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Polynomial-time Algorithm
for Dock Re-allocation Problem

in Bike Sharing System

Akiyoshi Shioura1,a)

Abstract: In this paper we consider a nonlinear integer programming problem for re-allocation of dock capacity in
a bike sharing system discussed by Freund et al. (2017). Our main result is to show that the re-allocation problem
can be solved in polynomial time. Our approach is to decompose the problem into two subproblems by using a new
parameter. We first show that the two subproblems have the same structure as a relaxation of the dock re-allocation
problem, and can be solved by a proximity-scaling algorithm that runs in polynomial time. We then prove that the
two subproblems have convexity with respect to the parameter, which makes it possible to find an optimal value of the
parameter by binary search.

1. Introduction
We consider a nonlinear integer programming problem for re-

allocation of dock-capacity in a bike sharing system discussed by
Freund, Henderson, and Shmoys [1]. In a bike sharing system,
many bike stations are located around a city so that users can rent
and return bikes there. Each bike station has several docks and
bikes; some docks are equipped with bikes, and the other docks
are open so that users can return bikes at the station. The num-
bers of docks with bike and of open docks change as time passes,
and it is possible that some users cannot rent or return a bike at
a station due to the shortage of bikes or open docks, and in such
situation users feel dissatisfied. To reduce users’ dissatisfaction,
operators of a bike sharing system need to re-allocate docks (and
bikes) among bike stations appropriately. Change to a new alloca-
tion, however, requires the movement of docks and bikes, which
yields some amount of cost. Therefore, it is desirable that a new
allocation is not so different from the current allocation. Hence,
the task of operators in a bike sharing system is to minimize users’
dissatisfaction by changing the allocation of docks, while bound-
ing the number of docks to be moved in the re-allocation.

This problem, which we refer to as the dock re-allocation prob-
lem, is discussed by Freund et al. [1] and formulated as follows:

(DR) Minimize c(d, b) ≡ ∑n
i=1 ci(d(i), b(i))

subject to d(N) + b(N) = D + B,
b(N) ≤ B,
∥(d + b) − (d̄ + b̄)∥1 ≤ 2γ,
ℓ ≤ d + b ≤ u, d, b ∈ Zn

+.

Here, n ∈ Z denotes the number of bike stations and put N =
1 Department of Industrial Engineering and Economics, Tokyo Institute of

Technology, Tokyo 152-8550, Japan
a) shioura.a.aa@m.titech.ac.jp

{1, 2, . . . , n}. We denote by d = (d(1), d(2), · · · , d(n)) ∈ Zn
+ and

b = (b(1), b(2), · · · , b(n)) ∈ Zn
+, respectively, the vectors of de-

cision variables representing the numbers of docks with bike and
of open docks allocated at the stations. The expected number
of dissatisfied users at the station i is represented by a function
ci : Z2

+ → R in variables d(i) and b(i), and shown to have the
property of multimodularity (see Section 2 for the definition).

The first constraint in (DR) means that the total number of
docks (i.e., docks with bike and open docks) is equal to a fixed
constant D + B. The second constraint gives an upper bound for
the total number of docks with bike. The third constraint, given
in the form of L1-distance constraint, means that the difference
between the current and the new allocations of docks should be
small, where d̄(i) and b̄(i) denote, respectively, the numbers of
docks with bike and of open docks at the station i in the current
allocation. In addition, the number of docks d(i) + b(i) at each
station i should be between lower and upper bounds [ℓ(i), u(i)], as
represented by the fourth constraint.

For the problem (DR), Freund et al. [1] propose a steepest
descent (or greedy) algorithm that repeatedly update a constant
number of variables by ±1, and prove by using the multimodu-
larity of the objective function that the algorithm finds an optimal
solution of (DR) in at most γ iterations. Hence, the problem (DR)
can be solved in pseudo-polynomial time, while it is not known
so far whether (DR) can be solved in polynomial time.

The main aim of this paper is to develop a polynomial-time al-
gorithm for (DR). For this, the following relaxation problem of
(DR) obtained by removing the L1-distance constraint plays an
important role:
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(DA) Minimize c(d, b)
subject to d(N) + b(N) = D + B,

b(N) ≤ B,
ℓ ≤ d + b ≤ u, d, b ∈ Zn

+.

