
Comparison Training of N-Tuple Networks for Chess

Wen-Jie Tseng†1 Jr-Chang Chen†2 I-Chen Wu†1

Abstract: This paper applies a modified comparison training to a chess program. We implement the training method in the open-

source UCI chess engine Stockfish. Feature weights are tuned based on the best moves searched by Stockfish from game records

of grandmasters. The update formulas of feature weights are changed suitably for the evaluation functions which use tapered eval.

With the method, the evaluation functions using tapered eval can be trained with the same training set without partitioning. The

experiments include 1- to 4-ply training with a quiescence extension. The experimental results show that the trained version with

4-ply training outperforms the original version with only linear evaluation functions by a win rate of 65.25%.

Keywords: computer chess, comparison training, machine learning

1. Introduction

Evaluation functions are used for game-tree search in many

computer games. It is critical to evaluate the winning chance of

game positions for the player to move accurately. Positions are

usually evaluated from the weights of designated features, such

as pieces, locations, mobility and king safety for chess-like games.

Many researchers have shown the difficulty of constructing an

effective evaluation function, which includes (1) choosing

appropriate features and (2) manually tuning their weights

together with experts. In addition, the more features there are, the

more difficult and time-consuming this work becomes.

In the past, feature selection required both domain knowledge

and programming skills. A structured evaluation function

representation [2] was proposed for exploring the feature space

to discover new features. A technique called n-tuple networks

provided a knowledge-free way of extracting game-playing

strategies. It was applied to Othello [2][8], shogi [6], Connect4

[14], Chinese chess [15] and 2048 [10][17] successfully.

To improve the playing strength of game-playing programs,

machine learning methods were used to tune the evaluation

functions automatically. Comparison training, one of the

successful methods, was employed in backgammon [11][12],

shogi [5][6], chess [13][16], and Chinese chess [15] programs.

The stage-dependent features [2] is one of the issues of tuning

feature weights. The features chosen for evaluating positions may

depend on game stages. It is crucial to evaluate positions

smoothly while crossing stages and to avoid big evaluation jumps

in game-tree search. However, it may be necessary to partition a

training set according to game stages and then tune the weights

for each game stage separately. This process requires a large

number of training positions, especially when the number of

stages is large. Tapered eval [3] is a common technique used to

make the evaluations become smooth across adjacent stages.

Most chess programs use this technique, such as Fruit, Crafty and

Stockfish. For computer chess, it is worth investigating whether

comparison training can be used to tune the weights of evaluation

functions which use tapered eval.

Previously, Tseng, et al. [15] obtained significant improvement

 †1 Dept. of Computer Science, National Chiao Tung University, Hsinchu,

Taiwan. E-mail: wenjie0723@gmail.com and icwu@csie.nctu.edu.tw

on their Chinese chess program by using comparison training

with tapered eval and an n-tuple network that take into

consideration the relationship of positional information from

individual features. In this paper, we apply their method to a chess

program and also obtain improvement.

2. Related Work

This section first briefly reviews related research on stage-

dependent features, comparison training and n-tuple networks.

Then, we describe the chess program, Stockfish, where we

implemented the training method.

2.1 Stage-dependent Features

Selecting the features and tuning their weights in evaluation

functions depend on the game stages in many games. For example,

in the endgame stage of Chinese chess, the material combination

of a knight and a cannon is better than that of two knights or two

cannons. In Chinese dark chess, the weights of the king depend

on the number of pawns and hence need to be tuned as the game

stages progress. In chess, tapered eval was widely used to

measure a stage based on the pieces on the board and then to

obtain the weight of the stage by interpolation. The technique was

implemented by most chess programs.

