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Indoor Positioning System Based on Chest Mounted IMU
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Abstract: Nowadays, the demand on indoor navigation system is increasing rapidly. As a cost-effective choice, in-
ertial measurement unit (IMU) based pedestrian dead reckoning (PDR) systems have been researched for years. The
IMU is a unit which contains an accelerometer and a gyroscope. Different from the radio frequency identification
(FRID), bluetooth low energy (BLE) and WiFi based systems, IMU based PDR systems are infrastructure-free, which
do not require any additional hardware to be installed in the space. In this paper, we propose a PDR system based
on chest mounted IMU. Since the IMU is mounted on upper body, the zero velocity update (ZUPT), which is nor-
mally used in foot based PDR systems, can not be used. Therefore, we propose a novel step length estimation to
correctly compute the step displacement. To improve the positioning accuracy, we propose an efficient map match-
ing algorithm based on particle filter. In addition, different from most existing algorithms, our algorithm is designed
for 3D navigation, which can be used in a multi-floor building. The components of our map are carefully designed,
which can represent the building floor information clearly. In our system, the altitude is updated by the barometer.
With proposed algorithm implemented, our navigation system got second place in the IPIN 2018 Competition Track
2, achieving mean error 5.2 meters after a 800 meters walking. Our system is open source, the code can be found at
https://github.com/rairyuu/PDR-with-Map-Matching.
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1. Introduction
In outdoor positioning systems, GPS and magnetometers are

assembled to estimate positions and orientations of a system with
respect to the Earth coordinate system. Normally, their position-
ing error is about 10 meters in well-conditioned situations. How-
ever, the accuracy becomes less reliable in indoor situations be-
cause walls block signals of GPS and additional magnetic fields
from some devices make some noises. Therefore, localization
using such devices works in outdoor situations only.

However, nowadays, the demand on indoor navigation system
is increasing rapidly. Generally, the indoor navigation systems
can be separated to two classes, infrastructure-free systems and
non-infrastructure-free systems. Non-infrastructure-free systems
require to install additional hardware into the buildings, which
costs many resources. Radio frequency identification (RFID) [7],
[12], bluetooth low energy (BLE) [11], WiFi [21], [24] based sys-
tems belong to this class. Infrastructure-free systems, which do
not require any additional hardware to be installed, are more cost-
effective. Camera based simultaneous localization and mapping
(SLAM) and inertial measurement unit (IMU) based pedestrian
dead reckoning (PDR) [8] systems belong to this class. With the
development of hardware, the SLAM based navigation systems
have the ability to work in real time. However, the camera based
systems require a good illumination, which sometimes cannot be
fulfilled. Although the accuracy is not as good as SLAM systems,
the IMU based PDR systems have no requirement to outside en-
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Fig. 1: Mount IMU on foot.

vironment, which are much stabler.
The IMU can be mounted on different body parts to adapt to

various conditions. In most situations, the IMU is mounted on
foot to utilize zero velocity update (ZUPT) [13], [14]. Owing
to the sensor noise, the computed velocity drifts away from the
actual value over time. ZUPT is a technology to reduce this er-
ror as follows. During walking, the velocity of human’s foot is
zero when the foot is on the ground. By detecting these peri-
ods and reset the velocity to zero, the error on velocity can be
reduced. Generally, for other body parts, the ZUPT can not be
used. However, those kinds of systems are usually more conve-
nient to use. For example, the hand hold IMU based systems can
be implemented in smart-phones [1]. The head mounted ones can
be implemented in smart-glasses [25]. The chest mounted ones
can be used in body suits, etc. Also, some systems can recognize
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Fig. 2: Mount IMU on chest.

Table 1: Specifications of our IMU.
range resolution sampling rate

accelerometer ±16g 490µg 400Hz
gyroscope ±2000◦/s 0.06◦/s 400Hz
barometer 30 ∼ 110kPa 0.18Pa 25Hz
size 56 × 39 × 18mm
weight 46g

where the IMU is mounted and apply proper processes [6], [23].
In these body parts, the chest has fewest unexpected movements.
In PDR based positioning systems, unexpected movements can
introduce errors, decrease positioning accuracy and are difficult
to handle. Therefore, the movement of chest is most simple and
stable.