We first show that the problem (DA) can be solved in
O(n log n log((D + B)/n)) time by a proximity-scaling algorithm.
In a proximity-scaling algorithm, we deal with the “scaled” prob-
lem (DA(λ)), which is the problem (DA) with an additional as-
sumption that d(i) and b(i) are multiples of the scaling parameter
λ ∈ Z++ (see Section 3 for more precise definition of (DA(λ))).
By the definition of multimodularity, it is easy to see that the
problem (DA) is closed under the scaling operation. Hence, the
steepest descent algorithm for (DA) can be also applied to the
scaled problem (DA(λ)).

Our proximity-scaling algorithm consists of several scaling
phase and in each of the scaling phase, the problem (DA(λ)) is
solved for some λ. The parameter λ is set to a large number in the
first phase, then it is gradually reduced, and finally, it is set to 1 to
obtain an optimal solution of the original problem (DA). In each
scaling phase, we apply the steepest descent algorithm for (DA)
to (DA(λ)), where the solution obtained in the previous phase is
used as an initial solution. To bound the number of iterations of
the steepest descent algorithm, we show a “proximity” theorem,
stating that for an optimal solution of a scaled problem (DA(λ)),
there exists an optimal solution of the origianl problem (DA).

To obtain a polynomial-time algorithm for our original prob-
lem (DR), we show that the L1-distance constraint in (DR) can
be replaced with a simple linear constraint by using an optimal
solution of the problem (DA); we denote by (DR-L) the prob-
lem obtained by this replacement. Using a new parameter, we
decompose the problem (DR-L) into two independent subprob-
lems, both of which have the same structure as the problem (DA)
and therefore can be solved efficiently. We show that the “best”
value of the parameter can be determined by application of bi-
nary search. As a result, we obtain a polynomial-time algorithm
for (DR) that runs in O(n log n log((D + B)/n) log B) time.

2. Preliminaries
Throughout the paper, let n be a positive integer with n ≥ 2 and

put N = {1, 2, . . . , n}. We denote by R the sets of real numbers,
and by Z (resp., by Z+) the sets of integers (resp., nonnegative
integers); Z++ denotes the set of positive integers.

Let x = (x(1), x(2), . . . , x(n)) ∈ Rn be a vector. We denote
supp+(x) = {i ∈ N | x(i) > 0} and supp−(x) = {i ∈ N | x(i) < 0}.
For a subset Y ⊆ N, we denote x(Y) =

∑
i∈Y x(i). We define

∥x∥1 =
∑

i∈N |x(i)| and ∥x∥∞ = maxi∈N |x(i)|.
We define 0 = (0, 0, . . . , 0) ∈ Zn. For j ∈ N, we denote by

χ j ∈ {0, 1}n the characteristic vector of j, i.e., χ j(i) = 1 if i = j
and χ j(i) = 0 otherwise. Inequality x ≤ y for vectors x, y ∈ Rn

means component-wise inequality x(i) ≤ y(i) for all i ∈ N. For
vectors x, y ∈ Rn and a positive integer, we write x ≡ y mod λ if
x(i) ≡ y(i) mod λ for every i ∈ N.

We then explain the concept of multimodularity. A function
φ : Z2

+ → R in two variables is called multimodular if it satisfies
the following conditions:

φ(η + 1, ζ + 1) − φ(η + 1, ζ) ≥ φ(η, ζ + 1) − φ(η, ζ) (∀η, ζ ∈ Z+),

φ(η − 1, ζ + 1) − φ(η − 1, ζ) ≥ φ(η, ζ) − φ(η, ζ − 1) (∀η, ζ ∈ Z++),

φ(η + 1, ζ − 1) − φ(η, ζ − 1) ≥ φ(η, ζ) − φ(η − 1, ζ) (∀η, ζ ∈ Z++).

Multimodular functions satisfy the following inequalities.
Proposition 2.1. Let φ : Z2

+ → R be a multimodular function,
and η, ζ, η′, ζ′ ∈ Z+.
(i) If η > η′ and ζ < ζ′, then it holds that

φ(η, ζ) + φ(η′, ζ′) ≥ φ(η − 1, ζ + 1) + φ(η′ + 1, ζ′ − 1). (2.1)

(ii) If η > η′ and η + ζ > η′ + ζ′, then it holds that

φ(η, ζ) + φ(η′, ζ′) ≥ φ(η − 1, ζ) + φ(η′ + 1, ζ′). (2.2)

3. Algorithms for (DA)
3.1 Review of Steepest Descent Algorithm

We first review the steepest descent algorithm for (DA) in [1].
Denote by R ⊆ Zn × Zn the feasible region of the problem (DA),
i.e.,

R = {(d, b) ∈ Zn × Zn | d(N) + b(N) = D + B,

b(N) ≤ B, ℓ ≤ d + b ≤ u, d ≥ 0, b ≥ 0}.

