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Abstract: StarCraft II is a new challenge for the reinforcement learning with large state space and large action
space. This paper reports empirical evaluation of the combination of GPU Asynchronous Advantage Actor-
Critic (GA3C), residual neural networks and Self-Imitation Learning in mini-games of StarCraft II. The results
show that GA3C with deeper architecture and residual neural networks achieved better performance than those
reported in existing work.
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1. Introduction
Deep reinforcement learning have achieved

state-of-the-art performance on varieties of
games, such as Atari games and game of Go [5].
StarCraft II is a real-time strategy game that has
a lots of skilled human players, who can still
defeat current computer programs. PySc2 [6]
is an environment where researchers can make
experiments on StarCraft II. Because the full
game of StarCraft II is too difficult, mini-games
are also provided in there. Each mini-game
inherits a different difficulty in the full game.
In the study of PySc2 [6], the performance
of agents trained by Asynchronous Advantage
Actor-Critic (A3C) is also published.

The main contribution of this paper is empiri-
cal evaluation of the combination of GPU Asyn-
chronous Advantage Actor-Critic (GA3C), resid-
ual neural networks and Self-Imitation Learning
in mini-games of StarCraft II. They are incorpo-
rated to improve the efficiency in learning. GA3C
[1], which is an alternative to A3C, is supposed
to increase training efficiency by utilizing GPU
instead of CPU. We incorporate residual neural
networks following recent studies on StarCraft II
[7] or AlphaGo Zero. Self-Imitation learning [3]
is a recent technique that enhances learning in do-
mains with sparse reward.
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2. Background

This section briefly reviews the environment
of mini-games in StarCraft II and their difficul-
ties in reinforcement learning. The difficulties
mainly come from large observation and action
space. Also, agents need to handle both spatial
and non-spatial features (and/or actions).

2.1 Environment
To train agents for mini-games of StarCraft

II, we used StarCraft II Learning Environment
(SC2LE) environment. SC2LE was developed by
both DeepMind and Blizzard Inc., which consists
of three parts: Linux StarCraft II binary, the Star-
Craft II API and PySc2 [6]. Linux StarCraft II is
a program of game itself only available for Linux
system. StarCraft II API is an interface that pro-
vides full external control of StarCraft II and it is
critical for creating scripted bots and replay anal-
ysis. PySc2 is a Python environment that wraps
the StarCraft II API to ease the interaction be-
tween Python RL learning agents and StarCraft
II, which means the agent can obtain observa-
tions from game environment, take action in the
game, and gain scores via PySc2.
2.1.1 Observations

The observations consist of three different part;
screen observation, minimap observation, and
non-spatial observations. The first two parts are
given as sets of feature layers each of which rep-
resents unit types, hit points, unit density, etc.
While screen observation consists of 17 differ-
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ent feature layers, minimap observation holds 7
feature layers. For full game, they provide a
detailed view provided by a local camera and
a coarse view of the entire world, respectively.
However, the minimap and screen give a view
of the same area with the same resolution, 32
2 , in our configuration of experiments in mini-
games in this paper. Non-spatial observations
give the amount of resources collected, the set of
actions available, information about build queue,
selected units, idle workers count, and last ac-
tions, etc.
2.1.2 Actions

Agents for StarCraft II need to handle many
actions. A completely specified action a can be
represented by an action-function identifier a0

and a sequence of its arguments (a1, a2...aL) that
a0 requires. The number of arguments L depends
on action identifier a0. There are 524 different
action-function identifiers with 13 possible types
of arguments. The action space is large and ac-
tions fall under two categories: spatial and non-
spatial. Spatial action needs spatial arguments
([(x0, y0)] or [(x0, y0), (x1, y1)]), which represents
pixels on the screen or minimap where the action
should be taken. Also, not all actions are avail-
able in each game step in StarCraft II. For exam-
ple, if currently no unit is selected, then the com-
mands related with unit are not available. These
largeness and complexity of the action space con-
tribute to the difficulty in learning.

The environment accepts one action per 8
game frames, which is approximately 180 Ac-
tions Per Minute (APM). The average human
players achieves approximately 150 APM, while
top players can reach 400 or more [6].
2.1.3 Rewards

For each mini-game in PySc2 [6], rewards are
carefully designed so that an agent can receive
positive or negative rewards with a reasonable
frequency during an episode. We used these re-
wards in this paper.

The winning condition of a full game is to
eliminate all of the opponent’s buildings. To
achieve the goal, an agent in PySc2 is required
to handle many tasks; gathering sufficient re-
sources, constructing buildings for upgrading and
production of units, and strengthen his or her
army. There are two different reward structures,
ternary score 1 (win), 0 (tie), -1 (loss) or Blizzard
score. While the ternary score is only given at
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Fig. 1 Figure of Architecture of GA3C

the end of each episode, Blizzard score increases
along with events during an episode, such as min-
ing resources.

