30th ACM STOC, pp. 10–19,
1998.

[3] Y. Aono, “A Faster Method for Computing Gama-Nguyen-
Regev’s Extreme Pruning Coefficients,” arXiv: 1406.0342,
2014.

[4] Y. Aono and P.Q. Nguyen, “Random Sampling Revisited:
Lattice enumeration with discrete pruning,” EUROCRYPT
2017, LNCS, vol. 10211, pp. 65–102, 2017.

[5] Y. Aono, P.Q. Nguyen, T. Seito, and J. Shikata, “Lower

bounds on lattice enumeration with extreme pruning,”
CRYPTO 2018. To appear.

[6] Y. Aono, Y. Wang, T. Hayashi, T. Takagi, “Improved pro-
gressive BKZ algorithms and their precise cost estimation by
sharp simulator,” EUROCRYPT 2016, LNCS, vol. 9665, pp.
789–819, 2016.

[7] P.v.E. Boas, “Another NP-complete partition problem and
the complexity of computing short vectors in a lattice,” Tech-
nical Report 81-04, Mathematische Instituut, University of
Amsterdam, 1981.

[8] R. Chelouah and P. Siarry, “A Continuous Genetic Algo-
rithm Designed for the Global Optimization of Multimodal
Functions,” Journal of Heuristic, vol. 6(2), 191–213, 2000.

[9] Y. Chen, “Réduction de réseau et sécurité concrète du
chiffrement complètement homomorphe,” doctoral disserta-
tion, Univ. Paris 7, 2013.

[10] Y. Chen and P.Q. Nguyen, “BKZ 2.0: better lattice security
estimates,” ASIACRYPT 2011, LNCS, vol. 7073, pp 1–20,
2011.

[11] K.A. DeJong, “Adaptive System Design: A Genetic Ap-
proach,” IEEE Transactions on SMC, pp 566–574.

[12] R. Durrett, “Probability: Theory and Examples,” Cam-
bridge University Press, 2010.

[13] A.E. Eiben, E.H.L. Aarts, and K.M. Van Hee, “Global Con-
vergence of genetic algorithms: A Markov chain analysis,”
Parallel Problem Solving from Nature, pp. 4–12, 1991.

[14] U. Fincke and M. Pohst, “Improved methods for calculating
vectors of short length in a lattice, including a complexity
analysis,” Mathematics of Computation, vol. 44(170), pp.
463–471, 1985.

[15] The fpLLL development team. fpLLL, a lattice reduction li-
brary, 2016. available from ⟨https://github.com/fplll/fplll⟩.

[16] N. Gama, P. Q. Nguyen, and O. Regev, “Lattice enumer-
ation using extreme pruning,” EUROCRYPT 2010, LNCS,
vol. 6110, pp. 257–278, 2010.

[17] D.E. Goldberg, “Genetic Algorithms in Search, Optimization
and Machine Learning,” Addison-Wesley, 1989.

[18] O. Goldreich, D. Micciancio, S. Safra, and J.-P. Seifert, “Ap-
proximating shortest lattice vectors is not harder than ap-
proximating closest lattice vectors,” Information Processing
Letters, vol. 71(2), pp. 55–61, 1999.

[19] J.H. Holland, “Adaption in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Con-
trol and Artificial Intelligence,” MIT Press, 1992.

[20] R. Kannan, “Improved algorithms for integer programming
and related lattice problems,” Proc. 15th ACM STOC, pp.
193–206, 1983.

[21] A.K. Lenstra, H.W. Lenstra, Jr., and L. Lovász, “Factoring
polynomials with rational coefficients,” Math. Ann., vol. 261,
pp. 513–534, 1982.

[22] M. Pohst, “On the computation of lattice vectors of minimal
length, successive minima and reduced bases with applica-
tions,” SIGSAM Bull., vol. 15(1), pp. 37–44, 1981.

[23] O. Regev, “On lattices, learning with errors, random linear
codes, and cryptography,” Proc. 37th ACM STOC, pp. 84–
93, 2005.

[24] G. Rudolph, “Convergence Analysis of Canonical Genetic Al-
gorithm,” Trans. Neur. Netw., vol. 5(1), pp. 96–101, 1994.

[25] C.-P. Schnorr and M. Euchner, “Lattice basis reduction: im-
proved practical algorithms and solving subset sum prob-
lems,” Mathematical Programming, vol. 66, 181–199, 1994.

[26] C.-P. Schnorr and H.H. Hörner, “Attacking the Chor-Rivest
cryptosystem by improved lattice reduction,” EUROCRYPT
1995, LNCS, vol. 921, pp. 1–12, 1995.

[27] P.W. Shor, “Polynomial-Time for Prime Factorization and
Discrete Logarithms on a Quantum Computer,” SIAM Jour-
nal of Computing, vol. 26(5), 1484–1509, 1997.

c⃝ 2018 Information Processing Society of Japan
－314－