Recall that given a feasible solution (d, b) ∈ R, the vectors d+b
and b, respectively, represent the number of docks (i.e., empty
docks and docks with bike) and the number of bikes at each sta-
tion. A feasible solution (d, b) ∈ R is said to be bike-optimal if
c(d, b) ≤ c(d′, b′) holds for every (d′, b′) ∈ R with d′ + b′ = d+ b.
That is, a bike-optimal feasible solution is a feasible solution such
that under the condition that the number of docks at each station
i ∈ N is fixed to d(i) + b(i), the allocation of bikes given by b is
optimal. For a vector x ∈ Zn

+ with x(N) = D + B and ℓ ≤ x ≤ u,
a bike-optimal feasible solution (d, b) ∈ R with d + b = x is an
optimal solution of the following problem:

(SRA(x)) Minimize c(x − b, b) ≡ ∑n
i=1 ci(x(i) − b(i), b(i))

subject to b(N) ≤ B,
b ≤ x,
b ∈ Zn

+.

The problem (SRA(x)) can be seen as a simple resource alloca-
tion problem and can be solved efficiently.
Proposition 3.1 ([3], [4]). The problem (SRA(x)) can be solved
in O(n log(B/n)) time and in O(n + B log n) time. Moreover, if a
feasible solution b′ ∈ Zn

+ of (SRA(x)) is available, then the prob-
lem can be solved in O(n+B′ log n) time with B′ = min{∥b−b′∥1 |
b is an optimal solution of (SRA(x))}.

We also use the following property of the problem (SRA(x)) in
the proximity-scaling algorithm for (DA).
Proposition 3.2. Suppose that b′ ∈ Zn

+ is a feasible solution of
(SRA(x)) such that c(x − b′, b′) ≤ c(x − b, b) holds for every fea-
sible solution b ∈ Zn

+ of (SRA(x)) with b ≡ b′ mod 2. Then, there
exists an optimal solution b∗ ∈ Zn

+ of (SRA(x)) with ∥b∗−b′∥1 ≤ n.
For (d, b) ∈ R, we denote by N(d, b) ⊆ Zn × Zn the neighbor-

hood of (d, b) defined by
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N(d, b) = N1(d, b) ∪ N2(d, b) ∪ · · · ∪ N6(d, b),

N1(d, b) = {(d + χi − χ j, b) ∈ Zn × Zn | i, j ∈ N, i , j},
N2(d, b) = {(d − χ j, b + χi) ∈ Zn × Zn | i, j ∈ N, i , j},
N3(d, b) = {(d + χi, b − χ j) ∈ Zn × Zn | i, j ∈ N, i , j},
N4(d, b) = {(d, b + χi − χ j) ∈ Zn × Zn | i, j ∈ N, i , j},
N5(d, b) = {(d − χ j + χt, b + χi − χt) ∈ Zn × Zn

| i, j ∈ N, i , j, t ∈ N \ {i, j}},
N6(d, b) = {(d − χs + χi, b + χs − χ j) ∈ Zn × Zn

| i, j ∈ N, i , j, s ∈ N \ {i, j}}.

The steepest descent algorithm in [1] is described as follows.
Algorithm SteepestDescentDA
Step 0:
Set (d0, b0) be an arbitrarily chosen bike-optimal feasible
solution of (DA), and k := 1.
Step 1:
If c(d′, b′) ≥ c(dk−1, bk−1) for every (d′, b′) ∈ N(dk−1, bk−1) ∩ R,
then output the solution (dk−1, bk−1) and stop.
Step 2:
Find (d′, b′) ∈ N(dk−1, bk−1) ∩ R that minimizes c(d′, b′).
Step 3:
Set (dk, bk) := (d′, b′), k := k + 1, and go to Step 1. □
Theorem 3.3 ([1]). The algorithm SteepestDescentDA outputs
an optimal solution of the problem (DA) in O(n + ν log n) time
with

ν = min{∥(d + b) − (d0 + b0)∥1 |
(d, b) is an optimal solution of (DA)}.