It is common to formulate a linear evaluation function as

follows.

evaluation(𝑤, 𝑠) = 𝑤T𝜑(𝑠), (1)

where 𝑤 is a weight vector corresponding to a feature vector

𝜑(𝑠) which indicates the features in a position 𝑠 . In the

implementation of tapered eval, two weights, 𝑤𝑜 and 𝑤𝑒 , are

used for each feature to represent the weights at the opening and

the endgame respectively. Then, the feature weights are

calculated by a linear interpolation of the two weights according

to many sub-stages divided by tapered eval. The following linear

interpolation replaces the weight vector 𝑤 in Formula (1) for an

evaluation function using tapered eval,.

𝑤 = 𝛼(𝑠)𝑤𝑜 + (1 − 𝛼(𝑠))𝑤𝑒 , (2)

where the game stage index 𝛼(𝑠) denotes how close to the

opening a position 𝑠 is and 0 ≤ 𝛼(𝑠) ≤ 1 . Hence, it is

 †2 Dept. of Computer Science and Information Engineering, National Taipei

University, New Taipei City, Taiwan. Email: jcchen@mail.ntpu.edu.tw

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 55 -

necessary to use different weights for the same feature in each

stage.

2.2 Comparison Training

Comparison training belongs to a kind of supervised learning

method and is used to train evaluation functions [11]. The

objective is to tune the weights in an evaluation function so that

the results after searching positions match the desired moves of

the positions. For example, grandmaster game records are

commonly used as training data for learning chess.

Let 𝑠 denote a training position and let 𝑠𝑏𝑒𝑠𝑡 denote the best

child position of 𝑠. For all child positions of 𝑠 , they are

compared with 𝑠𝑏𝑒𝑠𝑡. In [15], 𝑠𝑏𝑒𝑠𝑡 is assumed to be the child

position reached by an expert’s move. The information involved

in the comparison results is extracted to tune feature weights of

an evaluation function. The aim is to make the evaluation value

calculated by the tuned evaluation function be as close to that by

making the move to 𝑠𝑏𝑒𝑠𝑡 as possible. Averaged perceptron [4]

is an online training method described below. An update for

feature weights is made for each training position. Let 𝑤(𝑡)

denote the weight vector in the 𝑡 -th update, and assume that

𝑤(𝑡−1) is used to evaluate all of the child positions of 𝑠 during

the 𝑡-th update. For a position 𝑠, the update formula is as follows.

𝑤(𝑡) = 𝑤(𝑡−1) +
1

|𝑆(𝑡)|
∑ (𝜑(𝑠𝑏𝑒𝑠𝑡) − 𝜑(𝑠𝑖))

𝑠𝑖∈𝑆(𝑡)

, (3)

where 𝑆(𝑡) is the set of child positions of 𝑠 which has a better

evaluation value than that of 𝑠𝑏𝑒𝑠𝑡, |𝑆(𝑡)| is the number of these

better child positions, and 𝜑(𝑠𝑖) is the feature vector of 𝑠𝑖 .

Assuming that there are 𝑇 training positions, there are 𝑇

updates in each iteration. After 𝑁 iteration, the final feature

weight is the average weights of 𝑤(0) to 𝑤(𝑁∙𝑇) . When the

evaluation function using the final feature weight does not

improve on choosing the desired move, the training process stops.

A correct evaluation value improves the quality of tuning in

comparison training. One method is to replace the evaluation

values of child positions with those after making a shallow tree

search. In [13], Tesauro proposed 𝑑-ply comparison training by

replacing the evaluation for 𝑠𝑖 with the leaf on the principal

variation (PV), denoted by 𝑙𝑖, in the minimax search with depth

𝑑, as shown in Fig. 1.

Fig. 1 An extension of comparison training (𝑑 = 3).

As described in Subsection 2.1, the feature weight 𝑤 is

obtained from 𝑤𝑜 and 𝑤𝑒 . In [15], a modified comparison

training that incorporates tapered eval was proposed. To update

𝑤𝑜 and 𝑤𝑒 , the second term in Formula (3) is multiplied by the

two factors,
𝛼(𝑠)

𝛼(𝑠)2+(1−𝛼(𝑠))
2 and

1−𝛼(𝑠)

𝛼(𝑠)2+(1−𝛼(𝑠))
2, respectively.

