
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

IoTProtect: Highly Deployable Whitelist-based Protection
for Low-cost Internet-of-Things Devices

Chun-JungWu1,a) Ying Tie1,b) Satoshi Hara2,c) Kazuki Tamiya1,d)

Akira Fujita3,4,e) Katsunari Yoshioka3,4,f) TsutomuMatsumoto3,4,g)

Received: November 28, 2017, Accepted: June 8, 2018

Abstract: In recent years, many Internet-of-Things (IoT) devices, such as home routers and Internet Protocol (IP)
cameras, have been compromised through infection by malware as a consequence of weak authentication and other
vulnerabilities. Malware infection can lead to functional disorders and/or misuse of these devices in cyberattacks of
various kinds. However, unlike personal computers (PCs), low-cost IoT devices lack rich computational resources,
with the result that conventional protection mechanisms, such as signature-based anti-virus software, cannot be used.
In this study, we present IoTProtect, a light-weight, whitelist-based protection mechanism that can be deployed easily
on existing commercial products with very little modification of their firmware. IoTProtect uses a whitelist to check
processes running on IoT devices and terminate unknown processes periodically. Our experiments using four low-cost
IoT devices and 4,981 in-the-wild malware binaries show that IoTProtect successfully terminated 99.92% of the pro-
cesses created by the binaries within 44 seconds after their infection with central processing unit (CPU) overhead of
24% and disk space overhead of 288 KB.

Keywords: IoT, malware process, Whitelisting

1. Introduction

The Internet of Things (IoT) is a network of physical devices,
such as vehicles, furniture, and buildings, embedded with elec-
tronics, sensors, and network connectivity. Connectivity enables
these objects to collect and exchange data for further applications
and business use. However, a threat from IoT malware has ma-
terialized. In Oct. 2016, an IoT Malware called Mirai, reported
to have infected over 100,000 compromised IoT devices such as
Internet Protocol (IP) cameras, conducted the largest ever dis-
tributed denial of service (DDOS) attack against Dyn DNS [1].
We have been using IoTPOT [2], a honeypot that monitors attacks
on IoT devices, to observe cyberattacks against such devices and
analyze the threats from IoT malware. As shown in Fig. 1, the
number of attacking hosts, many of which are indeed IoT devices
compromised and misused by attackers, has increased rapidly
since Aug. 2016.

Our observations show that most of the compromised devices
are home routers [3] and IP cameras [4]. Although many secu-

1 Yokohama National University, Yokohama, Kanagawa 240–8501, Japan
2 FUJI SOFT INCORPORATED, Yokohama, Kanagawa 231–8008, Japan
3 Graduate School of Environment and Information Sciences, Yokohama

National University, Yokohama, Kanagawa 240–8501, Japan
4 Institute of Advanced Sciences, Yokohama National University, Yoko-

hama, Kanagawa 240–8501, Japan
a) wu-chun-jung-zt@ynu.jp
b) tie-ying-fc@ynu.jp
c) tamiya-kazuki-gj@ynu.jp
d) harasato@fsi.co.jp
e) fujita@ynu.ac.jp
f) yoshioka@ynu.ac.jp
g) tsutomu@ynu.ac.jp

rity vendors have developed commercial anti-virus software for
embedded systems, such as those listed in Table 1, these are not
suitable for protecting the above-mentioned low-cost devices as a
result of resource constraints and unsupported platforms. More-
over, all of the commercial products require substantial modifi-
cation of the firmware that would incur high engineering costs,
especially if the manufacturer wants to deploy the security prod-
uct on existing products.

In addition to this commercial security software, there are
many studies that deal with the protection of low-cost IoT de-
vices [11]. These have deployment costs similar to the commer-
cial options resulting from required firmware modifications.

The remainder of this paper is structured as follows. The sec-
ond section contains a literature review of related work and ex-
isting techniques. The third section presents preliminaries. The
fourth section presents the details of IoTProtect. After explaining
our method, we introduce the evaluation experiments. Finally,
our results are discussed, and conclusions are drawn.

2. Related work

Pareek et al. consider that blacklisting-based solutions for de-
tecting malware suffer from problems of false positives and neg-
atives. They share the idea of application whitelisting that has
been applied by security vendors and various other solutions.
They also provide details regarding the design and implementa-
tion approaches and discuss challenges to developing an effective
whitelisting solution [12].

Obermeier et al. apply whitelisting to applications for protect-
ing industrial automation and control systems. They find applica-
tion whitelisting to be an effective means of preventing the instal-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 1 Statistics regarding attacking hosts observed by IoTPOT from January 2016 to March 2017.

Table 1 Commercial secure software against embedded systems.

lation of malware [13].
Bhardwaj et al. developed a process monitoring system based

on blacklisting and whitelisting of process names [14]. Further,

they developed an application called Debsums to calculate the
MD5 sums of an installed package and compare them with those
from existing processes [15]. However, an adversary can easily
alter process names and thus evade detection.

