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Abstract: Understanding how application programming interfaces (APIs) are used in a program plays an important
role in malware analysis. This, however, has resulted in an endless battle between malware authors and malware ana-
lysts around the development of API [de]obfuscation techniques over the last few decades. Our goal in this paper is to
show the limit of existing API de-obfuscation techniques. To do that, we first analyzed existing API [de]obfuscation
techniques and clarified that an attack vector commonly exists in these techniques; then, we present Stealth Loader,
which is a program loader to bypass all existing API de-obfuscation techniques. The core idea of Stealth Loader is to
load a dynamic link library (DLL) and resolve its dependency without leaving any traces on memory to be detected.
We demonstrated the effectiveness of Stealth Loader by analyzing a set of Windows executables and malware protected
with Stealth Loader using major dynamic and static analysis tools. The results indicate that among other obfuscation
tools, only Stealth Loader is able to successfully bypass all analysis tools.
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1. Introduction

Malware analysis is essential for fighting cyber crime. Ana-
lysts take advantage of various analysis techniques to effectively
reveal the behaviors of malware. Windows userland APIs are
important information sources for understanding the behaviors
and intentions of malware since a sequence of APIs expresses
a significant proportion of the functionalities of malware. That is,
APIs are a fundamental factor for malware analysis.

Malware authors understand this situation, so they try to hide
APIs used in their malware by managing various obfuscation
techniques [16], [27], [29], [33]. One example is API redirection,
which is an obfuscation technique that aims to confuse the con-
trol flows from call instructions to APIs by inserting junk code
in the middle of the flows. Another example is DLL unlinking,
which aims to make control flows unreachable from call instruc-
tions to the code of any recognized APIs. This is done by hiding
loaded DLLs containing API codes, which possibly become the
destination of the control flows.

To fight these API obfuscation techniques, many API de-
obfuscation techniques have been proposed over the past few
decades [10], [14], [22], [23], [26], [33]. For example, one tech-
nique aggressively collects traces of loaded DLLs from multiple
sources, e.g., the process environment block (PEB), virtual ad-
dress descriptors (VADs), or callback events, and creates a com-
plete list of loaded DLLs. Another one executes a deep control
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flow analysis until it finds any API code reachable from call in-
structions in the original code by taking advantage of various
static analysis techniques.

An essential step in these API de-obfuscation techniques is API
name resolution, i.e., relating a virtual memory address to the API
name. To do that, API de-obfuscation techniques have to identify
the positions of loaded DLLs that contain API code. As far as
we have investigated, to identify the positions of loaded DLLs,
most API de-obfuscation techniques are likely to depend on data
structures that the underline operating system (OS) manages. For
example, in the case of Windows, many analysis tools are de-
signed to acquire the addresses of loaded DLLs from the PEB or
VADs. We argue that, behind this design, it is expected that the
Windows OS precisely manages loaded DLLs and keeps track of
them by storing the metadata of them in specific data structures.
We also argue that this expectation possibly becomes an attack
vector for malware authors to evade existing API de-obfuscation
techniques.

Our goal in this paper is to show the limitation of existing API
de-obfuscation techniques by actually attacking this expectation.
To do that, we present Stealth Loader, a program loader to evade
all existing API de-obfuscation techniques. The design princi-
ple of Stealth Loader is that it loads a DLL without leaving any
traces in Windows-managed data structures. To achieve this, we
take two approaches. The first is that we redesign each phase
of program loading to become trace-free. The second is that we
add two new features to a program loader; one is for removing
some fields of the portable executable (PE) header of a loaded

This is an extended version of a paper published, Proc. Research in At-
tacks, Intrusions and Defenses, RAID2017, Lecture Notes in Computer
Science, Vol.10453, Springer, Cham.

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

DLL from memory after it has been loaded, and the other is for
removing the behavioral characteristics of Stealth Loader.

One effect of Stealth Loader is that a stealth-loaded DLL *1 is
not recognized as a loaded DLL by analysis tools and even by the
Windows OS because there is no evidence in Windows-managed
data structures to recognize it. Due to this effect, calls of the func-
tions exported from stealth-loaded Windows-system DLLs, such
as kernel32.dll and ntdll.dll, are not recognized as API calls be-
cause the DLLs are not recognized as loaded, i.e., analysis tools
fail API name resolution.

The main challenge of this paper is to design a trace-free pro-
gram loader without destroying the runtime environment for run-
ning programs. A program loader is one of the core functions
of an OS. Therefore, simply changing the behavior of a program
loader is likely to affect the runtime environment, and that change
sometimes leads to a program crash. In addition, changes exces-
sively specific to a certain runtime environment lose generality as
a program loader. We need to carefully redesign each step of the
program loading procedure while considering the side effects on
runtime environments that our changes may cause.

To demonstrate the effectiveness of Stealth Loader against
existing API de-obfuscation techniques, we embedded Stealth
Loader into several Windows executables and analyzed them with
major malware analysis tools. The results indicated that all of
these tools failed to analyze the invoked or imported APIs of
stealth-loaded DLLs.

In addition, to show that the current implementation of Stealth
Loader is practical enough for hiding malware’s fundamental be-
haviors, we protected five real pieces of malware with Stealth
Loader and then analyzed them using a popular dynamic analysis
sandbox, Cuckoo Sandbox [19]. The results of this experiment
indicated that pieces of malware whose malicious activities were
obviously identified before applying Stealth Loader successfully
hid most of their malicious activities after Stealth Loader was ap-
plied. Consequently, they could make Cuckoo Sandbox produce
false negatives.

The contributions of this paper are as follows.
• We analyze existing API [de]obfuscation techniques and

reveal a common expectation of API de-obfuscation tech-
niques that may become an attack vector for malware authors
to bypass analyses and detections.

• We introduce Stealth Loader, a program loader to make a
loaded system DLL invisible to evade existing analysis tools
by exploiting this attack vector.

• We demonstrated the effectiveness of Stealth Loader by an-
alyzing Windows executables and real malware protected
with Stealth Loader. The results indicated that Stealth
Loader successfully evaded seven primary analysis tools.

• We discuss possible countermeasures against Stealth Loader
and their effectiveness in detail.

2. Problem Analysis

In this section, we explain existing API obfuscation techniques
used in real-world malware and API de-obfuscation techniques

*1 a DLL loaded by Stealth Loader

that are used in both major malware analysis tools and academic
studies. Then, we clarify a common expectation shared in API
de-obfuscation techniques.

2.1 API Obfuscation
API obfuscation is a technique for hiding imported or invoked

APIs from static or dynamic analysis tools, respectively. Mal-
ware authors often take advantage of this technique to protect
their malware from being detected or analyzed. We first discuss
the basics of the PE format and then explain import address ta-
ble (IAT) obfuscation and DLL unlinking as a technique against
static analysis. Finally, we explain API redirection as one tech-
nique against both static and dynamic analyses.

A PE executable usually has IATs and import name tables
(INTs) to manage external APIs if it depends on them. An IAT is
a table that contains function pointers to APIs whose code is lo-
cated in an external DLL. An INT is also a table that contains the
names of external APIs corresponding to the IAT entries. Since
these tables are referenced from the header of a PE executable,
malware analysts can acquire the list of APIs that a piece of mal-
ware depends on from its PE header when they analyze a PE-
format piece of malware.