In this paper, we propose an indoor positioning system with
map matching using a chest mounted IMU. Our motivation is to
create a body suit to support the work in multi-floor buildings.
Since the movement of human chest is most simple and stable,
we decided to mount the IMU on chest. The input data of our
system is acceleration, angular velocity and barometric pressure.
The specifications of our IMU*1 is listed in Table 1. To reduce the
error accumulation on position and heading, we designed an effi-
cient map matching algorithm based on particle filter. The com-
ponents of our map are carefully designed, which can represent
the building floor information clearly. With proposed algorithm
implemented, our navigation system got second place in the IPIN
2018 Competition*2 Track 2, achieving mean error 5.2 meters af-
ter a 800 meters walking.

2. Related Work
Generally, a positioning system consists of three parts, step de-

tection, step length estimation and map matching. In this section,
we review the past works on these therr parts.

The input data is a sequence of acceleration and angular ve-
locity. Owing to the sensor noise, the computed displacement
contains error. To avoid the error accumulation, step detection
was proposed. For foot mounted IMU, Ojeda et al. proposed
two empirical rules to separate steps [13], [14]. Madgwick et al.
proposed a step detection algorithm based on filtering and thresh-

*1 http://x-io.co.uk/ngimu/
*2 http://ipin2018.ifsttar.fr/competition/about/

olding, which only requires the norm of acceleration [4], [10].
For hand hold IMU, since the hand motion is complex and var-
ious, step detection is more difficult. To deal with this problem,
Susi et al. proposed an adaptive algorithm which first recognize
the motion type, then apply proper methods [19]. For head or
chest mounted IMU, as implemented by Zhang et al., filtering
and thresholding based algorithm is still a good choice [25].

Step length estimation is the process to compute the displace-
ment of each step. The displacement consists of two parts, length
and direction. Therefore, this process can be classified into two
classes, computing the length and direction separately or not. Us-
ing a fixed step length works well in most situations. However,
in some cases, this method may fail. To improve the accuracy,
Weinberg et al. proposed an empirical equation to compute the
step length for upper body mounted IMU [20]. The step direc-
tion can be computed from IMU pose. For foot mounted IMU,
double integration can compute the length and direction together.
However, simply applying double integration can not fit all mo-
tions. To settle this problem, Shin et al. proposed an adaptive
step length estimation algorithm [18]. For hand hold IMU, Re-
naudin et al. proposed an adaptive algorithm based on motion
mode classification [15]. Yan et al. proposed a regression model
to compute the step displacement [23].

Utilizing the step detection and step length estimation can re-
duce the error on each step. However, the error on position still
accumulates over time. Moreover, these processes cannot reduce
the error on orientation. To solve these problems, particle filter
based map matching algorithm has been proposed [16], [17], [22].
The particle filter is particularly good for dealing with non-linear
and non-Gaussian estimation problems [2]. By implementing the
particle filter based map matching algorithm to the navigation
system, the positioning accuracy can be improved significantly.
Davidson et al. showed how the particle filter improve the per-
formance of indoor navigation [5]. By combining the backtrack-
ing particle filter with different level of 2D building plan detail,
Widyawan et al. achieved high accuracy indoor navigation [9].
Bojja et al. proposed a 3D map matching algorithm in order to
navigate in the 3D space [3].

3. Method
3.1 Step Detection

As shown in Figure 3, we use the filtering and thresholding to
detect steps. First, as shown in Figure 3a, we compute the norm
of 3D acceleration. To remove the noise, we apply a low pass
filter to the norm. We define the interval from a peek to next peek
as one step. The peek of norm corresponds to the moment that the
foot hits ground, where the acceleration is maximum. The result
of step detection is shown in Figure 3c.

3.2 Step Length Estimation
To compute current position, we first transform the 3D accel-

eration data from sensor frame to the world frame. The transfor-
mation matrix is computed from the IMU pose. In our system,
the IMU pose is updated by Madgwick’s algorithm [10].

In experiment, we found the displacement of one step can be
computed by:
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Fig. 3: Process of step detection.

D = K ·
"

a(t) dt dt (1)

where a(t) is the 3D acceleration of that step, K is a parame-
ter which needs to be calibrated for each user. In this approach,
the length and direction of one step can be computed at the same
time. The 2D acceleration data (removed the up direction) of one
step (moving forward) is shown in Figure 4a. By analyzing the
data, we found that in one step, the decelerating phase is much
more obvious than accelerating phase. Therefore, as shown in
Figure 4b, the vector computed by double integrating the 2D ac-
celeration is opposite to the forward direction. To transform it
to correct direction and length, user parameter K is required. In
our experiment, parameter K is in the range [−5.0,−3.0]. Af-
ter calibration, the error on step length is in 10%. Note that the
displacement on side is not zero. In normal, the steps are made
by left foot and right foot alternately. Therefore, the upper body
tends to left and right alternately. This is the reason that there is
a side displacement in the step. Since the step made by left/right
foot is usually followed with a step made by the other foot, the
overall movement is forward.