Comparison training was successful applied in backgammon,

shogi, chess and Chinese chess. The backgammon program,

called Neurogammon, was trained with comparison training from

about 8000 positions chosen from 400 games [12]. Comparison

training was also applied to tuning the evaluation function in the

chess program, called SCP, and some weights in Deep Blue's

evaluation function with a slight modification [13]. The tuning of

the king safety weights had made a difference in Deep Blue's

choice on the Kasparov-Deep Blue rematch. For the shogi

program, called Bonanza, a similar machine learning method was

used to tune the evaluation function [7]. These programs reached

great achievements in international competitions including the

Computer Olympiad and World Computer Shogi Championship.

2.3 N-tuple Networks

In chess-like games, a large number of features are designed in

evaluation functions. Some of them are highly related and the

relations are hard to be extracted. N-tuple networks are a good

implementation for this issue with less requirement of domain-

knowledge. For example, one 6-tuple covers six designated

squares on the Othello board [8] and includes 36 features, where

each square is empty or occupied by a black or white piece.

Assume there are 𝑚 𝑛𝑖-tuples in an n-tuple network, where

𝑖 = 1, 2, … , 𝑚. Each 𝑛𝑖-tuple consists of 𝑛𝑖 features, denoted by

𝑓𝑖𝑗 , where 𝑗 = 1, 2, … , 𝑛𝑖 . The feature weight 𝑤𝑖 of an 𝑛𝑖-tuple

indicates the importance of these features 𝑓𝑖𝑗 as a whole.

Each 𝑛𝑖-tuple is implemented by a look-up table LUT𝑖 where

the weights are stored. Let idx(𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖𝑛𝑖
) be a function

that calculates an index of the feature value 𝑣𝑖𝑗 of each feature

𝑓𝑖𝑗 in 𝑛𝑖-tuple. First, 𝑣𝑖𝑗 is extracted from a given position 𝑠.

Then, each weight 𝑤𝑖 is queried from LUT𝑖 using idx. Finally,

the n-tuple network sums up all of the weights and obtains the

evaluation value of 𝑠.

2.4 Stockfish

We use Stockfish for analyzing the training method since it is

one of the strongest open-source chess engines in the world.

Moreover, Stockfish uses the UCI protocol [9] to communicate

with a GUI, which benefits testing and analyzing training results.

Stockfish uses techniques including principal variation search,

quiescence search, transposition tables, static exchange

evaluation, killer and history heuristics, null move pruning,

futility pruning, and late move reductions. Stockfish also uses

tapered eval in the evaluation functions. The game stage for a

position 𝑠 is calculated as follows.

𝛼(𝑠) =
𝑚𝑎𝑥{3915, 𝑚𝑖𝑛{15258, 𝑁𝑃𝑀(𝑠)} } − 3915

15258 − 3915
,

where 𝑁𝑃𝑀(𝑠) is summed opening weights of the non-pawn

material in 𝑠 for both white and black sides, and 15258 and 3915

are the boundaries of opening and endgame.

Some of the features in the evaluation function of Stockfish are

linear and the others are non-linear. The evaluation function

includes the following sub-functions.

p

s1 s2

l1

d

l2

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 56 -

 psq_score() evaluates material and piece squares.

 imbalance() evaluates the material imbalance.

 pieces() evaluates pieces of a given color and type

according to their mobility or specific patterns.

 king() evaluates bonuses and penalties to a king of a given

color.

 threats() evaluates bonuses according to the types of the

attacking and the attacked pieces.

 passed() evaluates the passed pawns and candidate passed

pawns of a given color.

 space() evaluates a bonus based on the number of safe

squares available for minor pieces on the central four files

on ranks two to four.

 initiative() evaluates the initiative correction value based

on the known attacking/defending status of the players.

 pawn_score() evaluates the pawns of a given color.

 Specialized sub-functions evaluate positions with

particular material configurations.