To interfere with static analysis, malware often deletes the
INTs and disconnects the reference to the INTs and IATs from
its PE header. This is called IAT Obfuscation. Even if a piece
of malware does not have any references to the tables from its
PE header, since it keeps the list of APIs inside and restores it at
runtime, it can sustain the feasibility of the original functionality.

DLL unlinking [14] is another technique for interfering with
static analysis by obfuscating loaded DLLs. It makes control
flows unreachable from call instructions to any APIs by hiding
the metadata of loaded DLLs that could possibly become the des-
tination of the flows. Since a control flow of an external function
call does not reach any memory area where a Windows-system
DLL is mapped, analysis tools fail to recognize this flow as an
API call reference. This technique achieves this by removing the
registered metadata of the DLL from the lists of the PEB, which is
a data structure of Windows for managing loaded DLLs and their
status in a process. Since some Windows APIs, e.g., EnumPro-
cessModules, depend on the PEB to extract loaded DLL lists, un-
linked DLLs can avoid being listed by these APIs.

API redirection [33] is a technique for attacking both static and
dynamic analyses by obfuscating API references. As Fig. 1 (a)
shows, it modifies call instructions in the original code. Other-
wise, as Fig. 1 (b) shows, it modifies the IAT entry. With these
modifications, it forces control flows to APIs to detour a stub,
which executes junk instructions and finally jumps to APIs. By
inserting a stub between an IAT entry or call instruction; and API
code, malware breaks the direct connection between the caller
and callee of an API. Since API call instructions are expected to
directly refer to API code or at least via an IAT entry in many
analysis tools, this technique can confuse their expectations re-
garding the relationship between an API caller and callee.

Additionally, advanced API redirection, shown in Fig. 1 (c), is
involved with stolen code [33]. At the same time, when API redi-
rection is applied, it copies some instructions at the entry of an
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Fig. 1 Three patterns of API redirection. The top is the case of a normal Windows executable before
applying API redirection. (a) Pattern in which the reference of the call instruction is modified, (b)
that in which the entry of the IAT is modified, and (c) that in which API redirection is conducted
with stolen code.

API, i.e., mov edi, edi and push ebp to the position before
the jmp instruction in the allocated buffer for a stub. An execution
performed after running these instructions in the buffer is trans-
ferred to the instruction after the copied ones in the API code,
i.e., mov ebp, esp. By doing this, malware can avoid analyses
that monitor the executions of an API at the entry instruction of
an API, i.e., mov edi, edi.

2.2 API De-obfuscation
Malware analysts take advantage of API de-obfuscation tech-

niques to clarify imported APIs or invoked APIs for static or dy-
namic analysis, respectively.

Regarding IAT Obfuscation, it is necessary to reconstruct ob-
fuscated IATs and deleted INTs. To reconstruct them, most ex-
isting IAT reconstruction tools, such as impscan (a plugin of The
Volatility Framework [14]) and Scylla [18], follow four steps: ac-
quiring a memory dump, finding the IATs, resolving the API
names, and restoring the PE header.
( 1 ) Run a target program until it resolves imported APIs and

fills in the IATs with the resolved addresses and then acquire
a memory dump of it.

( 2 ) Find the original IATs by analyzing code sections of a target
program, e.g., collecting memory addresses often referred
by indirect call instructions such as call [0x01001000].

( 3 ) Resolve the API names from each entry of the found IATs
by identifying the loaded addresses of each DLL and then
make a list of the imported APIs.

( 4 ) Rebuild the INTs with the resolved API names and then up-
date the pointers in the PE header to point to the found IATs
and rebuilt INTs.

To defeat DLL unlinking, even if a loaded DLL is not listed on
the PEB, we can find the existence of an unlinked DLL by parsing
VADs if we use ldrmodules, which is a plugin of The Volatility
Framework [14]. Quist et al. also proposed a technique of pars-
ing VADs to identify mapped DLLs [22]. In addition, Rekall [24]
identifies loaded DLLs in memory dumps on the basis of the de-
bug section included in the PE header of each loaded DLL. In a

PE header, a globally unique identifier (GUID) can be contained,
and Rekall sends a query to a Microsoft symbol server to find the
DLL related to the GUID.

Some dynamic analysis tools, such as Cuckoo Sandbox [19],
make the correspondence between addresses and API names by
monitoring APIs or events. For example, by monitoring LoadLi-
brary, we can obtain both the loaded address of a DLL and its file
name at the same time since the address is returned from this API
and the file name is passed to this API. Raber et al. proposed a
technique of focusing on API hookings [23]. It hooks API calls,
collects the call sites of the API calls, analyzes the call sites to
identify the address of the IATs, which are referenced from the
call site instructions, and then resolve each entry of the IATs with
the monitored API names.

To fight API redirection, Sharif et al. [26] proposed a technique
of statically analyzing control flows from call instructions until
the flows reach any API code. Even if there is a stub between
them, their technique can get over it by continuously analyzing
flows to the end of a stub.

To overcome stolen code, as shown in Fig. 1 (c), Kawakoya et
al. [9] proposed a technique of tracking the movement of API
code with taint analysis. Their technique sets taint tags on API
code and tracks them by propagating the tags to identify the po-
sition of copied instructions.

2.3 Analysis
A common intention of existing API obfuscation techniques is

to attack API name resolution, i.e., the intention is to make it dif-
ficult to relate a virtual memory address to an API name. If anal-
ysis tools fail to establish the relationship between an executed
virtual memory address and an API name, they fail to recognize
an execution transfer from the virtual address to the API code as
an API call.

On the other hand, the strategies that existing API de-
obfuscation techniques take to fight API obfuscation techniques
are either to complement lacking or hidden DLL information by
finding the information from multiple data sources or to perform
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Fig. 2 How Stealth Loader works and its components. (a) The file layout of an executable before Stealth
Loader is embedded, (b) that after Stealth Loader is embedded and the components of Stealth
Loader are also described, and (c) the process memory layout after Bootstrap resolves the depen-
dencies of an executable and stealth-loaded DLLs.

deeper code analysis until they reach a certain point where DLL
information is found. In both cases, they rely on the metadata
of DLL, which is stored in some of the data structures the OS
manages. In other words, they expect that the OS precisely man-
ages loaded DLLs, keeps track of their loading and unloading,
and stores their metadata in certain data structures.

3. Design

In this section, we present Stealth Loader, which is a program
loader that does not leave any traces of loaded DLLs in Windows-
managed data structures. First, we give an overview of Stealth
Loader and then introduce its design.

3.1 Overview
Figure 2 shows the components of Stealth Loader and how

it works. Stealth Loader is composed of exPEB, sLdrLoadDll,
sLdrGetProcAddress, and Bootstrap. exPEB is the data struc-
ture to manage the metadata of stealth-loaded DLLs, sLdrLoad-
Dll and sLdrGetProcAddress are exported functions and the main
components of Stealth Loader, sLdrLoadDll is used for loading a
specified DLL in the manner we explain in this Section, and sLdr-
GetProcAddress is used for retrieving the address of an exported
function or variable from a specified stealth-loaded DLL. Boot-
strap is a code snippet for resolving the API dependencies of an
executable and stealth-loaded DLLs by using the two exported
functions.

The workflow for applying Stealth Loader to a PE executable
we want to protect, called a target executable, is as follows. We
first parse the PE header of a target executable for enumerating
the imported APIs. We next embed Stealth Loader into a target
executable with the information of the enumerated APIs, and then
generate a new executable, called a protected executable. At that
time, we drop the INTs and remove the links from the PE header
to the INTs and IATs of a target program for obfuscation.

