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Multi-Pass Streaming Algorithms for
Monotone Submodular Function Maximization
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Abstract: We consider maximizing a monotone submodular function under a cardinality constraint or a knapsack
constraint in the streaming setting. In particular, the elements arrive sequentially and at any point of time, the algo-
rithm has access to only a small fraction of the data stored in primary memory. We propose the following streaming
algorithms taking O(ε−1) passes:
( 1 ) a (1 − e−1 − ε)-approximation algorithm for the cardinality-constrained problem
( 2 ) a (0.5 − ε)-approximation algorithm for the knapsack-constrained problem.
Both of our algorithms run deterministically in O∗(n) time, using O∗(K) space, where n is the size of the ground set and
K is the size of the knapsack. Here the term O∗ hides a polynomial of log K and ε−1. Our streaming algorithms can also
be used as fast approximation algorithms. In particular, for the cardinality-constrained problem, our algorithm takes
O(nε−1 log(ε−1 log K)) time, improving on the algorithm of Badanidiyuru and Vondrák that takes O(nε−1 log(ε−1K))
time.
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1. Introduction
A set function f : 2E → R+ on a ground set E is submodular if

it satisfies the diminishing marginal return property, i.e., for any
subsets S ⊆ T ⊊ E and e ∈ E \ T ,

f (S ∪ {e}) − f (S ) ≥ f (T ∪ {e}) − f (T ).

A function is monotone if f (S ) ≤ f (T ) for any S ⊆ T . Sub-
modular functions play a fundamental role in combinatorial op-
timization, as they capture rank functions of matroids, edge cuts
of graphs, and set coverage, just to name a few examples. In
addition to their theoretical interests, submodular functions have
attracted much attention from the machine learning community
because they can model various practical problems such as online
advertising [2], [20], [32], sensor location [21], text summariza-
tion [25], [26], and maximum entropy sampling [23].

Many of the aforementioned applications can be formulated
as the maximization of a monotone submodular function under a
knapsack constraint. In this problem, we are given a monotone
submodular function f : 2E → R+, a size function c : E → N,
and an integer K ∈ N, where N denotes the set of positive inte-
gers. The problem is defined as

maximize f (S ) subject to c(S ) ≤ K, S ⊆ E, (1)

where we denote c(S ) =
∑

e∈S c(e) for a subset S ⊆ E. Through-
out this paper, we assume that every item e ∈ E satisfies c(e) ≤ K
as otherwise we can simply discard it. Note that, when c(e) = 1
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for every item e ∈ E, the constraint coincides with a cardinality
constraint:

maximize f (S ) subject to |S | ≤ K, S ⊆ E. (2)

The problem of maximizing a monotone submodular function
under a knapsack or a cardinality constraint is classical and well-
studied [15], [34]. The problem is known to be NP-hard but can
be approximated within the factor of 1 − e−1 (or 1 − e−1 − ε); see
e.g., [4], [11], [16], [22], [33], [35]. Notice that for both prob-
lems, it is standard to assume that a value oracle of a function f
is given and the complexity of the algorithms is measured based
on the number of oracle calls.

In this work, we study the two problems with a focus on de-
signing space and time efficient approximation algorithms. In
particular, we assume the streaming setting: each item in the
ground set E arrives sequentially, and we can keep only a small
number of the items in memory at any point. This setting ren-
ders most of the techniques in the literature ineffective, as they
typically require random access to the data.

In this extended abstract, most of the details are omitted, which
can be found in the full version [18].

2. Our contribution
Our contributions are summarized as follows.
Theorem 2.1 (Cardinality Constraint) Let n = |E|. For the

problem (2), we design streaming (1− e−1 − ε)-approximation al-
gorithms requiring either (1) O(ε−1 log(ε−1 log K)) passes, O (K)
space, and O

(
nε−1 log(ε−1 log K)

)
running time, or (2) O(ε−1)

passes, O
(
Kε−1 log K

)
space, and O

(
nε−1 log K + nε−2

)
running

time.
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Theorem 2.2 (Knapsack Constraint) Let n = |E|. We de-
sign streaming (0.5 − ε)-approximation algorithms for the prob-
lem (1) requiring O

(
Kε−7 log2 K

)
space, O(ε−1) passes, and

O
(
nε−8 log2 K

)
running time.

To put our results in a better context, we list related work
in Tables Table 1 and Table 2. For the cardinality-constrained
problem, our first algorithm achieves the same ratio 1 − e−1 − ε
as Badanidiyuru and Vondrák [4], using the same space, while
strictly improving on the running time and the number of passes.
The second algorithm improves further the number of passes to
O(ε−1), which is independent of K and n, but slightly loses out in
the running time and the space requirement.