3.2 Proximity-Scaling Algorithm
We propose a polynomial-time proximity-scaling algorithm for

(DA). In the following, we fix an arbitrarily chosen feasible so-
lution (ď, b̌) of (DA). Let λ be a positive integer. A feasible so-
lution (d, b) ∈ R is said to be a λ-feasible solution of (DA) if
d ≡ ď mod λ and b′ ≡ b̌ mod λ. We also say that (d, b) is λ-
optimal for (DA) if it is a λ-feasible solution minimizing the ob-
jective function c(d, b) among all λ-feasible solutions. That is, a
λ-optimal solution is an optimal solution of the following prob-
lem:

(DA(λ)) Minimize c(d, b)
subject to d(N) + b(N) = D + B,

b(N) ≤ B,
ℓ ≤ d + b ≤ u,
d, b ∈ Zn

+,

d ≡ ď mod λ, b ≡ b̌ mod λ.

For i ∈ N, the function

cλi (η, ζ) = ci(λη + ď(i), λζ + b̌(i))

is also a multimodular function in (η, ζ). Therefore, the problem
(DA(λ)) has the same combinatorial structure as (DA), and any
algorithm for (DA) can be applied to (DA(λ)). Our proximity-
scaling algorithm is based on this observation and the following
proximity theorem for (DA):

Theorem 3.4. Let λ be a positive integer with λ ≥ 2, and
(d, b) ∈ R be a λ-optimal solution of (DA). Then, there exists
some optimal solution (d∗, b∗) ∈ R of (DA) such that

∥(d∗ + b∗) − (d + b)∥1 ≤ 8λn.

Proof is given later in this subsection.
Algorithm ProximityScalingDA
Step 0:
Let (d0, b0) be an arbitrarily chosen feasible solution of (DA)
and x0 = d0 + b0. Set λ = 2⌈log2((D+B)/4n)⌉ and p := 1.
Step 1:
Let b′p−1 ∈ Zn be a vector that is an optimal solution of the
problem (SRA(xp−1)) with an additional condition that
b′p−1 ≡ bp−1 mod λ.
Step 2:
Apply the algorithm SteepestDescentDA to (DA(λ)) with the
initial solution (xp−1 − b′p−1, b

′
p−1) to find a λ-optimal solution

(dp, bp).
Step 3:
If λ = 1, then output (dp, bp) and stop. Otherwise, set
xp = dp + bp, λ := λ/2, p := p + 1, and go to Step 1. □

We analyze the time complexity of the algorithm Proximi-
tyScalingDA. The number of iterations is O(log((D + B)/n)).
We will show that each iteration of the algorithm can be done
in O(n log n) time.

The definition of the initial λ in Step 0 implies that there exists
a λ-optimal solution (d, b) with

∥(d + b) − (d0 + b0)∥1 ≤ ∥d + b∥1 + ∥d0 + b0∥1 ≤ 2(D + B) ≤ 8λn.

Also, in the p-th iterations with p ≥ 2, Theorem 3.4 implies that
there exists a λ-optimal solution (d, b) with ∥(d + b) − (dp−1 +

bp−1)∥1 ≤ 8λn. Hence, it follows from Theorem 3.3 that each it-
eration, except for Step 1, can be done in O(n log n) time. Step 1
can be also done in O(n log n) time by Propositions 3.1 and 3.2.

Hence, we obtain the following bound for the algorithm Prox-
imityScalingDA.
Theorem 3.5. The algorithm ProximityScalingDA finds an op-
timal solution of the problem (DA) in O(n log n log((D + B)/n))
time.
3.2.1 Proof of Theorem 3.4

Let (d∗, b∗) be an optimal solution of (DA) that minimizes the
value ∥d∗ − d∥1 + ∥b∗ − b∥1. We prove that (d∗, b∗) satisfies the
inequality ∥x∗ − x∥1 ≤ 8λn with x = d + b and x∗ = d∗ + b∗.

In the proof we consider the following six sets.