After generating a protected executable and when it begins to
run, the embedded Stealth Loader works as follows. First, Boot-
strap code is executed, it identifies necessary DLLs for a target
executable, and then loads them using sLdrLoadDll. In this pro-
cess, it does not rely on Windows-loaded DLLs *2 at all to resolve
the dependency of stealth-loaded DLLs. After loading all neces-

*2 DLLs loaded by Windows

sary DLLs and resolving APIs, the execution is transferred from
Bootstrap to the code of a target executable.

Our intention behind Stealth Loader is to attack API name reso-
lution as other API obfuscation techniques do. We achieve this by
hiding the existences of loaded Windows-system DLLs. This is
the same intention as DLL unlinking, but Stealth Loader is more
robust against API de-obfuscations. We tackle this from two dif-
ferent directions. The first is that we redesign the procedure of
program loading to be trace-free. The second is that we add two
new features to a program loader; one is for removing traces left
on memory after completing DLL loading, and the other is for
removing the characteristic behaviors of Stealth Loader.

3.2 Program Loader Redesign
We first break the procedure of a program loader into three

phases: code mapping, dependency resolution, and initialization
& registration. Then, we observe what traces may be left at each
phase for loading a DLL. On the basis of observation, we re-
design each phase. In addition, we consider that the side effects
caused by the redesigns are reasonable as an execution environ-
ment.
3.2.1 Code Mapping
3.2.1.1 Observation

The purpose of this phase is to map a system DLL that re-
sides on disk into memory. Windows loader conducts this using
a file-map function, such as CreateFileMapping. The content of
a mapped file is not loaded immediately. It is loaded when it
becomes necessary. This mechanism is called “on-demand page
loading.” Thanks to this, the OS is able to consume memory ef-
ficiently. That is, it does not always need to keep all the contents
of a file on memory. Instead, it needs to manage the correspon-
dence between memory areas allocated for a mapped file and its
file path on a disk. Windows manages this correspondence using
the VAD data structure. A field in a VAD indicates the path for a
mapped file when the corresponding memory area is used for file
mapping. This path of a mapped file in a VAD becomes a trace
for analysis tools to detect the existence of a loaded system DLL
on memory. In fact, ldrmodules [14] acquires the list of loaded
DLLs on memory by parsing VADs and extracting the file path of
each mapped file.
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Fig. 3 Example of resolving dependency with Stealth Loader. (a) The layout before Stealth Loader starts,
(b) the stealth-loaded advapi32.dll does not create a dependency on the Windows-loaded ntdll.dll,
and (c) the stealth-loaded advapi32.dll creates a dependency on the stealth-loaded ntdll.dll.

3.2.1.2 Design
Instead of using file-map functions, we map a system DLL us-

ing file and memory operational functions such as CreateFile,
ReadFile, and VirtualAlloc, to avoid leaving path information
in VADs. The area allocated by VirtualAlloc is not file-mapped
memory. Therefore, the VAD for the area does not indicate any
relationship to a file. The concrete flow in this phase is as follows.
( 1 ) Open a DLL file with CreateFile and calculate the necessary

size for locating it onto memory.
( 2 ) Allocate continuous virtual memory with VirtualAlloc for

the DLL on the basis of the size.
( 3 ) Read the content of an opened DLL file with ReadFile and

store the headers and each section of it to proper locations in
the allocated memory.

3.2.1.3 Side Effect
Avoiding file-map functions for locating a DLL on memory

imposes two side effects. The first is that we have to allocate a
certain amount of memory immediately for loading all sections
of a DLL when we load the DLL. This means that we cannot
use on-demand page loading. The second is that we cannot share
a part of the code or some of the data of a stealth-loaded DLL
with other processes because memory buffers allocated with Vir-
tualAlloc are not shareable, while those where files are mapped
are sharable. Regarding these side effects, we argue that they
are not significant limitations of Stealth Loader because recent
computers have sufficient memory; thus, this does not become a
critical issue.
3.2.2 Dependency Resolution
3.2.2.1 Observation

The purpose of this phase is to resolve the dependency of a
loading DLL. Most DLLs somehow depend on APIs exported
from other DLLs. Therefore, a program loader has to resolve the
dependency of a loading DLL to make the DLL ready to execute.
When the Windows loader finds a dependency, and if a dependent
DLL is already loaded into memory, it is common to use already
loaded DLLs to resolve the dependency, as shown in Fig. 3 (b).

However, this dependency becomes a trace for analysis tools,
i.e., behavioral traces. For example, if a stealth-loaded ad-
vapi32.dll has a dependency on a Windows-loaded ntdll.dll, the
APIs of ntdll.dll indirectly called from advapi32.dll may be mon-
itored by analysis tools. In other words, we can hide a call of

RegCreateKeyExA but cannot hide that of NtCreateKey. Anal-
ysis tools can obtain similar behavior information from NtCre-
ateKey as that from RegCreateKeyEx since RegCreateKeyEx in-
ternally calls NtCreateKey while passing almost the same argu-
ments.
3.2.2.2 Design

To avoid this, Stealth Loader loads dependent DLLs to resolve
the dependency of a loading DLL. In the case in Fig. 3, it loads
ntdll.dll to resolve the dependency of advapi32.dll. As a result,
after advapi32.dll has been loaded and its dependency has been
resolved, the memory layout is like that shown in Fig. 3 (c). On
the basis of this layout, when an original code calls RegCre-
ateKeyExA, RegCreateKeyExA internally calls the NtCreateKey
of stealth-loaded ntdll.dll. Therefore, this call is invisible to anal-
ysis tools, even if a Windows-loaded kernel32.dll and ntdll.dll are
monitored by them.
3.2.2.3 Side Effect

The side effect caused by this design is reduced memory ef-
ficiency. That is, Stealth Loader consumes approximately twice
as much memory for DLLs as the Windows loader since it newly
loads a dependent DLL even if the DLL is already located on
memory. We consider this side effect as not being that significant
because recent computers have sufficient memory, as we previ-
ously mentioned.
3.2.3 Initialization & Registration
3.2.3.1 Observation

Windows loader initializes a loading DLL by executing the ini-
tialize function exported from a DLL, such as DllMain. At the
same time, it registers a loaded DLL to the PEB. In the PEB, the
metadata of loaded DLLs is managed by linked lists. Many anal-
ysis tools often check the PEB to acquire a list of loaded DLLs
and their loaded memory addresses.
3.2.3.2 Design

Stealth Loader also initializes a loading DLL in the same way
as Windows loader does. However, it does not register the meta-
data of loaded DLLs to the PEB to avoid being detected by anal-
ysis tools through the PEB.
3.2.3.3 Side Effect

The side effect of this design is that stealth-loaded DLLs cannot
receive events such as process-creation or process-termination.
This is because these events are delivered to DLLs listed in the
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Fig. 4 Behaviors of normal Stealth Loader and Reflective Loading. (a) Stealth Loader loads kernel32.dll
from a disk, and (b) Stealth Loader with Reflective Loading loads kernel32.dll from the memory,
i.e., the Windows-loaded one.

PEB. We consider this effect as not being very significant be-
cause most system DLLs do not depend on these events at all
as far as we have investigated. Most are implemented to han-
dle only create-process and -thread events, which are executed
mainly when the DLL is first loaded.