Among the above sub-functions, psq_score(), pieces(),

threats(), and pawn_score() include only linear features, whereas

imbalance(), king(), passed(), space(), initiative(), and

specialized sub-functions include linear and non-linear features.

Note that when a position is a type of specialized endgames, the

evaluated value of the position is exactly the value evaluated by

the specialized sub-functions since the specialized sub-functions

are absolutely correct.

3. Method

We use comparison training, incorporating tapered eval, to tune

the weights of linear features and use n-tuple networks to

implement new features that are not in Stockfish.

3.1 Training and Tapered Eval

In the second term of formula (3), the difference of two feature

vectors from two positions is computed. More specifically, for a

training position 𝑠 , 𝑠𝑏𝑒𝑠𝑡 is from the desired move and 𝑠𝑖 is

from other moves. Since 𝑠 , 𝑠𝑏𝑒𝑠𝑡 and 𝑠i may be in different

game stages, it is reasonable to further change formulas (3) for

updating 𝑤𝑜 and 𝑤𝑒 , as follows.

𝑤𝑜
(𝑡) = 𝑤𝑜

(𝑡−1) +
1

|𝑆(𝑡)|
∑ (𝜑𝑜(𝑠𝑏𝑒𝑠𝑡) − 𝜑𝑜(𝑠𝑖))

𝑠𝑖∈𝑆(𝑡)

𝑤𝑒
(𝑡) = 𝑤𝑒

(𝑡−1) +
1

|𝑆(𝑡)|
∑ (𝜑𝑒(𝑠𝑏𝑒𝑠𝑡) − 𝜑𝑒(𝑠𝑖))

𝑠𝑖∈𝑆(𝑡)

, where

𝜑𝑜(𝑠) =
𝛼(𝑠)

𝛼(𝑠)2 + (1 − 𝛼(𝑠))
2 𝜑(𝑠)

𝜑𝑒(𝑠) =
(1 − 𝛼(𝑠))

𝛼(𝑠)2 + (1 − 𝛼(𝑠))
2 𝜑(𝑠)

The main idea is similar to [15]. The intention is to make the

update formulas more suitable for the opening and endgame

weights since 𝛼(𝑠), 𝛼(𝑠𝑏𝑒𝑠𝑡) and 𝛼(𝑠i) may be different.

3.2 Weight Initialization

At the beginning of training, the opening and endgame weights

of material are both initialized as in Table I, and the other weights

are initialized to zero. The weights are chosen based on the values

in the source code of Stockfish. We chose the values close to the

average values of the opening and endgame weights for each

piece. The concept is like the shogi program Gekisashi [16] which

initialized the weights for pieces to some heuristic values and the

others to zero.

Table I. Initial weights of material for training.

Queen Rook Bishop Knight Pawn

2600 1300 850 800 200

3.3 Material Constraint

To prevent weights from diverging during training, we add a

constraint when using evaluation functions in tree search. We use

floating-point weights in the training and the rounded integer

weights in the game-tree search. A transition from floating-point

weights to integer weights is computed by 𝑤𝑖𝑛𝑡𝑒𝑔𝑒𝑟 =

𝑟𝑜𝑢𝑛𝑑(𝛾𝑤𝑓𝑙𝑜𝑎𝑡𝑖𝑛𝑔−𝑝𝑜𝑖𝑛𝑡) , where 𝛾 = 16488/(2𝑤𝑜[𝑞𝑢𝑒𝑒𝑛] +

4𝑤𝑜[𝑟𝑜𝑜𝑘] + 4𝑤𝑜[𝑏𝑖𝑠ℎ𝑜𝑝]+4𝑤𝑜[𝑘𝑛𝑖𝑔ℎ𝑡]) is a scaling factor

and 16488 is obtained from the source code of Stockfish by the

summation of total non-pawn material for both sides. The

intention is to make the summed opening weights of two queen,

four rook, four bishop and four knight be a constant. Note that we

do not have to change the boundaries of opening and endgame

(15258 and 3915) that are already used in Stockfish since the

summation of non-pawn material are fixed.