For the PDR systems based on upper body mounted IMU, the
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(a) 2D acceleration data
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Fig. 4: Data of one step.
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Fig. 5: The components of our map.

step direction is usually difficult to compute. Most systems re-
quires the step direction keep the same with IMU heading, which
makes the systems inconvenient to use. In our approach, since the
step displacement is computed from transformed acceleration, it
does not depend on IMU heading. Therefore, our system has no
restriction on the step direction or IMU heading, which is more
user-friendly. However, there is a drawback. In experiment, we
found that using this approach can not update the altitude cor-
rectly. Thence, we decide to use the barometer instead.

3.3 Map Matching
Our map matching algorithm is based on particle filter [16].

As shown in Figure 5, there are six components in our map.
LINE WALL corresponds to the wall, which can not be crossed.
In ZONE NO PART ICLE, the particles will be deleted. Also,
new particles can not be produced in ZONE NO PART ICLE.
Only in ZONE UPDAT E ALT ITUDE, the altitude will be up-
dated. In our map, the stair, escalator and elevator correspond to
the same component, ARROW. ARROW UP connects to upper
floor, ARROW DOWN connects to lower floor, ARROW BOT H
connects to both.

Each particle has three parameters, current position Pi, current
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heading hi and scale si. Scale si is a scalar randomized from range
[0.9, 1.1]. As discussed in Section 3.2, the error on step length is
in 10%. Using this scale can cover the error of step length esti-
mation. Final position P and heading h are computed by:

P =
1
n
·

n∑
i=1

Pi (2)

h =
1
n
·

n∑
i=1

hi (3)

where n is the number of particles. For each particle, current po-
sition Pi is updated by:

P t+1
i = P t

i + R(Dt · si, hi) (4)

where Dt is the 2D displacement of current step, R(X , y) is a
function which rotates vector X angle y. Hereafter, our system
apply the collision detection to the particles. If the line from P t

i

to P t+1
i hits the LINE WALLs, the ith particle will be deleted.

At last, our system produce new particles and wait for next step.
The process of producing new particles is shown in Algorithm 1.
The position of NewParticle is randomized from the circle with
center Particle and radius Radius. The heading of NewParticle is
randomized around the final heading h. The scale of NewParticle
is randomized in the range [0.9, 1.1]

Algorithm 1 Produce new particles
ParticleNumberMax = 256
TryTimeMax = 8
Radius = 3.0
ParticleNumber = n
while ParticleNumber ≤ ParticleNumberMax:

Particle = S electRandomParticle()
TryTime = 1
while TryTime ≤ TryTimeMax:

NewParticle = ProposeNewParticle(Particle,Radius)
if BacktrackingTest(NewParticle) == PAS S :

AppendParticle(NewParticle)
ParticleNumber = ParticleNumber + 1
break

TryTime = TryTime + 1

When producing new particles, one problem is that the par-
ticles may be produced in impossible positions. This problem
decreases the positioning accuracy, sometimes even crashes the
map matching module. Inspired by the backtracking particle fil-
ter proposed by Widyawan et al. [9], we apply a backtracking test
to new particles. In Figure 6, blue arrows corresponds to recent
steps. First, new particles are randomly proposed around a ran-
domly selected particle. As shown in Figure 6c, new particles go
back recent steps and apply the collision detection. If the particle
hits the walls, it will be deleted. As shown in Figure 6d, only par-
ticles passed this test are left. By applying the backtracking test,
most new particles are produced around the correct position. This
helps our system achieve higher accuracy. Moreover, this algo-
rithm could also be used when the map matching failed to track
the user. By applying the backtracking test to the randomly se-
lected points around last estimated position, it is possible to find

(a) Randomly selected particle (b) Propose new particles

(c) Apply backtracking test (d) Result

Fig. 6: Process of backtracking test. Blue arrows are recent steps.

correct current position and restore the system.
As discussed in Section 3.2, we use the barometer to update

the altitude. Delta altitude ∆a can be computed by:

∆a = ∆p · −0.09m/Pa (5)

where ∆p is the delta pressure. Even in indoor situation, the baro-
metric pressure varies over time. To update the altitude correctly,
we introduce ZONE UPDAT E ALT ITUDE to the map. Only
in this zone, the altitude can be updated. Also, all ARROWs are
defined in this zone. Since the user does not stay in this zone for
a long time, this approach usually works well. When the delta
altitude ∆a is closed to the floor height, our system will match
current position to the export of the nearest ARROW and produce
new particles. Every time the floor changes, the positioning error
of our system can be reduced.