2.2 A3C and GA3C
In the study of PySc2 [6], the performance

of agents trained by Asynchronous Advantage
Actor-Critic (A3C) is published. A3C is based on
the Actor-Critic method, where the actor main-
tains and updates a policy and the critic maintains
a value function or advantage function [2]. A3C
deploys multiple actors running in parallel. The
diversity of actors’ experiences contribute to bet-
ter exploration of different parts in a given envi-
ronment, and also stabilize learning by reducing
the correlation between samples.

GA3C extends A3C to utilize GPU [1]. In
GA3C agents explore environments as actors do
in A3C. To place our DNN in GPU apart from
agents running on CPU, GA3C introduces two
kinds of threads; Predictor and Trainer. Each pre-
dictor receives an observation of agents via pre-
diction queue and returns the policy for the state
stored in DNN (GPU). Each trainer receives a
batch of experiences of the agents update DNN.
Figure 1 sketches a basic mechanism of GA3C
playing PySc2. GA3C keeps single, central neu-
ral network in GPU.

Both of actors in A3C and agents in GA3C in-
teract with its own simulation environment and
generate experiences, but agents do not keep their
own copy of model and query the DNN for ac-
tion policy. Value function is trained in GA3C as
well, but all gradients are computed in GPU.

2.3 Self-Imitation Learning
Self-imitation learning improves the speed of

learning and sample efficiency, by sampling bet-
ter experiences more frequently. To exploit past
good experience, a replay buffer similar to that
in prioritized experience replay [4] is incorpo-
rated. The priority of each experience is given
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by clipped advantage(R − Vθ(s))+, where (.)+ de-
notes max(., 0). The sampling probability of both
of them is proportional to the attached priority.
When combined with A3C, self-imitation learn-
ing is relatively simple to implement, as it does
not involve importance sampling.

3. Proposed Method

This section describes our method. Compared
to A3C agents reported with PySc2 [6], we
replace A3C by GA3C [1], incorporate Self-
Imitation Learning [3] and utilize deeper net-
works with a residual unit following recent study
[7]. We believe GA3C is more suitable than A3C
because StarCraft II game leads to high CPU uti-
lization.

3.1 GA3C with Self-Imitation Learning
We build a combination of GA3C and Self-

Imitation Learning, GA3C+SIL. Its architecture
is shown in Figure 2. On one hand, the original
Self-Imitation Learning (SIL) is built on A2C,
though it is suggested that self-imitation learn-
ing can be combined with any actor-critic method
[3]. Therefore, we need to extend the original
SIL by asynchronous execution. On the other
hand, the original GA3C does not have a replay
buffer. Thus, we need to introduce a Recorder to
receive the experience from agents and to store
past experiences into our replay buffer. Then,
Trainer receives on-policy samples from recorder
queue and also sampled experiences from the re-
play buffer.

Algorithm 1 shows initialization of global
data. Algorithm 2 and 3 show our agent and
trainer, respectively. Note that multiple agents
and trainers run in parallel asynchronously.In
Algorithm 2, transition is denoted as (st, at, rt),
where st, at are a state and an action at time-step
t, and Rt = Σ∞k=tγ

k−trk is the discount sum of re-
wards with discount factor γ. In Algorithm 3, πθ,
Vθ(s) represent policy and value function param-
eterized by θ respectively. Hπ denotes entropy
under the policy π and α is a weight for entropy
regularization. Lga3c

policy, Lga3c
value are defined as pol-

icy loss and value loss when performing actor-
critic via n-step samples respectively. Loss func-
tion Lga3c is expectation of combination of pol-
icy loss and value loss under policy πθ. βga3c is
a weight for the value loss. Then, we perform
self-imitation learning for M times. If the dis-
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Fig. 2 Figure of Architecture of GA3C+SIL

Algorithm 1 GA3C+SIL: Initialize
1: Initialize parameter θ
2: Initialize shared step count T ← 0
3: Initialize replay buffer D← φ

4: Initialize Recorder Queue Rq← φ

5: Initialize Predict Queue Pq← φ

6: Initialize Predictors {P1, P2, P3...Pm}

Algorithm 2 GA3C+SIL: Agent
1: for all Agent ∈ {A1, A2, A3...An} do in parallel
2: episode buffer ε← φ

3: # Collects samples
4: tstart ← T
5: for each step do
6: Enqueue st into Pq for all t in ε
7: Obtain policy πθ(at |st) via Pq
8: Execute an action st , at , rt , st+1∼πθ(at |st)
9: Store transition ε← ε

⋃
(st , at , rt)

10: T ← T + 1
11: if st+1is terminal or T − tstart == tmax then
12: # Update replay buffer
13: Compute returns Rt = Σ∞i γ

i−tri for all t in ε
14: Partition ε into batches {b1, b2, b3...bq} of size N
15: for all batch b ∈ {b1, b2, b3...bq} do
16: Enqueue b into Rq
17: end for
18: Clear episode buffer ε← φ

19: end if
20: end for
21: end parallel for

count sum of rewards R is greater than value es-
timate Vθ, the agent learns to improve itself via
this good experience. Otherwise, such a sampled
experience is not used to update the parameter.

