ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. 高度交通システムとスマートコミュニティ(ITS)
  3. 2018
  4. 2018-ITS-075

Extracting Class-specific Sequential Pattern for Continuous Glucose Monitoring

https://ipsj.ixsq.nii.ac.jp/records/192011
https://ipsj.ixsq.nii.ac.jp/records/192011
4f428e62-8a51-40e9-a175-3f4e98522884
名前 / ファイル ライセンス アクション
IPSJ-ITS18075018.pdf IPSJ-ITS18075018.pdf (1.1 MB)
Copyright (c) 2018 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2018-11-08
タイトル
タイトル Extracting Class-specific Sequential Pattern for Continuous Glucose Monitoring
タイトル
言語 en
タイトル Extracting Class-specific Sequential Pattern for Continuous Glucose Monitoring
言語
言語 eng
キーワード
主題Scheme Other
主題 MBL
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
IBM Research - Tokyo
著者所属
IBM Research - Tokyo
著者所属
Fujita Health University
著者所属
The Dai-ichi Life Insurance Company, Limited
著者所属
Fujita Health University
著者所属(英)
en
IBM Research - Tokyo
著者所属(英)
en
IBM Research - Tokyo
著者所属(英)
en
Fujita Health University
著者所属(英)
en
The Dai-ichi Life Insurance Company, Limited
著者所属(英)
en
Fujita Health University
著者名 Masaki, Ono

× Masaki, Ono

Masaki, Ono

Search repository
Takayuki, Katsuki

× Takayuki, Katsuki

Takayuki, Katsuki

Search repository
Masaki, Makino

× Masaki, Makino

Masaki, Makino

Search repository
Kyoichi, Haida

× Kyoichi, Haida

Kyoichi, Haida

Search repository
Atsushi, Suzuki

× Atsushi, Suzuki

Atsushi, Suzuki

Search repository
著者名(英) Masaki, Ono

× Masaki, Ono

en Masaki, Ono

Search repository
Takayuki, Katsuki

× Takayuki, Katsuki

en Takayuki, Katsuki

Search repository
Masaki, Makino

× Masaki, Makino

en Masaki, Makino

Search repository
Kyoichi, Haida

× Kyoichi, Haida

en Kyoichi, Haida

Search repository
Atsushi, Suzuki

× Atsushi, Suzuki

en Atsushi, Suzuki

Search repository
論文抄録
内容記述タイプ Other
内容記述 Continuous glucose monitoring (CGM) is temporal time-series data that has been available for approximately 10 years thanks to the invention of a device with low measurement error. Understanding the time series variation of glucose helps you treat specific patient groups better by understanding their lifestyles. Therefore, we propose a method of extracting characteristic sequential patterns from given pairs of labels and sequences. First, we apply time-series clustering to transform CGM value sequences into cluster id sequences. Next, we apply sequential pattern mining to extract frequently occurred sequences. Finally, we evaluate each frequent sequence based on their correlation to a specific class. We experimented with two datasets that is manually created and one real CGM dataset to prove our method is effective.
論文抄録(英)
内容記述タイプ Other
内容記述 Continuous glucose monitoring (CGM) is temporal time-series data that has been available for approximately 10 years thanks to the invention of a device with low measurement error. Understanding the time series variation of glucose helps you treat specific patient groups better by understanding their lifestyles. Therefore, we propose a method of extracting characteristic sequential patterns from given pairs of labels and sequences. First, we apply time-series clustering to transform CGM value sequences into cluster id sequences. Next, we apply sequential pattern mining to extract frequently occurred sequences. Finally, we evaluate each frequent sequence based on their correlation to a specific class. We experimented with two datasets that is manually created and one real CGM dataset to prove our method is effective.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11515904
書誌情報 研究報告高度交通システムとスマートコミュニティ(ITS)

巻 2018-ITS-75, 号 18, p. 1-8, 発行日 2018-11-08
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8965
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-20 00:19:28.806339
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Masaki, Ono, Takayuki, Katsuki, Masaki, Makino, Kyoichi, Haida, Atsushi, Suzuki, 2018: 情報処理学会, 1–8 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3