4. Evaluation
In this section, we present quantitative experiment results of

our system. Basically, we followed the evaluation approach in
IPIN 2018 Track 2. In each experiment, the user is asked to walk
along a given route. Several key-points are set in the route before
the experiment, the position of these key-points is known. The
user is asked to stop at each key-point and record the estimated
position output by our system. Error ei of the i-th key-point is
defined by following equation:

ei = Dxy(P i
g,P

i
e ) + Dz(P i

g,P
i
e ) (6)

Dxy(P i
g,P

i
e ) =

√
(P i

g.x − P i
e .x)2 + (P i

g.y − P
i
e .y)2 (7)

Dxy(P i
g,P

i
e ) = |P i

g.z − P
i
e .z| · pz (8)

where P i
g is the real position and P i

e is the estimated position.
Position P i has three elements, x, y and z. Element x and y are
in meters, whereas element z is a scalar which represents current
floor. pz is the penalty on floor, which is set to 15.
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Fig. 7: Calibrate the IMU pose with initial heading.

Table 2: Experiment 1: the distribution of error
travelled distance: 432.22m

key-point number: 25
our system

mean 0.78m
median 0.51m
75th percent 0.76m
standard deviation 0.92m

Table 3: Experiment 2: the distribution of error
travelled distance: 792.49m

key-point number: 70
our system

mean 5.2m
median 3.6m
75th percent 5.7m
standard deviation 5.0m

In the experiment, initial position and heading are given to
setup the system. The process of setup is: 1. open the IMU and
launch our system software; 2. connect the IMU to the computer;
3. calibrate the IMU pose with initial heading (as shown in Fig-
ure 7); 4. attache the IMU on the user’s chest; 5. start tracking.

In first experiment, we evaluate our system in the campus
building with different configurations. As shown in Figure 8a,
the user is asked to start at the pink point, go along the orange ar-
rows, walk around the green route for three times and walk back
to start point along the blue arrows. There is no open space in the
route, the width of corridors is 2 − 3 meters. Therefore, we use
256 particles in this experiment. The travelled distance is 432.22
meters. The red points represent to key-points. The estimated
routes of our system are shown as Figure 8c and Figure 8d. At
the beginning of the route, the system without map matching still
works well. However, the drift on heading is getting larger over
time. Therefore, the result becomes worse. In our system with
map matching, since the estimated position and heading are cali-
brated dynamically, the result is much more accurate and stable.
The detailed results are shown in Figure 9 and Table 2.

We also evaluated our system in the IPIN 2018 Competition
Track 2. The competition is hold in a huge shopping mall which
contains several open spaces. The evaluation route crosses three
floors, consists of indoor and outdoor spaces. In indoor spaces,
the width of corridors is 10 − 20 meters. Therefore, we use 512
particles in this experiment. During the competition, the shopping
mall is crowded by customers. Our result is shown in Figure 10.
In outdoor spaces, since the map matching can not work, our re-

(a) Experiment route

(b) Input map

(c) Result of our system, without map matching

(d) Result of our system, with map matching

Fig. 8: Experiment 1: evaluation on our system with different
configurations.

sult is not so good. When we went indoor, the result became
acceptable, where error is generally less than 5 meters. As shown
in Table 3, the mean error of our system is 5.2 meters. The IPIN
competition evaluates the 75th percent error. Therefore, our final
score is 5.7 meters, which is 0.2 meters worse than the champion.
In 10 teams who participated in this track, we got the second
place. The detail of the competition and our result can be found
at http://ipin2018.ifsttar.fr/competition/about/.
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Fig. 10: Experiment 2: the error on each key-point.

5. Conclusion
In this paper, we proposed a novel indoor positioning system

with map matching. In our system, the IMU is mounted on chest
where the movement is most simple and stable. To reduce the
error accumulation on position and heading, we designed an ef-
ficient map matching algorithm based on particle filter. Different
from most existing algorithms, our map matching algorithm is de-
signed for 3D navigation, which can be used in multi-floor build-
ings. With carefully designed components (wall, stair, escalator,
elevator), our map can represent the building floor information
clearly. With proposed algorithm implemented, our navigation
system got second place in the IPIN 2018 Competition Track 2,
achieving mean error 5.2 meters after a 800 meters walking. In
our future work, we are improving the accuracy of the step length
estimation. Also, as mentioned in our motivation, we are design-
ing a body suit to support indoor work.
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