I1 = {i ∈ N | d(i) − d∗(i) ≥ λ, b(i) − b∗(i) ≤ −λ}, (3.1)

I2 = {i ∈ N | d( j) − d∗( j) ≤ −λ, b( j) − b∗( j) ≥ λ}, (3.2)

I3 = {i ∈ N | x(i) − x∗(i) ≥ λ, d(i) − d∗(i) ≥ λ}, (3.3)

I4 = {i ∈ N | x( j) − x∗( j) ≤ −λ, d( j) − d∗( j) ≤ −λ}, (3.4)

I5 = {i ∈ N | x(i) − x∗(i) ≥ λ, b(i) − b∗(i) ≥ λ}, (3.5)

I6 = {i ∈ N | x( j) − x∗( j) ≤ −λ, b( j) − b∗( j) ≤ −λ}. (3.6)

Lemma 3.6.
(i) At least one of I1 and I2 is an empty set.

(ii) If b∗(N) < B then I2 = ∅ holds; if b(N) − B ≤ −λ then I1 = ∅
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holds.

Proof. We first prove (i). Assume, to the contrary, that both of
I1 , ∅ and I2 , ∅ hold. Then, there exist distinct i, j ∈ N such
that

d(i) − d∗(i) ≥ λ, b(i) − b∗(i) ≤ −λ,
d( j) − d∗( j) ≤ −λ, b( j) − b∗( j) ≥ λ.

We consider the pair of vectors (d − λχi + λχ j, b + λχi − λχ j),
which is a feasible solution of (DA(λ)) since d + b = (d − λχi +

λχ j) + (b + λχi − λχ j) and b(N) = (b + λχi − λχ j)(N). We show
below that

c(d, b) > c(d − χi + χ j, b + χi − χ j)

> c(d − 2χi + 2χ j, b + 2χi − 2χ j)

> · · · > c(d − λχi + λχ j, b + λχi − λχ j).

This, however, is a contradiction to the choice of (d, b).
For an integer λ′ with 0 ≤ λ′ < λ, put

d′ = d − λ′χi + λ
′χ j, b′ = b + λ′χi − λ′χ j.

Since i ∈ supp+(d′−d∗)∩ supp−(b′−b∗) and j ∈ supp−(d′−d∗)∩
supp+(b′ − b∗), Proposition 2.1 (i) implies that

ci(d′(i), b′(i)) + ci(d∗(i), b∗(i))

≥ ci(d′(i) − 1, b′(i) + 1) + ci(d∗(i) + 1, b∗(i) − 1),

c j(d′( j), b′( j)) + c j(d∗( j), b∗( j))

≥ c j(d′( j) + 1, b′( j) − 1) + c j(d∗( j) − 1, b∗( j) + 1).

Hence, we have

c(d′, b′)+c(d∗, b∗) ≥ c(d′−χi+χ j, b′+χi−χ j)+c(d∗+χi−χ j, b∗−χi+χ j).
(3.7)

Note that (d∗∗, b∗∗) ≡ (d∗ + χi − χ j, b∗ − χi + χ j) is also a feasible
solution of (DR-AP) since d∗∗+b∗∗ = d∗+b∗ and b∗∗(N) = b∗(N).
Since (d∗∗, b∗∗) satisfies

∥d∗∗ − d∥1 + ∥b∗∗ − b∥1 < ∥d∗ − d∥1 + ∥b∗ − b∥1,

we have c(d∗, b∗) < c(d∗∗, b∗∗), which, together with (3.7), im-
plies c(d′, b′) > c(d′ − χi + χ j, b′ + χi − χ j).

Proof of (ii) is similar to (i) and omitted. □

The following two lemmas can be proven in a similar way as
Lemma 3.6, and therefore proofs are omitted.
Lemma 3.7. At least one of I3 = ∅ and I4 = ∅ holds.
Lemma 3.8. At least one of I5 = ∅ and I6 = ∅ holds.
Lemma 3.9.
(i) At least one of I4, I5, and I1 is an empty set.
(ii) If b∗(N) < B then at least one of I4 and I5 is an empty set.
(iii) At least one of I3, I6, and I2 is an empty set.
(iv) If b(N) − B ≤ −λ then at least one of I3 and I6 is an empty
set.

Proof. We prove (i) only. Assume, to the contrary, that all of the
sets I4, I5, and I1 are nonempty, and let i ∈ I4, j ∈ I5, and s ∈ I1.
Then, elements i, j, s are distinct by the definitions of I4, I5, and
I1.