3.2 Network Architecture
Our network is deeper than that in study [6]

and residual networks are incorporated is in
study [7]. Figure 3 sketches the network archi-
tecture.

Input preprocessing: At every step, an agent
observes four kinds of information: screen, min-
imap, player, and available actions. The features
underlying these information can be divided into
two kinds: Categorical and Scalar. Scalar fea-
tures are adjusted with logarithmic transforma-
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Algorithm 3 GA3C+SIL: Trainer
1: Initialize Trainers {Tr1,Tr2,Tr3...Trp}

2: # Perform actor-critic and self-imitation learning
3: for all each Trainer ∈ {Tr1,Tr2,Tr3...Trp} do in parallel
4: # Get on-policy N-step batches from Recorder
5: Dequeue batch b from Rq
6: # Perform actor-critic using n-step samples
7: for (si, ai,Ri) ∈ b do
8: D← D

⋃
(si, ai,Ri)

9: Hπ
i ← −Σaπ(a|si) log π(a|si)

10: Lga3c
policy ← − log πθ(ai |si)(Ri − Vθ(si)) − αHπ

i

11: Lga3c
value ←

1
2 ||Ri − Vθ(si)||2

12: end for
13: Lga3c ← Es,a∼πθ [L

ga3c
policy + βga3cLga3c

value]
14: θ ← θ − η 5θ Lga3c

15: # Perform self-imitation learning using sampled experiences
16: for m = 1 to M do
17: Sample a mini-batch {(s, a,R)} from D
18: for (sk , ak ,Rk) ∈ {(s, a,R)} do
19: if Rk − Vθ(sk) > 0 then
20: Hπ

k ← −Σaπ(a|sk) log π(a|sk)
21: Lsil

policy ← − log πθ(ak |sk)(Rk − Vθ(sk)) − αHπ
k

22: Lsil
value ←

1
2 ||Rk − Vθ(sk)||2

23: end if
24: end for
25: Lsil ← Es,a,R∈D[Lsil

policy + βsilLsil
value]

26: θ ← θ − η 5θ Lsil

27: end for
28: end parallel for
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Fig. 3 Network Architecture

tion x = log(s), where s is value of scalar feature.
Each categorical feature layer is embedded into
a convolutional layer (y x y kernels with 1 filter)
where y = log2(d) and d is the dimension of the
feature layer. The idea of y = log2(d) is borrowed
from an open source project https://github.
com/inoryy/pysc2-rl-agent. While y is set
to 10 according to input preprocessing in study
of [7].

State encoding: screen and minimap are fed to
independent residual convolutional blocks, each
consists of 3 convolutional layer (5 x 5 kernels
with 32 filters, 3 x 3 kernels with 48 filters, 3 x
3 kernels with 16 filters) followed by one resid-

Table 1 Action Policy of Output

Action Identifiera0 Arguments {a1, a2...aL}

Non-spatial action policy Action policy1 Action policy1
Spatial action policy Action policy1 Action policy2

ual block with 1 convolutional layer (1 x 1 ker-
nels with 16 filters). All strides of convolutional
layers here are set to 1. Then, these two out-
puts are concatenated along the depth dimen-
sion to represent spatial state input (inputspatial).
The remaining input (player) is broadcast along
the channel dimension of inputspatial, denoted as
inputnon spatial. Here, both dimensions of screen
and minimap are the same but PySc2 allows us
setting up different resolutions for these two in-
puts.

Output processing: The network outputs two
kinds of values: policy and value. They are
computed differently for spatial actions and non-
spatial actions.

The state representation is then formed by the
concatenation of inputspatial and inputnon spatial,
denoted as inputshared. Our network handles
the identifier and arguments of spatial and non-
spatial actions via Action policy1 and Action
policy2, as summarized in Table 1. In order
to get Action policy1 and values of given state
s, inputshared is fed to a fully-connected layer
with 256 units and ReLU activations, followed
by fully-connected layer with |actions| units and
no activation. The mask of identifier a0 is a 1-
dimension list and only contains 1 and 0. The
values of it are set to 1 whose index are obtained
in available action otherwise 0. Mask of avail-
able arguments ({a1, a2...aL}) of chosen action
can be generated by the same manipulation as
that of available actions. Then, Action policy2 is
obtained through 1 x 1 convolution of inputshared

with a single output channel and already gener-
ated mask. Finally, baseline value V(s) is gen-
erated by passing inputshared through a separated
fully-connected layer with 256 units and ReLU
activations, followed by fully-connected linear
layer with 1 output unit.