For the knapsack-constrained problem, our algorithm gives the
best ratio so far using only small space (though at the cost of using
more passes than [17], [36]). In the non-streaming setting, Sviri-
denko [33] gave a (1−e−1)-approximation algorithm, which takes
O(Kn4) time. Very recently, Ene and Nguyen [12] gave a (1−e−1−
ε)-approximation algorithm, which takes O((1/ε)O(1/ε4)n log n)
time*1.

3. Our Technique
We first give an algorithm, called Simple, for the cardinality-

constrained problem (2). This algorithm is later used as a sub-
routine for the knapsack-constrained problem (1). The basic idea
of Simple is similar to those in [4], [29]: in each pass, a cer-
tain threshold is set; items whose marginal value exceeds the
threshold are added into the collection; others are just ignored.
In [4], [29], the threshold is decreased in a conservative way (by
the factor of 1− ε) in each pass. In contrast, we adjust the thresh-
old dynamically, based on the f -value of the current collection.
We show that, after O(ε−1) passes, we reach a (1 − e−1 − ε)-
approximation. To set the threshold, we need a prior estimate
of the optimal value, which we show can be found by a pre-
processing step requiring either O(Kε−1 log K) space and a sin-
gle pass, or O(K) space and O(ε−1 log(ε−1 log K)) passes. The
implementation and analysis of the algorithm are very simple.

For the knapsack-constrained problem (1), let us first point out
the challenges in the streaming setting. The techniques achieving
the best ratios in the literature are in [12], [33]. In [33], partial
enumeration and density greedy are used. In the former, small
sets (each of size at most 3) of items are guessed and for each
guess, density greedy adds items based on the decreasing order of
marginal ratio (i.e., the marginal value divided by the item size).
To implement density greedy in the streaming setting, large num-
ber of passes would be required. In [12], partial enumeration is
replaced by a more sophisticated multi-stage guessing strategies
(where fractional items are added based on the technique of mul-
tilinear extension) and a “lazy” version of density greedy is used
so as to keep down the time complexity. This version of density
greedy nonetheless requires a priority queue to store the density
of all items, thus requiring large space.

We present algorithms, in increasing order of sophistication,

*1 In [4], a (1 − e−1 − ε)-approximation algorithm of running time
O(n2(ε−1 log n

ε
)ε
−8

) was claimed. However, this algorithm seems to re-
quire some assumption on the curvature of the submodular function.
See [12], [35] for details on this issue.

that give 0.39 − ε, 0.46 − ε, and 0.5 − ε approximations respec-
tively. The first simpler algorithms are useful for illustrating the
main ideas and also are used as subroutines for later, more in-
volved algorithms. The first algorithm adapts the algorithm Sim-
ple for the cardinality-constrained case. We show that Simple
still performs well if all items in the optimal solution (henceforth
denoted by OPT) are small in size. Therefore, by ignoring the
largest optimal item o1, we can obtain a (0.39 − ε)-approximate
solution.

The difficulty arises when c(o1) is large and the function value
f (o1) is too large to be ignored. To take care of such a large-size
item, we first aim at finding a good item e whose size approxi-
mates that of o1, using a single pass [17]. This item e satisfies
the following properties: (1) f (e) is large, (2) the marginal value
of OPT − o1 with respect to e is large. Then, after having this
item e, we apply Simple to pack items in OPT − o1. Since the
largest item size in OPT − o1 is smaller, the performance of Sim-
ple is better than just applying Simple to the original instance.
The same argument can be applied for OPT − o1 − o2, where o2

is the second largest item. These solutions, together with e, yield
a (0.46 − ε)-approximation.

The above strategy would give a (0.5 − ε)-approximation if
f (o1) is large enough. When f (o1) is small, we need to gener-
alize the above ideas further. We propose a two-phase algorithm.
In Phase 1, an initial good set Y ⊆ E is chosen (instead of a single
good item); in Phase 2, the algorithm packs items in some subset
OPT′ ⊆ OPT using the remaining space. Ideally, the good set
Y should satisfy the following properties: (1) f (Y) is large, (2)
the marginal value of OPT′ with respect to Y is large, and (3) the
remaining space, K − c(Y), is sufficiently large to pack items in
OPT′. To find a such a set Y , we design two strategies, depending
on the sizes, c(o1), c(o2) of the two largest items in OPT.

The first case is when c(o1) + c(o2) is large. As mentioned
above, we may assume that f (o1) is small. In a similar way, we
can show that f (o2) is small. Then there exists a “dense” set of
small items in OPT, i.e., f (OPT\{o1 ,o2})

c(OPT\{o1 ,o2}) is large. The good set Y
thus can be small items approximating f (OPT \ {o1, o2}) while
still leaving enough space for Phase 2.