We put

(d′, b′) = (d + λχi − λχs, b − λχ j + λχs),

(d∗∗, b∗∗) = (d∗ − χi + χs, b∗ + χ j − χs).

Since (d′, b′) and (d∗∗, b∗∗) satisfy

d′(P) + b′(P) = d(P) + b(P), b′(N) = b(N),

d∗∗(P) + b∗∗(P) = d∗(P) + b∗(P), b∗∗(N) = b∗(N),

(d′, b′) (resp., (d∗∗, b∗∗)) is a feasible solution of (DA(λ)) (resp.,
(DA)). Using this fact, we can derive a contradiction as in
Lemma 3.6. □

Lemma 3.10. We have ∥x − x∗∥1 ≤ 4λn if at least one of the
following two conditions holds:

(a) I3 = I5 = ∅, (b) I4 = I6 = ∅.

Proof. Suppose that I4 = I6 = ∅ holds. Then, we have
x(i) − x∗(i) ≥ −2λ for every i ∈ N. Let N− = supp−(x − x∗).
Since x(N) − x∗(N) = 0, we have

∥x − x∗∥1 = [x(N \ N−) − x∗(N \ N−)] + [x∗(N−) − x(N−)]

= [x(N) − x∗(N)] + 2[x∗(N−) − x(N−)]

= 4λ|N−| ≤ 4λn.

Proof for the case with I3 = I5 = ∅ is similar. □

Lemma 3.11. We have ∥x − x∗∥1 ≤ 8λn if at least one of the
following two conditions holds:

(a) I2 = I4 = I5 = ∅ and b(N) − b∗(N) > −λ,
(b) I1 = I3 = I6 = ∅ and b(N) − b∗(N) < λ.

Proof. We consider the case where (a) holds, and show that
∥d − d∗∥1 ≤ 4λn and ∥b − b∗∥1 ≤ 4λn hold, which implies

∥x − x∗∥1 ≤ ∥d − d∗∥1 + ∥b − b∗∥1 ≤ 8λn.

Since I2 = I4 = I5 = ∅, it holds that

d(i) − d∗(i) ≥ −2λ, b(i) − b∗(i) ≤ 2λ (i ∈ N). (3.8)

Since b(N) − b∗(N) > −λ and x(N) − x∗(N) = 0, we have
d(N) − d∗(N) < λ.

To prove the inequality ∥d−d∗∥1 ≤ 4λn, let H = supp−(d−d∗).
If H = N, then we have d(i) − d∗(i) < 0 for every i ∈ N, implying
that

∥d − d∗∥1 =
∑
i∈N
|d(i) − d∗(i)|

=
∑
i∈N

[d∗(i) − d(i)] = d∗(N) − d(N) < λ ≤ 4λn.

If H , N, then we have

∥d − d∗∥1 =
∑
i∈N′
|d(i) − d∗(i)|

= [d(N \ H) − d∗(N \ H)] + [d∗(H) − d(H)]

= [d(N) − d∗(N)] + 2[d∗(H) − d(H)]

< λ + 4λ|H| ≤ 4λn,

where the first inequality is by d(N)−d∗(N) < λ and d(i)−d∗(i) ≥
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−2λ for i ∈ N, and the second inequality is by |H| < n. The
inequality ∥b − b∗∥1 ≤ 4λn can be proved similarly by using the
inequalities b(N)−b∗(N) > −λ and b(i)−b∗(i) ≤ 2λ for i ∈ N. □

Lemma 3.12. We have ∥x − x∗∥1 ≤ 8λn.

Proof. By Lemmas 3.7 and 3.8, we have the following four pos-
sibilities:

(Case 1) I4 = I6 = ∅,
(Case 2) I3 = I5 = ∅,
(Case 3) I4 = I5 = ∅, I3 , ∅, I6 , ∅,
(Case 4) I3 = I6 = ∅, I4 , ∅, I5 , ∅.

If Case 1 or 2 holds, then we have ∥x − x∗∥1 ≤ 8λn by Lemma
3.10. Below we give proofs for Cases 3 and 4.

[Proof for Case 3] By Lemma 3.9 (iii) and (iv), we have
I2 = ∅ and b(N) − B > −λ; the second inequality implies
b(N) − b∗(N) > −λ since b∗(N) ≤ B. Hence, we have ∥x − x∗∥1 ≤
8λn by Lemma 3.11.