3.4 N-tuple Features

We design 2-tuple networks for chess like in [15]. The feature

set extracts the locational relation of two pieces, which may

include attack or defense strategies. One 2-tuple of size 32 × 63

can be used to represent the location relation for two specific

pieces when the left-right symmetry of piece locations is

considered. Thus, one 2-tuple is used for each combination of two

pieces and there are in total 72 2-tuples. The total number of

features for 2-tuples is 145,152. Then we follow the formulas

proposed in [15] to perform the comparison training.

4. Experimental Result

The experiments described in this section used Stockfish

(version date 2018/7/30), whose source code was available on

GitHub. The training data included 94,167 game records of expert

players whose Elo ratings exceeded 2500 (Grandmaster level).

Among these game records, five million positions were selected

for training and five hundred thousand were for testing. For

benchmarking, one thousand positions were selected for self-play

based on the frequencies played by experts. A total of two

thousand games, from the perspective of both players, were

played in each experiment. Each move took one hundred

thousand nodes.

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 57 -

4.1 Evaluation Functions for Training

We used ten versions of Stockfish to analyze the training

method described in Subsection 3.1. All versions are listed in

Table II. For the original versions ORI1 and ORI2 from GitHub,

the former is the version without any changes and the latter is the

version that removes non-linear sub-functions from ORI1. For

analysis, we removed the non-linear sub-functions (except the

specialized sub-functions) of the evaluation function and

reserved the linear sub-functions. We reserved the specialized

sub-functions in ORI2 since their evaluations are absolutely

correct.

CT1-CT4 and CT5-CT8 are the trained versions based on

ORI1 and ORI2 respectively. Additionally, the trained versions

incorporated the 2-tuple networks as described in Subsection 3.4.

The experiments included 1- to 4-ply training with a quiescence

extension. Note that the weights in non-linear sub-functions were

not trained in our experiments.

In order to improve the quality of training data, we used the

original version ORI1 to search the best moves of the training

positions and used the searched moves as the desired moves in

the training. Each move took two hundred thousand nodes.

Table II. The versions of Stockfish for experiments.

Versions Explanation

ORI1 Original version without any changes

ORI2 Remove non-linear sub-functions from ORI1

CT1 ORI1+2-tuple trained with 1-ply training

CT2 ORI1+2-tuple trained with 2-ply training

CT3 ORI1+2-tuple trained with 3-ply training

CT4 ORI1+2-tuple trained with 4-ply training

CT5 ORI2+2-tuple trained with 1-ply training

CT6 ORI2+2-tuple trained with 2-ply training

CT7 ORI2+2-tuple trained with 3-ply training

CT8 ORI2+2-tuple trained with 4-ply training

4.2 ORI vs. ORI

First of all, for establishing a baseline for experiments, we

compared the two original versions to see how different between

the versions with and without the non-linear sub-functions. The

result is shown in Table III. ORI1 outperforms ORI2 by a win rate

of 82%. That means the non-linear sub-functions play an

important role in the evaluation function. The most playing

strength are contributed by the non-linear sub-functions in

Stockfish.

Table III. Experiment results of ORI1 vs. ORI2.

Versions Win rate

ORI1 vs. ORI2 82.00%

4.3 CT vs. ORI

For testing the power of each trained version, we let each

CT1-CT8 compete against the baselines ORI1 and ORI2. Table

IV shows the match results of CT1-CT4 against ORI1. The win

rate is about 40% for CT2-CT4, where CT1 is the weakest one.

From the results, the linear sub-functions were not suitably

trained to cooperate with the non-linear sub-functions.

Table IV. Experiment results of CT1-4 vs. ORI1.

Versions Win rate

CT1 vs. ORI1 33.83%

CT2 vs. ORI1 40.10%

CT3 vs. ORI1 38.77%

CT4 vs. ORI1 41.30%

Table V shows the match results of CT5-CT8 against ORI1.