4. Experiments

We compared the performance of GA3C and
GA3C+SIL in DefeatRoaches, which is related
with the goal of defeating as many Roaches as
possible.

All hyper-parameters of experiments are de-
scribed in Table 2. Our implementation of
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Fig. 4 Plain GA3C (1st run), the maximum average score (recent 30
eposides) was 101 across 75000 episodes.

GA3C is based on the implementation by the
authors of study [1], https://github.com/
NVlabs/GA3C, and work of https://github.
com/inoryy/pysc2-rl-agent. We used Ten-
sorFlow version 1.10 running on Linux with
GeForce GTX 1080 and GeForce GTX 1080Ti,
for most of our experiments.

There are totally seven mini-games in the
SC2LE Environment. DefeatRoaches and De-
featZerglingsAndBanelings address the battle
part of the full game among these mini-games.
As Banelings is the only self-destructive military
unit which causes damage to all enemies within a
certain range, and Roaches and Marines are kinds
of military unit that one unit can only attack one
enemy within a certain range. Such units like
Marines are common in the full game, so De-
featZerglingsAndBanelings can be considered as
a special situation of battle part when compared
to DefeatRoaches.

4.1 DefeatRoaches Task Description
The agent starts with nine Marines (one kind

of military units that holds machine gun) on one
side of the map and needs to defeat four Roaches
on the other side of the map. Every time an
agent defeats all the Roaches, it gets five more
Marines at full health as reinforcement and four
new Roaches spawn. The reward is +10 per
Roach killed and -1 per Marine killed. The more
Marines the agent keeps alive, the more roaches
it can defeat. The end condition of this mini-
game is either time up or all marines defeated.
Additionally, game will be reset if four roaches
were defeat every time.
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Fig. 5 Plain GA3C (2nd run): the maximum average score (recent 30
episodes) was 138 across 100000 episodes.
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Fig. 6 Plain GA3C (3rd run): the maximum average score (recent 30
episodes) was 84 across 100000 episodes.
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Fig. 7 Plain GA3C (4th run): the maximum average score (recent 30
episodes) was 38 across 100000 episodes.

4.2 Results
Figures 4, 5, 6, 7 are results of three differ-

ent times of plain GA3C with proposed network
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Fig. 8 GA3C+SIL (1st run): the maximum average score (recent 30
episodes) was 72 across 100000 episodes.
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Fig. 9 GA3C+SIL (2nd run): the maximum average score (recent 30
episodes) was 67 across 100000 episodes.
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Fig. 10 Average of beginning stage of the training

architecture mentioned in Sect. 3.2. As shown
in these three figures, the best average score of
plain GA3C is over 100, which is the best aver-

Table 2 Training Parameters Used

Hyper-parameters Value
Learning rate 4 ∗ 10−4 annealing to 2 ∗ 10−4 linearly

Screen resolution 32x32
Minimap resolution 32x32

Number of asynchronous agents (n) 16
Number of Predictor (m) 2

Number of Trainer (p) 4
Batch size (N) 32

Baseline loss scaling 0.5
Entropy regularization 0.001

SIL update per iteration (M) 4
SIL batch size 64

SIL loss weight 1
SIL value loss weight 0.02

Replay buffer size 105

Discount 0.99
RMSProp Decay 0.99

RMSProp Epsilon 1 ∗ 10−5

age score reported in [6]. We believe our deeper
network contributed to better performance. How-
ever, it is not always successful according to the
result of 4th run, which is shown in 7. In the
study of [6], it is also not always to achieve
good performance of average score of 100. The
reasons of failure may be the same as that of
study [6]. Figure 8 and 9 show the results
of GA3C+SIL. However, unexpectedly, the re-
sults of GA3C+SIL does not outperform those
of plain GA3C. In Figure 9, we can see that the
mean score decreases after 30000 episodes until
the end of the training. Our speculation is that
GA3C+SIL model may tend to overfit to the past
experiences. In order to find out that whether SIL
improves the beginning stage of learning or not,
we take the average value of both plain GA3C
and GA3C+SIL across 30000 episodes, as shown
in Figure 10. As both agents performed simi-
larly at the beginning of learning and agents of
GA3C+SIL perform a little better than agents of
plain GA3C, so SIL did not improve the perfor-
mance at the beginning of learning a lot.

5. Conclusion
In this paper, we combined GA3C and self-

imitation learning (SIL), and evaluated the
method (GA3C+SIL) in DefeatRoaches, which
is a mini-games of StarCraft II. Thanks to
our deeper network with residual convolutional
blocks, plain GA3C have shown better perfor-
mance than existing work. However, the perfor-
mance of GA3C+SIL was not better than that of
GA3C.
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