3.3 Stealthiness Enhancement
Apart from finding traces in Windows-managed data struc-

tures, there are other techniques of identifying the existence of a
loaded DLL. In this subsection, we present the possibility of de-
tecting loaded DLLs from characteristic strings in the PE header
of a certain DLL or behaviors of Stealth Loader. Then, we intro-
duce our techniques to hiding the string patterns and behaviors.
3.3.1 PE Header Removal

Stealth Loader deletes some fields of the PE header on mem-
ory after it has loaded a DLL and resolved its dependency. This
is because some of the fields may become a hint for analysis tools
to infer a DLL loaded on memory. For example, GUID may be
included in the debug section of the PE header of a system DLL
and becomes an identifier of a specific DLL. Another example is
that the tables of exported and imported API names of a system
DLL, which are pointed from the PE header, also provide suffi-
cient information for analysis tools to identify a DLL. Like these
examples, the PE header contains a large amount of information
for identifying a DLL.

To avoid being identified through characteristic fields in the
PE header, we delete the debug section, timestamp, version in-
formation, INTs, and export name table (ENT) in the PE header.
Basically, the debug section, timestamp, and version header, are
not used by the original code in a process under normal behav-
ior; they are only used for debugging purposes or providing extra
information of a DLL. Thus, we can delete them without any con-
cern as this deletion degrades the feasibility of execution. How-
ever, we need to pay attention to the timing of deleting INTs. An
INT is necessary to resolve dependencies only when a DLL is be-
ing loaded. After it is completed, this table is not referenced from
the code and data. Therefore, we can delete them after a DLL has
been loaded.

Unlike the above-mentioned fields, we cannot simply delete
the ENT since it is accessed after a DLL has been loaded to re-
trieve the address of an exported API of the loaded DLL at run-
time. This is called “dynamic API resolution”. Therefore, we
prepared an interface, sLdrGetProcAddress, to resolve APIs ex-
ported from stealth-loaded DLLs. We also prepared a data struc-
ture, exPEB, in Stealth Loader to manage the exported API names
and corresponding addresses of each stealth-loaded DLL. There-

fore, we can also delete the ENT without losing the dynamic API
resolution capability in a protected executable.

There are publically available tools for removing fields unnec-
essary for execution from the PE header after compilation, such
as PE explorer [31] or strip command. However, they basically
do not remove fields necessary for running programs, such as
INTs or ENT. On the other hand, Stealth Loader can do this be-
cause it runs inside of a protected executable and performs dele-
tion by determining the context of the execution.
3.3.2 Reflective Loading

Reflective Loading is used for hiding the API calls invoked
from Stealth Loader. While the calls invoked from original code
are successfully hidden by Stealth Loader, API calls invoked
from Stealth Loader are still visible to analysis tools because
Stealth Loader basically uses APIs exported from Windows-
loaded DLLs (Fig. 4 (a)). These exposed API calls enable analy-
sis tools to detect the existence of Stealth Loader because some
of the behaviors of Stealth Loader are not often seen in normal
programs. For example, CreateFile(‘‘kernel32.dll’’)
is very characteristic since programs normally load a DLL
with LoadLibrary(‘‘kernel32.dll’’) and do not open a
Windows-system DLL as a file with CreateFile.

To avoid this, we use Reflective Loading. The core idea of
Reflective Loading is to copy all sections of an already loaded
DLL to allocated buffers during the code mapping phase instead
of opening a file and reading data from it (Fig. 4 (b)). This idea
is inspired by Reflective DLL injection, introduced by Fewer [5],
as a technique of stealthily injecting a DLL into another process.
We leveraged this to load a DLL as a part of Stealth Loader with-
out opening the file of each DLL. If a target DLL is not loaded
at that time, we use the APIs of the stealth-loaded kernel32.dll to
open a file, allocate memory, and conduct the other steps. ker-
nel32.dll and ntdll.dll are always loaded before Stealth Loader
because these DLLs are loaded by Windows as a part of process
initialization. Thus, we can completely hide all API calls invoked
by Stealth Loader from analysis tools monitoring API calls.

4. Implementation

We have implemented Stealth Loader on Windows 7 Service
Pack 1. In this section, we explain the dynamic API resolution
of Stealth Loader, stealth-loadable APIs, and Console Subsystem
Cheating.

4.1 Dynamic API Resolution
Stealth Loader supports dynamic API resolution with sLdr-

LoadDll and sLdrGetProcAddress. When Stealth Loader loads a
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DLL depending on the LdrLoadDll or LdrGetProcedureAddress
of ntdll.dll, e.g., kernel32.dll, it replaces the entries in the IAT for
ntdll.dll to the two functions in the loading DLL with pointers to
sLdrLoadDll or sLdrGetProcAddress, respectively. In this situa-
tion, when the original code attempts to dynamically load a DLL,
for example, using LoadLibrary, which internally calls LdrLoad-
Dll, the API call to LoadLibrary redirects to sLdrLoadDll, and
then Stealth Loader loads a specified DLL.

4.2 Stealth-loadable APIs
In Stealth Loader, we support 12 DLLs: ntdll.dll, kernel32.dll,

kernelbase.dll, gdi32.dll, user32.dll, shell32.dll, shlwapi.dll,
ws2 32.dll, wininet.dll, winsock.dll, crypt32.dll, and msvcrt.dll.
This means that we support in total 7,764 APIs exported from
these 12 DLLs. The number of unsupported APIs is 1,633. The
reasons we cannot support them are described in Appendix A.1.
Since these reasons are very detailed and specific to the Win-
dows 7 environment, we put them into this appendix. We can
support more DLLs with no or at least little cost. However, we
consider the current number of supported APIs to be enough for
the purpose of this paper because we have already covered 99%
(1018/1026) of APIs on which IDAScope, a popular static mal-
ware analysis tool [21], focuses as important APIs. We also cov-
ered 75% (273/364) of the APIs on which Cuckoo Sandbox, a
popular sandbox whose target APIs are selected by malware an-
alysts [19], sets hooks for dynamic analysis. Regarding the re-
maining 25% of APIs, they separately reside in several DLLs in
a small group.

4.3 Console Subsystem Cheating
A console application with stealth-loaded kernel32.dll does not

work properly or sometimes crashes on Windows 7 or later en-
vironments. The reason for the crash is as follows. To begin
with, a Windows console application must establish a connec-
tion to a console server, i.e., conhost.exe, to create a console
window and activate the standard output, input, and error. This
connection is established while kernel32.dll is being initialized,
i.e., while DllMain is being executed. A console application with
stealth-loaded kernel32.dll fails to establish the connection since
the Windows-loaded kernel32.dll has already established the con-
nection when it was initialized. This connection failure causes the
program to crash.

To overcome this, we introduce Console Subsystem Cheating

to properly run a console application with Stealth Loader. Con-
sole Subsystem Cheating makes Windows recognize a console
application with Stealth Loader as a GUI application while the
real kernel32.dll is being initialized. Additionally, it also make
Windows recognize a command line interface (CUI) one while
the stealth-loaded kernel32.dll is being initialized. More con-
cretely, before executing a protected executable, we modify the
subsystem entry of the PE header with value “2”, which indi-
cates a Windows GUI application. After starting its execution,
while the real kernel32.dll is being initialized, the connection to
a console server is not established because the Windows loader
recognizes this application as a GUI. Then, before initializing the
stealth-loaded kernel32.dll, we replace the value with value “3”,

which means a Windows CUI application. The stealth-loaded
kernel32.dll can successfully connect to a console server because
this is the first time a request for connection to the server is made
in the process. With this trick, we successfully apply Stealth
Loader to console applications as well as GUI.