As mentioned above, without the non-linear sub-functions, the

playing strength of the versions becomes very weak. However,

CT5-CT8 played better than ORI1. It seems that the versions with

only linear evaluation functions were trained well.

Table V. Experiment results of CT5- CT8 vs. ORI1.

Versions Win rate

CT5 vs. ORI1 21.70%

CT6 vs. ORI1 24.30%

CT7 vs. ORI1 26.13%

CT8 vs. ORI1 28.15%

Table VI shows the match results of CT1-CT4 against ORI2.

The trained version clearly outperforms ORI2 by win rates over

than 72%. We think that is because the non-linear sub-functions

still work with the linear sub-functions but not as good as the

original version ORI1.

Table VI. Experiment results of CT1-CT4 vs. ORI2.

Versions Win rate

CT1 vs. ORI2 72.33%

CT2 vs. ORI2 77.05%

CT3 vs. ORI2 75.40%

CT4 vs. ORI2 78.28%

Table VII shows the match results of CT5-CT8 against ORI2.

From the results, it shows that the 2-tuple networks clearly

contributed to improving the playing strength of computer chess.

Especially for CT7 and CT8, they outperforms ORI2 by win rates

over than 65%.

Table VII. Experiment results of CT5-8 vs. ORI2.

Versions Win rate

CT5 vs. ORI2 58.92%

CT6 vs. ORI2 62.25%

CT7 vs. ORI2 65.03%

CT8 vs. ORI2 65.25%

4.4 TRAINED vs. TRAINED

For testing the power of each version trained with different

search depth, we let each CT2-CT4 and CT6-CT8 compete

against the versions trained with lower search depth. The results

are listed in Table VIII and Table IX. It is clear that 2-ply training

outperforms 1-ply training. Nevertheless, 3-ply training is

slightly better than 2-ply training and 4-ply training performs

nearly as 3-ply training. The results is quite different from the

experimental results in [13]. From the results, it is better that the

search depth of training has to be at least 2-ply.

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 58 -

Table VIII. Experiment results of CT2-CT4 vs. CT1-CT3.

Versions Win rate

CT2 vs. CT1 57.70%

CT3 vs. CT2 50.95%

CT4 vs. CT3 51.65%

Table IX. Experiment results of CT6-CT8 vs. CT5-CT7.

Versions Win rate

CT6 vs. CT5 57.65%

CT7 vs. CT6 52.90%

CT8 vs. CT7 50.90%

4.5 Analysis of Material Weights

We compared the material weights of ORI1 and CT4 as shown

in Table X. After training, the opening weights changed slightly;

however, the endgame weights changed a lot. We think the reason

is that Stockfish uses the opening weights of non-pawn material

to compute the game stage and we used the material constraint

described in Subsection 3.3. Another reason may be that

Stockfish uses some specialized sub-functions to evaluate

endgame positions. The sub-functions make the material features

in opening become less important than in endgame.

Table X. The trained material weights of ORI1 and CT4.

Features ORI1 CT4

𝑤𝑜 𝑤𝑒 𝑤𝑜 𝑤𝑒

Queen 2500 2670 2432 1671

Rook 1282 1373 1189 812

Bishop 826 891 898 499

Knight 764 848 819 452

Pawn 171 240 107 202

4.6 Discussion

For chess, many significant features, including king safety,

were designed in non-linear evaluation functions. It is crucial to

tune the weights of such features. Minimax Tree Optimization

[6] is a type of comparison training which is suitable for tuning

non-linear evaluation functions. It is worth investigating how

the method can be modified to tune the evaluation functions

which use tapered eval.

5. Conclusion

This paper applies a modified comparison training,

incorporating tapered eval, for computer chess and additionally

designs new features with n-tuple networks for chess. We change

the update formulas for the opening and endgame weights in the

evaluation functions which use tapered eval. The new formulas

are also useful for tuning feature weights. The experiments show

that the training is efficient and effective to tune the linear

evaluation functions and 2-tuple networks are also helpful for

computer chess. With the method, the evaluation functions using

tapered eval can be trained with the same training set without

partitioning. Possible future work would be the training of non-

linear sub-functions in Stockfish.