Paleari et al. present an architecture for the automatic gener-
ation of procedures for recovery from malicious programs. This
method extracts the behavior of applications and monitors system
calls using QEMU, an emulator and monitor of virtual machines.
In addition, they propose clustering the behavior of malware to
construct recovery procedures [16].

In 2011, Shahzad et al. proposed a classification-based method
that analyzes a minimal feature set of 11 features for distinguish-
ing benign and malicious processes. This method provides 93%
detection accuracy with a 0% false alarm rate within 100 millisec-
onds [17].

In 2017, Tamiya et al. proposed a method for disinfecting IoT
devices by merely rebooting or resetting the infected devices [18].
Their experiments show that 45 existing IoT malware could be
erased by the simple operation of rebooting, but they did not
present a detection method for these malware binaries.

Koike et al. developed a whitelisting-based execution con-
trol technique called WhiteEgret for the Linux operating system
(OS). This module uses the bprm check security hook and the
mmap file hook to monitor the absolute path of executable files.
WhiteEgret permits execution if the absolute path is contained
in the whitelist and the hash value of the executable file is also
contained in the hash value whitelist [11].

There are some secure Linux OS with implementations of
mandatory access control (MAC), such as TOMOYO Linux [19]
and SELinux [20]. The secure OS hooks system calls in the kernel
space and checks the validity with predefined policies files. This
solution incurs efforts of labeling and policies files. Moreover,
for existing IoT devices, applying secure OS result in substantial
modification of firmware.

As shown in the above literature review, there is no existing
research on IoT cybersecurity conducted on low-cost devices to-
gether with a process-level defense mechanism other than [11].
Moreover, all of the existing technologies require substantial
modification of firmware and incur a significant engineering cost
if deployed on existing products. We propose a protection method
that is very light-weight and easy to deploy on existing low-cost
IoT devices.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 2 Format of the maps [25].

3. Preliminaries

3.1 Linux processes information
Linux is a free OS developed by many companies and

groups. The GNU/Linux system is the core component, which is
branched off into many different Linux distributions [21]. Among
these distributions, such as Fedora, Ubuntu, Debian, and Man-
driva Linux, there is a common design called the proc filesys-
tem for providing system information to users or applications.
This filesystem is not associated with any hardware device such
as disk drives. Instead, proc is an agent into the running Linux
kernel. Files in the proc filesystem are objects that behave simi-
larly to normal files but provide access to parameters, data struc-
tures, and statistics in the kernel. The contents of these files are
not always fixed, but are generated on the fly by the Linux ker-
nel. For embedded Linux systems, users can use open source
tools such as the Yocto Project to produce their distribution [22].
The Yocto tool retains the feature that supports the proc and sys
filesystems [23]. Therefore, users and applications can read pro-
cess information using proc on an embedded Linux system as
long as the device developers are willing.

The proc filesystem contains a directory entry for each pro-
cess running on a Linux system. The name of each directory is
the process identifier (PID) of the corresponding process. These
directories appear and disappear dynamically as processes start
and terminate on the system. Each directory contains several en-
try files providing information regarding the running process [24].
There are three entry files that contain pathname or filename in-
formation regarding the binary of the corresponding process:
• The exe file is a symbolic link that points to the executable

image running in the process.
• The maps file displays the range of addresses in the process’s

address space into which the file is mapped, the permissions
on these addresses, the name of the file, and other informa-
tion.

• The cmdline file records the complete command line for the
process unless the process is a zombie or kernel. In the zom-
bie process, there is nothing in this file. The general cmdline
file contains Linux commands or pathname of executable
files, together with arguments [25].

As shown in Fig. 2, users and applications can find the pathname
of the running process. Moreover, if there is a whitelist of benign
binaries’ pathnames, we can distinguish between normal and ab-
normal processes.

3.2 Files in IoT devices
In this research, we focus on Linux-based IoT devices be-

Fig. 3 Filesystems of ASUS Wi-Fi router RT-AC3200.

cause many open-source OS’s for IoT devices are based on Linux
distributions, such as Brillo, OpenWrt, and Ostro Linux [26].
Linux has a single hierarchical directory structure that starts from
the root directory, represented by / and then expands into sub-
directories. The Filesystem Hierarchy Standard (FHS) defines the
directory structure and contents in most Linux distributions [27].
However, IoT devices can apply various storages such as flash
storage. This kind of IoT device can contain multiple filesystems
in one device. For example, the ASUS Wi-Fi router RT-AC3200
mounts nine filesystems, according to the /proc/mounts file
shown in Fig. 3. The format and meaning of each line are as
follows [25], [28]:

1. The first field specifies the device that is mounted.
2. The second field specifies the mount point.
3. The third field specifies the filesystem type.
4. The fourth field describes whether the filesystem is

mounted read-only (ro) or read-write (rw).
5. The fifth field is used by the dump command to determine

which filesystems are to be dumped.
6. The sixth field is used by the fsck command to determine

the order in which filesystem checks are performed at boot
time.