5. Experiment

To show the feasibility of Stealth Loader, we conducted three
experiments: one for comparing its resistance capability against
current analysis tools to other API obfuscation techniques, an-
other for confirming its effectiveness with real malware, and the
other for measuring the impact of the increase in memory con-
sumption caused by Stealth Loader.

5.1 Resistance
To show the resistance capability of Stealth Loader against cur-

rent API de-obfuscation tools, we prepared test executables and
analyzed them with seven major static and dynamic analysis tools
that are primarily used in the practical malware analysis field.
These tools are publicly available and cover the various tech-
niques we mentioned in Section 2.2. Regarding the other tech-
niques which are not covered by these tools, we qualitatively dis-
cuss the resistance capability of Stealth Loader against them in
Section 7.3 because they are not publicly available.

The test executables were prepared by applying Stealth
Loader for eight Windows executables, calc.exe, winmine.exe,
notepad.exe, cmd.exe, wmplayer.exe, taskmgr.exe, wscript.exe,
and ftp.exe. After applying Stealth Loader to them, we verified
if the executables were runnable without any disruptions and as
functional as they had been before applying Stealth Loader by in-
teracting with running test executables, such as clicking buttons,
inputting keystrokes, writing and reading files, and connecting to
the Internet. For clarification, we refer to an executable after ap-
plying Stealth Loader as a protected executable and an executable
before applying Stealth Loader as a vanilla executable.

For comparison, we prepared tools using different API obfus-
cation techniques, i.e., IAT obfuscation, API redirection, which
is the pattern explained in Fig. 1 (c), and DLL unlinking. Using
these tools, we applied these techniques to the same eight Win-
dows executables. We analyzed them with the same analysis tools
and compared the results.
5.1.1 Static Analysis

In this experiment, we analyzed each protected executable with
four major static analysis tools, IDA [7], Scylla [18], impscan
(The Volatility Framework [14]), and ldrmodules (The Volatility
Framework [14]). IDA is a de-facto standard dis-assembler for re-
verse engineering. Scylla is a tool that reconstructs the destroyed
IATs of an obfuscated executable. impscan and ldrmodules are
plugins of The Volatility Framework for reconstructing IATs and
making a list of all loaded modules on memory, respectively.

We explain how each analysis tool, except for IDA, resolves
APIs. Scylla acquires the base addresses of loaded DLLs from
the EnumProcessModules API, which internally references the
PEB and resolves API addresses with GetProcAddress. In ad-
dition, it heuristically overcomes API redirection. impscan also
acquires the base addresses from the PEB and resolves API ad-
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Table 1 Static and dynamic analysis resistance results.

API Obfuscations
Static Analysis Dynamic Analysis

IDA Scylla impscan ldrmodules Cuckoo traceapi mapitracer
Stealth Loader � � � � � � �

IAT Obfuscation � N/A 1

API Redirection � 2 � N/A 1 � � �
DLL Unlinking � �

�indicates that the obfuscation technique successfully evaded the tool. Stealth Loader evaded all the
tools.

1 IAT Obfuscation and API Redirection are techniques for API obfuscation while ldrmodules is a tool
for extracting loaded DLLs.

2 When we manually gave the correct original entry point of a protected executable to Scylla, it could
identify imported APIs correctly. When we did not, it failed.

dresses from the export address table (EAT) of each loaded DLL.
ldrmodules acquires the base addresses from VADs.
5.1.1.1 Procedure

We first statically analyzed each protected executable using
each analysis tool and then identified imported APIs. In the
case of ldrmodules, we identified loaded DLLs. We then manu-
ally compared the identified imported APIs or loaded DLLs with
those we had acquired from the same vanilla executables.
5.1.1.2 Results

The left part of Table 1 shows the results of this experi-
ment. Stealth Loader successfully defeated all static analysis
tools, while the others were analyzed with some of them. This
is because there were no hints for the analysis tools to acquiring
the base addresses of loaded DLLs. IAT obfuscation failed to de-
feat Scylla and impscan because these two tools were originally
designed for reconstructing IATs in the manner we explained in
Section 2.2. API redirection failed to evade Scylla because Scylla
is designed for heuristically overcoming API redirection. DLL
unlinking failed to evade ldrmodules because ldrmodules identi-
fied loaded DLLs through VADs, not the PEB.
5.1.2 Dynamic Analysis

In this experiment, we analyzed each protected executable with
three dynamic analysis tools, Cuckoo Sandbox [19], traceapi [8],
and mini apitracer [30]. All are designed to monitor API calls.
Cuckoo Sandbox is an open-source, dynamic malware analy-
sis sandbox. traceapi is a sample tool of Detours, which is
a library released from Microsoft Research for hooking API
calls. mini apitracer, shown as mapitracer in Table 1, is a plu-
gin of DECAF [6], which is a binary analysis framework built on
QEMU [3].

Each analysis tool relates API names and memory addresses as
follows. Cuckoo acquires the base address of loaded DLLs from
callback functions registered with the LdrRegisterDllNotification
API and resolves API addresses with GetProcAddress. traceapi
acquires the base address of loaded DLLs with LoadLibrary and
resolves API addresses with GetProcAddress. mini apitracer ac-
quires the base addresses of loaded DLLs from the PEB and re-
solves API addresses by parsing the EAT of each DLL.
5.1.2.1 Procedure

We first ran each protected executable on each dynamic analy-
sis environment and monitored the API calls. We then compared
the monitored API calls with those we had collected from the
same vanilla executable.

5.1.2.2 Results
The right part of Table 1 shows the results of this experiment.

Stealth Loader successfully evaded all dynamic analysis tools,
while the others were captured by some of them. IAT obfuscation
totally failed because the dynamic analysis tools did not depend
on the IATs to identify the locations of APIs. API redirection
successfully defeated all of them. This is because even though
the dynamic analysis tools set hooks on the first instruction of
each API for API monitoring, API redirection avoided executing
them. As we explained in Section 2.1, when an API is called API
redirection transfers an execution to the code at a few instructions
after the entry of the API. DLL unlinking also failed because the
analysis tools calculated the locations of each API from the ad-
dresses of loaded DLLs and set hooks on each API before DLL
unlinking had hidden DLLs.

5.2 Real-world Malware Experiment
The purpose of this experiment was to demonstrate that the cur-

rent Stealth Loader implementation is practical enough for hiding
the major characteristic behaviors of malware even though it has
unsupported APIs.
5.2.1 Procedure

First, we collected 117 pieces of malware from VirusTotal [32]
that were detected by several anti-virus products. At that time,
we selected four (DownloadAdmin, Win32.ZBot, Eorezo, and
CheatEngine) because they were not obfuscated. We also se-
lected one piece of malware (ICLoader) from 113 obfuscated
ones as a representative case of obfuscated ones. Next, we ap-
plied Stealth Loader to the five pieces of malware. Then, using
Cuckoo Sandbox, we analyzed both the malware before and af-
ter Stealth Loader was applied. Finally, we compared the results
of the analyses in terms of the malicious score, number of de-
tected events, hit signatures, and monitored API calls. The ma-
licious scores were calculated from observed behaviors matched
with pre-defined malicious behavioral signatures [19].