Acknowledgement

The authors would like to thank Ministry of Science and

Technology of Taiwan for financial support of this research

under the contract numbers MOST 107-2634-F-009-011, 107-

2634-F-259-001, 106-2221-E-305-016-MY2, 106-2221-E-305-

017-MY2 and 106-2221-E-009-139-MY2.

Reference
[1] Buro, M., Experiments with Multi-ProbCut and a New High-

Quality Evaluation Function for Othello, Technical Report 96,

NEC Research Institute, 1997.

[2] Buro, M., From Simple Features to Sophisticated Evaluation

Functions, In Proceedings of the First International Conference on

Computers and Games (CG'98), pp. 126–145, 1998.

[3] Chess Programming Wiki, Taper Eval, [Online], Available:

https://www.chessprogramming.org/Tapered_Eval

[4] Collins, M., Discriminative Training Methods for Hidden Markov

Models: Theory and Experiments with Perceptron Algorithms, In

EMNLP’02, pp. 1-8, 2002.

[5] Hoki, K. and Kaneko, T., The Global Landscape of Objective

Functions for the Optimization of Shogi Piece Values with Game-

Tree Search. Advances in Computer Games 13, LNCS 7168, pp.

184-195, 2012.

[6] Hoki, K. and Kaneko, T., Large-Scale Optimization for Evaluation

Functions with Minimax Search, J. Artif. Intell. Res. (JAIR) 49,

527-568, 2014.

[7] Kaneko, T. and Hoki, K., Analysis of Evaluation-Function

Learning by Comparison of Sibling Nodes, In Advances in

Computer Games 13, LNCS 7168, 158-169, 2012.

[8] Lucas, S. M., Learning to Play Othello with N-tuple Systems,

Australian Journal of Intelligent Information Processing 4, 1-20,

2007.

[9] Shredder Computer Chess , UCI protocol [Online]. Available:

https://www.shredderchess.com/chess-info/features/uci-universal-

chess-interface.html

[10] Szubert, M. and Jaśkowski, W., Temporal Difference Learning of

N-tuple Networks for the Game 2048, In 2014 IEEE Conference

on Computational Intelligence and Games (CIG), pp. 1-8, 2014.

[11] Tesauro, G., Connectionist Learning of Expert Preferences by

Comparison Training. Advances in Neural Information Processing

Systems 1, 99-106, Morgan Kaufmann, 1989.

[12] Tesauro, G., Neurogammon: a Neural Network Backgammon

Program, IJCNN Proceedings III, 33-39, 1990.

[13] Tesauro, G., Comparison Training of Chess Evaluation Functions.

In: Machines that learn to play games, pp. 117-130, Nova Science

Publishers, Inc., 2001.

[14] Thill , M., Koch, P. and Konen, W., Reinforcement Learning with

N-tuples on the Game Connect-4, In Proceedings of the 12th

International Conference on Parallel Problem Solving from Nature

- Volume Part I (PPSN’12), pp. 184-194, 2012.

[15] Tseng, W.-J., Chen, J.-C., Wu, I-C., Wei, T., Comparison Training

for Computer Chinese Chess, arXiv:1801.07411, 2018.

[16] Ura, A., Miwa, M., Tsuruoka, Y., and Chikayama, T., Comparison

Training of Shogi Evaluation Functions with Self-Generated

Training Positions and Moves, CG 2013, 2013.

[17] Yeh, K.-H., Wu, I-C., Hsueh, C.-H., Chang, C.-C., Liang, C.-C.

and Chiang, H., Multi-Stage Temporal Difference Learning for

2048-like Games, IEEE Transactions on Computational

Intelligence and AI in Games, 9(4), 369-380, 2017.

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 59 -

