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Abstract: Chess-like games share much common knowledge that is useful for both human players and com-
puter programs, but is difficult to be well extracted and represented by using existing learning methods. This
paper presents a novel semi-supervised learning method for automatically translating positions in one game
to equivalent positions in another game. Preliminary experimental results in chess and shogi demonstrated
the effectiveness of the proposed method.

1. Introduction

It is considered that chess-like games including chess,

shogi and xiangqi share plenty of common features and tac-

tics. According to this commonality, human players are sup-

posed to be able to improve their skills and develop new

playing patterns by learning from a wider range of game

records. Also, the joint learning of evaluation functions for

multiple games is expected to help achieve higher prediction

accuracy in each game.

It is challenging to accurately extract and efficiently uti-

lize common knowledge in different games. Generally, there

are two feasible approaches: (1) to separate game features

into common and domain-dependent parts; (2) to translate

positions and moves from one game to another, and then

incorporate the translated data into the original dataset of

the target game. In this paper, we mainly focused on the

second approach.

Cycle-consistent adversarial networks (CycleGANs) [1]

are proposed by J. Zhu et al. based on the framework of

pix2pix [2] and the adversarial learning method of origi-

nal generative adversarial networks (GANs) [3] to solve un-

paired image-to-image translation tasks. As proposed in Al-

phaGo series [4], [5], [6], a move in board games can be rep-

resented as a pair of successive positions, in which a position

can be represented as a multi-channel image and processed

by using convolutional neural networks (CNNs). Thus, we

consider that learning methods for image-to-image transla-

tion are also able to be applied in translating game positions.

Based on CycleGANs [1] and other related work, we pro-

posed a novel adversarial learning method named pos2pos,

to learn translation functions T (x) in chess-like games, that

can automatically find a corresponding position PT = T (PS)

in the target game GT for a given position PS in the source
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game GS (GS 6= GT). Specifically, for finding corresponding

positions in different games, the translation results shall sat-

isfy the following two conditions: (1) PT is a legal position

of GT or at least meaningful enough to be explained; (2) PS

and PT are of approximately equivalent advantages for win-

ning a game. It should be noted that the second condition

is not required in image translation tasks, which makes the

translation of game positions more unique and interesting.

We conducted experiments in chess and shogi, and pre-

liminarily demonstrated the feasibility and effectiveness of

the proposed method.

2. Related Work

Generative adversarial networks (GANs) [3] were first pro-

posed by I. Goodfellow et al. in 2014, and has been applied

in recent years in solving a lot of novel tasks including con-

tent generation, style transfer, super resolution and object

detection.

Typically, a GAN consists of a generator network for pro-

ducing textual, vocal or visual samples, and a discriminator

network for judging if a given sample is a real sample or

automatically generated artifact. The generator accepts a

noise signal or a base sample as the input, and is trained to

produce high-quality samples to fake the discriminator. The

discriminator is trained to differentiate input samples by us-

ing real samples from the training dataset and fake samples

output by the generator. Both networks have their inde-

pendent parameters which are trained simultaneously and

adversarially. In this way, the generator is able to acquire

necessary gradients from the discriminator’s judge results,

to polish the representation of generated samples.

In the paper of least squares GANs (LSGANs) [7], X. Mao

et al. proposed applying mean squared error (MSE) to the

loss function of the discriminator to provide smooth and

non-saturating gradients. Furthermore, improved Wasser-

stein GANs with gradient penalty (WGANs with GP) [8]

are proposed by I. Gulrajani et al. based on M. Arjovsky

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 51 -



et al.’s previous work [9]. In their work, a gradient penalty

loss is adopted to make the discriminator’s outputs conform

to the requirements of the Lipschitz-1 continuous function.

Both the two methods have been experimentally proven to

be effective in improving the quality of generated results.

As an important application of GANs in domain transfer

tasks, the design of CycleGANs [1] is capable of transferring

images from one domain to another. Following the common

practice for dual learning in neuro-linguistic programming,

in training, CycleGANs transfer an image to a different do-

main, then transfers it back to the original domain and com-

pares it with the original image. Additionally, CycleGANs

introduce two discriminators from GANs to verify and en-

hance the transferred results in each domain.

In this paper, we incorporated the advantages of Cy-

cleGANs, LSGANs and WGANs with GP, and introduced

game-specific discriminators for the position translation be-

tween chess and shogi.