The other case is when c(o1) + c(o2) is small. In this case,
we apply a modified version of Simple to obtain a good set Y .
The modification allows us to lower-bound the marginal value
of OPT′ with respect to Y . Furthermore, we can show that Y
is already a (0.5 − ε)-approximation when c(Y) is large. Thus we
may assume that c(Y) is small, implying that we have still enough
space to pack items in OPT′ in Phase 2.

For more details, see the full version of the manuscript [18].

4. Related Work
Maximizing a monotone submodular function subject to var-

ious constraints is a subject that has been extensively studied
in the literature. We do not attempt to give a complete sur-
vey here and just highlight the most relevant results. Besides a
knapsack constraint or a cardinality constraint mentioned above,
the problem has also been studied under (multiple) matroid con-
straint(s), p-system constraint, multiple knapsack constraints.
See [6], [8], [9], [11], [14], [22], [24] and the references therein.
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Table 1 The cardinality-constrained problem. The algorithms [4], [16], [30] are originally not
for the streaming setting.

approx. ratio # passes space running time
Badanidiyuru et al. [3] 0.5 − ε 1 O

(
Kε−1 log K

)
O
(
nε−1 log K

)
Ours 1 − e−1 − ε O

(
ε−1
)

O
(
Kε−1 log K

)
O
(
nε−1 log K + nε−2

)
Ours 1 − e−1 − ε O

(
ε−1 log

(
ε−1 log K

))
O(K) O

(
nε−1 log

(
ε−1 log K

))
Badanidiyuru–Vondrák [4] 1 − e−1 − ε O

(
ε−1 log(ε−1K)

)
O(K) O

(
nε−1 log(ε−1K)

)
Mirzasoleiman et al. [30] 1 − e−1 − ε

(in expectation)
K O (K) O

(
n log ε−1

)
Greedy [16] 1 − e−1 K O(K) O(nK)

Table 2 The knapsack-constrained problem. The algorithms [12], [33] are not for the streaming
setting. See also [11], [22].

approx. ratio # passes space running time
Yu et al. [36] 1/3 − ε 1 O

(
Kε−1 log K

)
O
(
nε−1 log K

)
Huang et al. [17] 0.363 − ε 1 O

(
Kε−4 log4 K

)
O
(
nε−4 log4 K

)
Huang et al. [17] 0.4 − ε 3 O

(
Kε−4 log4 K

)
O
(
nε−4 log4 K

)
Ours 0.39 − ε O

(
ε−1
)

O
(
Kε−2 log K

)
O
(
nε−1 log K + nε−3

)
Ours 0.46 − ε O

(
ε−1
)

O
(
Kε−4 log K

)
O
(
nε−5 log K

)
Ours 0.5 − ε O

(
ε−1
)

O
(
Kε−7 log2 K

)
O
(
nε−8 log2 K

)
Ene and Nguyen [12] 1 − e−1 − ε — — O

(
(1/ε)O(1/ε4)n log n

)
Sviridenko [33] 1 − e−1 — — O

(
Kn4
)

In the streaming setting, single-pass algorithms have been pro-
posed for the problem with matroid constraints [7], [13] and
knapsack constraint [17], [36], and without monotonicity [10],
[31]. On the other hand, multi-pass streaming algorithms have
not been well studied, except for [4], [7], [17]. Chakrabarti and
Kale [7] gave an O(ε−3)-pass streaming algorithms for a gener-
alization of the maximum matching problem and the submodular
maximization problem with cardinality constraint. We remark
that the maximum matching problem is one of the central topic in
the streaming setting, and multi-pass streaming algorithms have
been developed [1], [19], [27]. For other graph problems, see e.g.,
[28]. We also remark that the algorithms by Badanidiyuru and
Vondrák [4] can be viewed as multi-pass streaming algorithms;
using O(ε−1 log(ε−1K))-passes for a cardinality constraint, and
O(ε−2 log2(ε−1n))-passes for a p-system constraint. Our results
deal with a knapsack constraint with fewer passes.

The maximum coverage problem is a special case of monotone
submodular maximization under a cardinality constraint where
the function is a set-covering function. For the special case, Mc-
Gregor and Vu [29] gave a (1−e−1−ε)-approximation algorithm in
the multi-pass streaming setting. They use a sampling technique
to estimate the value of f (OPT) and then collect items based on
thresholds using O(ε−1) passes. Batani et al. [5] independently
proposed a streaming algorithm with a sketching technique for
the same problem.
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