To achieve the purpose of this experiment, we believe that the
variety of malware’s behaviors is more important than the num-
ber of malware. We also consider that the behaviors of the four
pieces of malware (DownloadAdmin, Win32.ZBot, Eorezo, and
CheatEngine) can cover the majority of behaviors, such as mod-
ifying a specific registry key or injecting code into another pro-
cess, exhibited in all of the pieces of malware we collected for this
experiment. This is because the signatures hit by analyzing those
four contributed to detecting 637 out of 792 events generated by
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Table 2 Real malware experiment results.

without Stealth Loader with Stealth Loader
Malware Name Score Signatures Events # of Calls Score Signatures Events # of Calls

DownloadAdmin 3.6 11 16 9,581 1.8 5 12 224
Win32.ZBot 5.0 11 46 1,350 1.4 4 10 183

Eorezo 5.6 15 192 20,661 0.8 3 10 64
CheatEngine 4.8 12 209 126,086 1.6 5 10 120

ICLoader 4.0 11 33 3,321 4.0 11 38 1,661

Score is calculated as hit signatures, which are scored depending on the severity of each behavior; score of less than 1.0 is benign,
1.0–2.0 is warning, 2.0–5.0 is malicious, and higher than 5.0 means danger. Signaturesmeans number of hit signatures, Events
indicates number of captured events, and # of Calls is the number of API calls captured by Cuckoo Sandbox.

analyzing the 117 pieces of malware.
To ensure that the protected pieces of malware actually ran and

conducted malicious activities, we configured Cuckoo Sandbox
to write a memory dump file after each analysis had been done
and then manually analyzed it with The Volatility Framework.
This is for confirming the traces that had been seen before ap-
plying Stealth Loader, such as created files or modified registries,
were actually found.
5.2.2 Results

Table 2 shows the results of this experiment. Regarding Down-
loadAdmin, Win32.ZBot, Eorezo, and CheatEngine, Stealth
Loader successfully hid the malicious behaviors, then the scores
dropped from malicious or danger levels to warning or benign
levels. Regarding ICLoader, Stealth Loader did not obfuscate
its malicious behaviors, and the scores before and after applying
Stealth Loader were the same.

In the cases of DownloadAdmin, Win32.ZBot, Eorezo, and
CheatEngine, the scores dropped, but did not become zero. The
reason of this was that some signatures were likely to increase the
score with non-standard file format. For example, if a malware
has a section in its PE header, which does not look complier-
generated one, the score is increased. Stealth Loader is the case.
That is, since it embeds itself into an executable by adding a sec-
tion, the score of an executable protected with Stealth Loader
does not become zero. We do not consider that this is a significant
issue of Stealth Loader because we can easily avoid this detection
by embedding Stealth Loader into an existing section or giving a
name like compiler-generated to the section where Stealth Loader
is stored when we add a new section.

DownloadAdmin is a type of information-stealing malware.
It accesses a registry to steal or check a browser configuration.
Also, it checks foreground windows constantly to check if it is
running on any analysis environment because analysis environ-
ments tend to have no windows during analysis. These two be-
haviors were the main reasons for increasing the score of this
malware when we analyzed it before Stealth Loader was applied
to it. After applying Stealth Loader, it successfully hid these two
behaviors; consequently, Cuckoo Sandbox failed to identify these
behaviors. As a result, the score dropped to 1.8 (warning) from
3.6 (malicious).

Win32.ZBot registers itself as a startup process by modifying
certain registries and injects a part of its code into a child pro-
cess. Stealth Loader made them invisible to Cuckoo Sandbox,
even though they were visible to Cuckoo Sandbox before ap-
plying Stealth Loader to this malware. Consequently, the score
dropped to 1.4 (warning) from 5.0 (danger).

Eorezo writes down an executable file from its body and exe-
cutes it as a child process. This created child process conducts
malicious activities, such as checking the existence of antivirus
products or creating suspicious power shell scripts. On the other
hand, the process of Eorezo, i.e., the process that created the child
process, did not conduct malicious activities except for creating
a child process. Stealth Loader hid the API calls invoked from
Eorezo including those related to process creation. Therefore,
Cuckoo Sandbox failed to make the parent and child relationship
of Eorezo and its child process and it did not recognize the child
process as a to-be-analyzed process. As a result, it failed to cap-
ture all API calls invoked from the child process even though the
activities of the child process mostly contributed to the increase
of the score. Also, this was the reason the number of captured
APIs was significantly different before and after Stealth Loader
was applied. Consequently, the score dropped to 0.8 (benign)
from 5.6 (danger).

Regarding CheatEngine, Cuckoo Sandbox mainly detected
four behaviors: creating a new process, searching for a web-
browser process, creating mutex, which a Banker Trojan is known
to use, and creating known malicious files. This malware also cre-
ated some child processes, which mainly performed malicious ac-
tivities. Like the Eorezo case, Cuckoo Sandbox failed to track the
child processes as to-be-analyzed because Stealth Loader hid the
behavior of the CheatEngine process for child process creation.
As a result, Cuckoo Sandbox missed capturing the malicious ac-
tivities done by the child processes and gave this malware a lower
score, i.e., 1.6 (warning), than it should be.

Regarding ICLoader, the score was the same before and af-
ter applying Stealth Loader because the same behaviors were ob-
served. The reason is that this piece of malware acquires the base
address of kernel32.dll without depending on Windows APIs.
That is, it directly accesses the PEB, parses a list in the PEB
to find an entry of kernel32.dll, then acquires the base address
of kernel32.dll from the entry. From this base address, the mal-
ware acquires the addresses of LoadLibrary and GetProcAddress
of the Windows-loaded kernel32.dll and then resolves the depen-
dencies of the other APIs by using these two APIs. Since this
malware did not use LoadLibrary or the equivalent APIs of the
stealth-loaded kernel32.dll for dynamic API resolution, Stealth
Loader did not have a chance to obfuscate the calls of dynami-
cally resolved APIs invoked from this malware. We consider this
as not being a limitation because our expected use case of Stealth
Loader is to directly obfuscate compiler-generated executables,
not already-obfuscated executables.
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Table 3 Memory Consumption Comparison Results.

without Stealth Loader with Stealth Loader
% of Increase

Program Image Private Others Total Size Image Private Others Total Size

calc 24,252 596 32,744 57,592 12,920 18,424 41,104 72,448 125.80
winmine 24,200 604 22,108 46,912 12,220 18,432 30,492 61,144 130.34
notepad 25,024 596 22,404 48,024 25,640 18,424 30,828 74,892 155.95

cmd 7,640 92 20,080 27,812 8,900 4,336 26,232 39,468 141.91
wmplayer 71,420 13,876 74,008 159,304 71,860 19,132 75,756 166,748 104.67

wscript 24,748 662 34,754 60,164 26,008 5,552 41,672 73,232 121.72
taskmgr 28,872 784 60,568 90,224 30,140 18,612 70,268 119,020 131.92

ftp 8,320 88 22,608 31,016 8,936 5,428 30,736 45,100 145.41

The unit of Image, Private, Others, and Total Size is kilobyte (KB). We measured the memory consumption of each executable
with VMMap [25]. The standard Windows program loader locates DLLs in Image memory, while Stealth Loader does it in Private
memory. Others includes Mapped File, Shareable, Heap, Managed Heap, Stack, Page Table and Unusable. % of Increase
is calculated from (Total Size of with Stealth Loader / Total Size of without Stealth Loader) * 100.