3. Proposed Method
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Fig. 1 Learning Framework for Position-to-Position Translation

The learning framework of the proposed Pos2Pos is

demonstrated in Figure 1. The framework contains 1 trans-

lator, 3 discriminators for each game. All the translators and

discriminators are based on convolutional neural networks.

3.1 Learning Objectives

As the core outcome of our method, a pair of inverse trans-

lators TAB and TBA is adopted for translating positions be-

tween chess and shogi.

For each game, we defined 3 discriminators for ensuring

the quality of translated results.

• Board discriminator (BD) is for judging the legacy

of a given game board. It takes a game position as in-

put, and outputs a probability in [0, 1] that indicates

whether the input position could be a real state in the

corresponding game.

• Position discriminator (PD) is for evaluating the

scores of two related positions. Technically, the two

positions are two positions subsequent to the same pre-

vious game state. The position discriminator takes the

two positions as input, and determines that compared

with the second input position, if the first position is

chosen, which player is more likely to win.

• Move discriminator (MD) is for verifying the legacy

of a given move. It takes a pair of successive positions

as input, and outputs a probability in [0, 1] that indi-

cates whether the two positions could form a real move

in the corresponding game.

In the original design of CycleGANs [1], there is only one

discriminator responsible for ensuring the quality of gener-

ated contents, like the board discriminator we defined above.

The position and move discriminators are newly designed

and added in this paper, to ensure translated positions are

relatively consistent and comparable to each other.

3.1.1 Translators

For two related games GA and GB, TAB(x) and TBA(x)

are inverse translation functions to each other, and their

main learning objectives are

PABA ≈ TBA(TAB(PA)), PABA ≈ PA,

PBAB ≈ TAB(TBA(PB)), PBAB ≈ PB,
(1)

where x ≈ y is defined in this paper as the simplified expres-

sion of using mean squared error (MSE) as a loss function to

minimize the difference between x and y in training. PABA

and PBAB are two generated positions after applying the

two translation functions successively.

3.1.2 Board Discriminators

Two board discriminator networks BDA(x) and BDB(x)

are adopted for judging if a given input x is a legal position

in GA or GB, and trained to adjust the translation results

in an adversarial way.

The parameters in BDA and BDB are trained by using

BDA(PA) ≈ 1, BDA(PBA) ≈ 0,

BDB(PB) ≈ 1, BDB(PAB) ≈ 0,
(2)

while the parameters in the two translators TAB(x) and

TBA(x) are trained to enhance the board discriminators’

outputs for the translated positions:

BDA(PBA) ≈ 1, BDB(PAB) ≈ 1, (3)

where PAB = TAB(PA) and PBA = TBA(PB) are two po-

sitions translated from GA to GB and from GB to GA, re-

spectively.

3.1.3 Position Discriminators

For each game, a position discriminator PD(x) is newly
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added for evaluating the relative advantages between two

related positions. Position discriminators are trained to an-

swer which player is more likely to win, in case that the first

position is chosen.

Specifically, parameters in PDA and PDB are trained as

PDA(〈YA, RA〉) ≈ pA, PDA(〈RA, YA〉) ≈ −pA,

PDB(〈YB, RB〉) ≈ pB, PDB(〈RB, YB〉) ≈ −pB,
(4)

whereX,Y,R denote 3 kinds of different positions in a game.

X is a non-terminal game position. Y is a position subse-

quent to X, and moved by an expert player or program. R

is a random position subsequent to X other than Y . p = ±1

indicates the next player to move.

As for positions XAB, YAB, RAB translated from GA to

GB, and positions XBA, YBA, RBA translated from GB to

GA, the position discriminators are trained to give results

approximate to 0 for them:

PDA(〈YBA, RBA〉) ≈ 0, PDA(〈RBA, YBA〉) ≈ 0,

PDB(〈YAB, RAB〉) ≈ 0, PDB(〈RAB, YAB〉) ≈ 0,
(5)

while the parameters in two translators TAB(x) and TBA(x)

are trained to make the position discriminators output rea-

sonable results, as

PDA(〈YBA, RBA〉) ≈ pB, PDA(〈RBA, YBA〉) ≈ −pB,

PDB(〈YAB, RAB〉) ≈ pA, PDB(〈RAB, YAB〉) ≈ −pA,
(6)

3.1.4 Move Discriminators

Along with position discriminators, a move discriminator

is added to each game for judging the legacy of given moves.