[Proof for Case 4] By Lemma 3.9 (i) and (ii), we have I1 = ∅
and b∗(N) = B; the second equation implies b(N) − b∗(N) < λ

since b(N) ≤ B. Hence, we have ∥x − x∗∥1 ≤ 8λn by Lemma
3.11. □

4. Polynomial-Time Algorithm for (DR)
We propose a polynomial-time algorithm for the problem

(DR). For this, we first show that using a parameter, the prob-
lem (DR) can be decomposed into two subproblems that have the
same structure as (DA).

Given a problem (DR), we consider its relaxation (DA) ob-
tained by removing the L1-distance constraint in (DR). Let
(d•, b•) ∈ Zn

+ × Zn
+ be an optimal solution of the problem (DA).

If (d•, b•) is a feasible solution of (DR), then it is an optimal so-
lution of (DR). Hence, in the following we assume that (d•, b•) is
not a feasible solution of (DR), i.e., ∥(d• + b•) − (d̄ + b̄)∥1 > 2γ.
In this case, there exists an optimal solution (d∗, b∗) of (DR) such
that

∥(d∗ + b∗) − (d̄ + b̄)∥1 = 2γ (4.1)

(see [1]). Moreover, using (d•, b•) we can restrict the region con-
taining an optimal solution of (DR), as follows.
Lemma 4.1. Let (d•, b•) ∈ Zn

+ × Zn
+ be an optimal solution

of the problem (DA). Then, there exists some optimal solution
(d∗, b∗) ∈ Zn

+ × Zn
+ of the problem (DR) such that

d̄(i) + b̄(i) ≤ d∗(i) + b∗(i) ≤ d•(i) + b•(i)

(∀i ∈ supp+((d• + b•) − (d̄ + b̄))),

d̄(i) + b̄(i) ≥ d∗(i) + b∗(i) ≥ d•(i) + b•(i)

(∀i ∈ N \ supp+((d• + b•) − (d̄ + b̄))).

Let P = supp+((d• + b•) − (d̄ + b̄)). Lemma 4.1 and (4.1) im-
ply that there exists some optimal solution (d∗, b∗) of the problem
(DR) such that

d∗(P) + b∗(P) = d̄(P) + b̄(P) + γ,

d∗(N \ P) + b∗(N \ P) = d̄(N \ P) + b̄(N \ P) − γ.

Hence, the problem (DR) can be reformulated as a problem with-
out L1-distance constraint, which we denote (DR-L):

Minimize c(d, b)
subject to d(N) + b(N) = D + B,

b(N) ≤ B,
d(P) + b(P) = d̄(P) + b̄(P) + γ,
d(N \ P) + b(N \ P) = d̄(N \ P) + b̄(N \ P) − γ,
ℓ ≤ d + b ≤ u, d, b ∈ Zn

+.

To solve the problem (DR-L) efficiently, we consider two sub-
problems (DR-L-A(α)) and (DR-L-B(α)) with parameter α ∈ Z+;
the subproblem (DR-L-A(α)) is given as

Minimize
∑

i∈P ci(d(i), b(i))
subject to b(P) ≤ α,

d(P) + b(P) = d̄(P) + b̄(P) + γ,
ℓ(i) ≤ d(i) + b(i) ≤ u(i), d(i), b(i) ∈ Z+ (i ∈ P),

and (DR-L-B(α)) is defined similarly to (DR-L-A(α)), where P
is replaced with N \ P and the first constraint b(P) ≤ α is re-
placed with b(N \ P) ≤ B − α. The two subproblems have the
same structure as the problem (DA), and therefore can be solved
in O(n log n log((D + B)/n)) time by Theorem 3.5.

We denote by ψA(α) (resp., ψB(α)) the optimal value of the
problem (DR-L-A(α)) (resp., (DR-L-B(α))). Then, the opti-
mal value of the problem (DR-L) is given by min0≤α≤B[ψA(α) +
ψB(α)]. The next property shows that the minimum value of
ψA(α) + ψB(α) can be computed by binary search with respect
to α.
Proposition 4.2. The values ψA(α) and ψB(α) are convex func-
tions in α ∈ [0, B].

Since the binary search terminates in O(log B) iterations, we
obtain the following time bound.
Theorem 4.3. The problem (DR) can be solved in
O(n log n log((D + B)/n) log B) time.
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