5.3 Memory Consumption
As we mentioned in Section 3, Stealth Loader affects the effi-

ciency of memory consumption, but we argue that this does not
become a significant problem. To demonstrate this, in this exper-
iment, we measured how much Stealth Loader affects memory
usage on its running environment before and after being applied.
5.3.1 Procedure

We used the same dataset for this experiment as for the first
experiment, i.e., protected and vanilla Windows executables. We
measured the memory consumptions of the same executable two
times, before and after applying Stealth Loader, and then com-
pared them. We used VMMap [25] for measuring the mem-
ory consumption of each executable and focused on Image and
Private memories. This is because a protected Windows ex-
ecutable uses Private memory for allocating DLLs, while a
vanilla Windows executable uses Image memory for mapping
DLLs.
5.3.2 Results

Table 3 shows the memory consumption of each executable be-
fore or after applying Stealth Loader. Overall, every executable
had a tendency of increasing the Total Size and Private af-
ter Stealth Loader was applied. There are two reasons for these
increases. The first is that Stealth Loader embeds its code and
data into an executable. Therefore, the size of a protected exe-
cutable becomes larger than that of the vanilla one. The second
is that Stealth Loader does not use memory efficiently since it
newly loads DLLs even if they are already loaded and existed on
memory.

Regarding Image memory, the consumptions of calc and win-
mine decreased after applying Stealth Loader. In the two cases,
the total number of Windows-loaded DLLs in protected ones was
less than that in the vanilla ones because some DLLs were loaded
in Private memory with Stealth Loader, instead of mapping
them in Imagememory. On the other hand, for the other executa-
bles, the size of Image of a protected executable was almost same
as that of its vanilla one or slightly increased. The same number
of DLLs were mapped on Image memory between protected and
vanilla executables. This is because when one of the non-target
DLLs loaded in a protected executable was dependent on a tar-
get DLL, the standard program loader loaded the DLL in Image
memory even though the same DLL was loaded by Stealth Loader
in Privatememory. As a result, the number of Windows-loaded
DLLs becomes the same between a protected and a vanilla exe-

cutable.

6. Related Work

In this section, we briefly repeat the API obfuscation tech-
niques which we mentioned in Section 2.1 for comparison with
Stealth Loader and then explain other types of API obfuscation
techniques related to our research.

IAT obfuscation has a different target from Stealth Loader. It
disturbs API name resolution by deleting the INTs and IATs and
disconnecting them from the PE header, while Stealth Loader fo-
cuses on Windows-managed data structures, such as the PEB or
VADs. DLL unlinking obfuscates loaded DLLs. Its purpose is
the same as Stealth Loader. However, DLL unlinking focuses
on only the PEB, not VADs, while Stealth Loader focues on both.
API redirection obfuscates the control flow from API call instruc-
tions to recognized API code, whereas Stealth Loader attacks API
name resolution. That is, Stealth Loader attempts to make API
code unrecognizable.

One closely related study is by Abrath et al. [2]. They pro-
posed a technique of linking Windows-system DLLs statically
with an executable and deleting imported API information from it
to prevent API calls from being monitored. The effect of linking
Windows-system DLLs with an executable could be similar to
the effect we obtained. However, static linked DLLs may lose the
portability of a PE executable since system DLLs tend to depend
on specific Windows versions, and the size of a linked executable
increases.

Aside from the obfuscation techniques that we explained in
Section 2.1, another type of obfuscation approach, called “API
sequence obfuscation”, has been proposed. Shadow Attack [16]
is an API sequence obfuscation technique that works by partition-
ing one piece of malware into multiple processes. These multiple
processes execute some of the original behaviors of the malware.
Illusion Attack [27] is another API sequence obfuscation tech-
nique that passes requested system call numbers and arguments
via ioctl to an underlining kernel driver. From a monitoring tool
viewpoint, it looks like a sequence of ioctl. These attacks mainly
focus on scrambling executed API calls to avoid detection, while
Stealth Loader focuses on hiding each API call to escape from
both detection and analysis.

There are some techniques for loading a malicious DLL to a
memory used in real-world malware, such as Reflective DLL In-
jection [5], DLL Side Loading [28], Process Hollowing [12], and
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Code Doppelganging [13]. These techniques are mainly designed
to hide a malicious DLL, which is a part of malware, not system
DLLs, such as kernel32.dll or ntdll.dll. We can also apply Stealth
Loader for hiding a malicious DLL and argue that is easier than
for Windows-system DLLs because malicious DLLs do not heav-
ily depend on Windows OS, which is the most complicated com-
ponent to analyze. However, we may have to pay attention to
the dependency on the other parts of malware code to maintain
consistency of its execution.

7. Discussion

In this section, we discuss the platform dependency of Stealth
Loader, other de-obfuscation techniques, and possible counter-
measures against Stealth Loader.

7.1 Platform Dependency
As we mentioned in Section 4, the current Stealth Loader is

implemented to run on the Windows 7 environment. However,
we believe that the design explained in Section 3 is also applica-
ble to other Windows platforms including Windows 8 and 10. Of
course, since Windows 8 and 10 have different implementations
from Windows 7, we need to make Stealth Loader runnable on
these platforms without any issues. More concretely, we have to
resolve some corner cases, as we mentioned in Appendix A.1. In
other words, the other part of this paper, i.e., all sections except
for Appendix A.1 is applicable to other Windows platforms.

Regarding applying Stealth Loader to Linux, we consider that
the designs of Stealth Loader are applicable to Linux platforms.
Since Linux OS and libraries are less dependent on each other
than Windows libraries, an implementation of Stealth Loader for
Linux may become simpler than that of Windows. We argue
that Stealth Loader on Linux could make library calls invisible
to library-call-monitoring tools such as ltrace.

7.2 Other De-obfuscation Techniques
Eureka [26] relates the base address of a loaded DLL with a

DLL file by monitoring NtMapViewOfSection API calls and ex-
tracting the specified file name and return address. Since Stealth
Loader does not use file-map functions, this API is not called
when Stealth Loader loads a DLL. As a result, Eureka fails API
name resolution, even though it overcomes stolen code or API
redirection by performing deep program analyses.

API Chaser [9] relates code with the API name before start-
ing an analysis by setting taint tags containing the API name on
the code. It then keeps track of its relationship by propagating
the tags during its analysis. Since it establishes the relationship
before Stealth Loader work, it may not be affected by Stealth
Loader. However, it is widely known that tag propagation is dis-
connected at implicit flow code [4]; therefore, attackers are able
to evade taint propagation by simply processing code with im-
plicit flow without changing its value.

7.3 Countermeasures
7.3.1 Monitoring at Kernel Layer

One countermeasure against Stealth Loader is monitoring at
the kernel layer. Stealth Loader has to depend on Windows-

system-service calls, while it is independent of userland API
code. Even though much useful information has already been lost
when the executions of some APIs, e.g., network-related APIs,
reach the kernel layer, a series of service system calls possibly
provides a part of the whole picture regarding the behaviors of
the executable protected with Stealth Loader.
7.3.2 Specialized Analysis Environment

Another countermeasure is to install hooks on system DLLs
in an analysis environment before starting an analysis by modi-
fying a file of each DLL on disk. This type of modification is
likely to be detected and warned by Windows. However, since
modified DLLs are loaded by not only benign processes but also
processes protected with Stealth Loader, analysis tools probably
identify the executions of APIs by the installed hooks when they
are executed.