The parameters in MDA(x) and MDB(x) are trained to

recognize real moves in the training data set as 1 by using

MDA(〈XA, YA〉) ≈ 1, MDA(〈XA, NA〉) ≈ 1,

MDB(〈XB, YB〉) ≈ 1, MDB(〈XB, NB〉) ≈ 1,
(7)

and are trained to recognize translated moves as 0 by using

MDA(〈XBA, YBA〉) ≈ 0, MDA(〈XBA, NBA〉) ≈ 0,

MDB(〈XAB, YAB〉) ≈ 0, MDB(〈XAB, NAB〉) ≈ 0,
(8)

while the parameters in two translators TAB(x) and TBA(x)

are trained to fake the move discriminators’ results as

MDA(〈XBA, YBA〉) ≈ 1, MDA(〈XBA, NBA〉) ≈ 1,

MDB(〈XAB, YAB〉) ≈ 1, MDB(〈XAB, NAB〉) ≈ 1.
(9)

3.2 Network Architectures

The network architectures of translators and discrimina-

tors are listed in Table 1 and Table 2, containing 38 and 18

convolutional layers, and forming 17 and 9 standard residual

blocks [10], respectively. All hidden layers are activated by a

leaky rectified linear unit (Leaky ReLU) [11] function with

α = 0.2. No activation function is applied to any output

layer in any network.

The input sizes of chess and shogi data are [12, 8, 8] and

Table 1 Network Architectures of Translators

Phases Layers Filters Kernels Strides

Input – 12, 28 – –

Encoding
(Conv)

6 128 3 1

1 192 3 2

5 192 3 1

1 256 3 2

5 256 3 1

1 512 3 2, 3

1 512 3 1

Decoding
(Conv)

1 256 4, 3 0.25, 0.33

1 256 4, 3 1

4 256 3 1

6 192 3 1

1 128 2, 3 0.5, 0.33

1 128 2, 3 1

4 128 3 1

Output 1 28, 12 1 1

Table 2 Network Architectures of Discriminators

Phases Layers Filters Kernels Strides

Input – 12, 28 – –

Conv

6 128 3 1

1 128 3 2

5 128 3 1

1 128 3 2

5 128 3 1

AvgPool 1 128 2, 3 1

Output
1 256 – –

1 1 – –

[28, 9, 9], respectively. The first dimensions are encoded ac-

cording to piece types in the two games. For convenience, we

temporarily excluded the information about prisoner pieces

in shogi.

The design of translator networks in this paper is based on

auto encoders, in which input images in the source game are

first encoded into a 512-dimensional feature vector FV, and

then decoded as corresponding images in the target game

through deconvolution. In training, we added an extra MSE-

based penalty function that punishes drastic changes in the

encoded feature vectors FV when a position is translated

into another game. This penalty function was proved to be

capable of accelerating the training of translators in experi-

ments.

3.3 Training Configurations

We collected 783,129 games from computer chess database

CCRL 40/40 *1 and 868,161 games from computer shogi

server Floodgate *2. 85% of the data were used for training,

and the remaining 15% were for testing. Only moves made

by the winner of a game were sampled during training.

In experiments, the batch size was set as 16 instances, ini-

tial learning rate started from 0.00005 and decayed to 0.992

of the original rate in every 10, 000 steps. All loss functions

were minimized by using the Adam optimization algorithm

(beta1 = 0.9). Discriminator and translator networks were

*1 http://www.computerchess.org.uk/ccrl/4040
*2 http://wdoor.c.u-tokyo.ac.jp/shogi/index-e.html

The 23rd Game Programming Workshop 2018

© 2018 Information Processing Society of Japan - 53 -



(a) Source position in chess (b) Translated position in shogi

(c) Source position in shogi (d) Translated position in chess

Fig. 2 Translation of Opening Game Positions with pos2pos

simultaneously trained, however, the discriminators’ param-

eters were set as unchangeable while training the translator

networks.

4. Results

Selected translated results are demonstrated in Figure 2

and Figure 3. We put a piece on the board if and only if

its corresponding value on the translators’ output images

can be rounded to 1. The MSE between the real opening

positions and the translated results shown in Figure 2 were

0.0029 for chess and 0.0166 for shogi.

It can be found from the figures that the proposed trans-

lators performed well with opening game positions, and was

able to understand complicated middle and end game posi-

tions and represent them in another game.

The experimental results in this paper demonstrated that,

the translation functions trained by using the proposed

Pos2Pos method are effective in translating and recon-

structing given game positions. As a part of our future work,

we are scheduled to further improve and quantitatively an-

alyze the translation of a single positions and a sequence of

moves in chess-like games.
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