Instrumentation tools, such as Intel PIN [15], could possibly
become a solution against Stealth Loader because they may be
able to identify the locations of stealth-loaded DLLs by tracking
all memory reads and writes related to the DLLs. However, a ma-
jor drawback of these tools is that they are easily detectable by
malware. Therefore, if malware analysts use these tools for an-
alyzing protected malware in practice, they need to further con-
sider hiding these tools from malware.
7.3.3 Detecting System DLLs from Memory Patterns

Scanning memory and finding specific patterns for a DLL may
be effective. By preparing the patterns of each DLL in advance
and scanning memory with these patterns, it could be possible to
identify the modules loaded on memory. Also, comparing bina-
ries using a different tool, such as BinDiff [34], is also effective.
By comparing the control flow of a Windows-system DLL with
that on memory, we could be able to identify the existence of spe-
cific DLLs. However, since there are several binary- or assembly-
level obfuscation techniques, such as that proposed by Moser et
al. [11], we need different counter-approaches to solve this type
of problem.
7.3.4 Inferring DLLs from Visible Traces

Since the current Stealth Loader avoids supporting some APIs,
as we explain in the Appendix A.1, this fact may give static analy-
sis tools a hint to infer a DLL. For example, if analysis tools iden-
tify the position of the IATs of a stealth-loaded DLL using the ap-
proach we explained in Section 2.1, they can probably specify the
DLL from only visible imported APIs in the IATs. To solve this,
we could take advantage of API redirection explained in Fig. 1 (c)
in Section 2.1. This type of API redirection modifies indirect API
call instructions in the original code with direct instructions that
make the execution jump to a stub for each API. Therefore, since
there are no indirect API call instructions in the original code,
analysis tools are likely to fail in identifying the IATs.
7.3.5 Detecting Stealth Loader Itself

Detecting Stealth Loader may become another direction to
fight against it. One approach is detecting specific byte patterns
of Stealth Loader. While Stealth Loader hides its behaviors, as
we explained in Section 3.3.2, its code or data may likely have
specific patterns available to be detected. However, as we dis-
cussed above, several techniques, such as that proposed by Moser
et al. [11], have been proposed to avoid byte-pattern-based detec-
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tion. If we apply one of them to Stealth Loader, we can avoid
being detected.

Focusing on the increase in private-memory consumption is
one possibility for detecting the existence of Stealth Loader. As
Table 3 shows, when we apply Stealth Loader to an executable,
the private-memory consumption of the executable increases.
However, we argue that while this side effect of Stealth Loader
may provide some information to detect Stealth Loader, it is dif-
ficult to have confidence with only this information. This is be-
cause the amount of memory usage is totally dependent on pro-
grams, and it is difficult to predict it before executing the pro-
grams. Without knowledge of the normal amount of private-
memory usage of a target program, we cannot determine if the
private memory of a running program is larger than or same as
normal.
7.3.6 Restricting Untrusted Code

One more direction is to prevent Stealth Loader from working
at each phase. Policy enforcement, which is mentioned in safe
loading [20], may be partially effective for that purpose. If there
is a policy to restrict opening a system DLL for reading, Stealth
Loader cannot map the code of a DLL on memory if it is not
loaded by Windows yet. On the other hand, if the DLLs are al-
ready loaded by Windows, Reflective loading allows us to load
them with Stealth Loader.

In addition, safe loading has a restriction to giving executable
permissions. No other instances, except for the trusted compo-
nents of safe loading, give executable permission to a certain
memory area. Safe loader supports only the Linux platform; how-
ever, if it would support Windows, safe loading may be able to
prevent Stealth Loader from providing the executable permission
to the code read from a DLL file.

Another line of research in this category is to restrict jumping
to untrusted functions, such as control flow integrity (CFI) [1]. In
case of Control Flow Guard [17], which is an implementation of
CFI in Windows, trusted functions are managed and registered in
ntdll.dll. Since Stealth Loader has its own ntdll.dll, stealth-loaded
ntdll.dll, it may be able to register the functions in stealth-loaded
DLLs in its ntdll.dll and make stealth-loaded DLLs query the nt-
dll.dll if the jump destination is trustable. As a result, the func-
tions in stealth-loaded DLLs become trustable with the ntdll.dll
and executable.

8. Conclusion

We analyzed existing API [de]obfuscation techniques and clar-
ified that API name resolution becomes an attack vector for mal-
ware authors to evade malware analyses and detections depend-
ing on the API de-obfuscation techniques. We presented Stealth
Loader as a proof-of-concept implementation to exploit the attack
vector. We then demonstrated that Stealth Loader actually evaded
all major analysis tools. We also qualitatively showed that Stealth
Loader can evade previously proposed API de-obfuscation tech-
niques in academic studies.

We are not arguing that Stealth Loader is perfect. However,
we argue that defeating Stealth Loader is not easy because none
of the countermeasures discussed in Section 7.3 can become a
direct solution against Stealth Loader. We also argue that most

current malware analysis tools depend more or less on some of
the API de-obfuscation techniques mentioned in this paper, im-
plying that Stealth Loader can pose a serious real-world threat in
the future.
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Appendix

A.1 The Reasons for Unsupported API

In this Appendix, we explain the reasons we cannot support
several APIs with Stealth Loader on the Windows 7 platform.

A.1.1 ntdll Initialization
ntdll.dll does not export the initialize function, i.e., DllMain

does not exist in ntdll.dll, and LdrInitializeThunk, which is the
entry point of ntdll.dll for a newly created thread, is also not ex-
ported. This inability of initialization leads to many uninitialized
global variables, causing a program crash. As a workaround to
this, we classified the APIs of ntdll.dll as whether they are depen-
dent on global variables by using static analysis. We then defined
the APIs dependent on global variables as unsupported. As a re-
sult, the number of supported APIs for ntdll.dll is 776, while that
of unsupported APIs is 1,992.

A.1.2 Callback
APIs triggering callback are difficult to apply Stealth Loader

to because these APIs do not work properly unless we register
callback handlers in the PEB. Therefore, we exclude some of the
APIs of user32.dll and gdi32.dll, which become a trigger call-
back from our supported APIs. To distinguish whether APIs are
related to callbacks, we developed an IDA script to make a call
flow graph and analyzed win32k.sys, user32.dll, and gdi32.dll us-
ing the script. We then identified 203 APIs out of 839 exported
from user32.dll and 202 out of 728 exported from gdi32.dll.

A.1.3 Local Heap Memory
Supporting APIs to operate local heap objects is difficult be-

cause these objects are possibly shared between DLLs. The rea-
son is as follows. When a local heap object is assigned, this ob-
ject is managed under the stealth-loaded kernelbase.dll. However,
when the object is used, the object is checked under the Windows-
loaded kernelbase.dll. This inconsistency leads to failure in the
execution of some APIs related to the local heap object opera-
tion. To avoid this situation, we exclude the APIs for operating
local heap objects from our supported API. As a result of static
analysis, we found that local heap objects are managed in Base-
HeapHandleTable, located in the data section of kernelbase.dll.
Therefore, we do not support six APIs depending on this table in
the current Stealth Loader.
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