The rootfs filesystem is a simple filesystem that exports
Linux’s disk caching mechanisms as a dynamically resizable ran-
dom access memory (RAM)-based filesystem [29]. Squashfs is
a compressed read-only filesystem for Linux and is intended for
general read-only filesystem use, for archival [30]. Devtmpfs per-
mits the kernel to create an instance called devtmpfs very early at
kernel initialization. Every device will provide a device node in
devtmpfs before any driver-core device is registered. Devtmpfs
can be changed and altered by users at any time [31]. The proc
filesystem contains system information, and the files in /proc are
generated by the kernel on the fly [24]. The tmpfs filesystem is a
temporary file storage facility on many Unix-like operating sys-
tems. It does not use traditional non-volatile media to store file
data; instead, tmpfs files exist solely in a virtual memory main-
tained by the UNIX kernel [32]. Sysfs is a pseudo filesystem pro-
vided by the Linux kernel that exports information regarding var-
ious kernel subsystems, hardware devices, and associated device
drivers [33]. Devpts is a virtual filesystem available in the Linux
kernel since version 2.1.93 (April 1998). It is usually mounted
at /dev/pts and contains solely device files representing slaves
to the multiplexing master located at /dev/ptmx [34]. JFFS2 is
a log-structured filesystem designed for use on flash devices in
embedded systems. It is based on the work begun in the original
JFFS by Axis Communications, AB [35]. The usbfs filesystem is

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 4 Distribution of ASUS RT-AC3200 files.

a dynamically generated one, similar to the proc filesystem. Us-
bfs complements the normal device node system and can be used
to write user space device drivers [36].

Based on the privileges and features of these filesystems, we
categorize three kinds of files in Linux-based IoT devices:
• Writable files
• Read-only files
• On-the-fly files

Writable files are those that come from user-writable filesystems.
Most of them are the input/output (I/O) of systems or configu-
ration files. A read-only filesystem comes from some mounted
image or read-only filesystems. The files are libraries and ap-
plications for creating the functions and services of IoT devices.
On-the-fly files are the files that are in the proc or usbfs filesys-
tems, are in the kernel, or are generated dynamically by users.
The whitelist criteria are simple. First, ignore on-the-fly files be-
cause they are system information entries or mounted by USBs
outside the device. Secondly, create the whitelist of pathnames
by read-only files. There are many libraries and executable files
in a read-only filesystem. Finally, create the whitelist of hashing
values by writable files. For example, there are 14,514 files in the
ASUS RT-AC3200 Wi-Fi router. The distribution of the files is
shown in Fig. 4. Of these files, 79% are on-the-fly files generated
by the kernel. Therefore, the number of files to be whitelisted is
only 3,048.

3.3 Major premises of IoTProtect
We assume that IoTProtect is implemented by the device de-

velopers and uses the whitelists they created. There are four con-
ditions. First, the checker and whitelists must be merged into
the kernel or executed in the initial process to prevent attackers
or malware from killing the checker process. Second, we as-
sume that the developers do not use the mmap function to pro-
duce anonymous mappings. There is a case when the pathname
fields of maps in /proc are blank. This is an anonymous map-
ping as obtained via the mmap function of the system call. There
are no easy means of coordinating this back to a process’s source,
as there is no field giving the pathname [25]. Therefore, this is a
constraint under which the developers must develop their devices
in order to implement IoTProtect. More precisely, when loading
files into memory, they must not set the MAP ANONYMOUS
argument for creating the memory mappings. Third, the exe files
in /proc can sometimes lose the links to the pointed files. Un-

der Linux 2.2 and later, the exe files in /proc are a symbolic
link containing the actual pathnames of the executed commands.
Attempting to open an exe file will indeed open the original ex-
ecutable. However, this symbolic link can typically be derefer-
enced. If the pathname has been unlinked, the symbolic link will
contain the string ‘(deleted)’ appended to the original pathname.
In a multithreaded process, the contents of this symbolic link are
not available if the main thread has already been terminated [25].
Developers must not dereference the exe link to create hash val-
ues of the executable binaries. Moreover, the hash algorithm must
be available on the IoT device. Note that we use MD5 for the
actual implementation of IoTProtect tested in the following eval-
uation. Fourth, if the developer would like to apply whitelists
of cmdline content, the libraries and application files must be al-
located in read-only partitions. Furthermore, the full or unique
pathname of the corresponding binaries must be included in the
command line to prevent file replacement or false positives.

4. IoTProtect

IoTProtect is a whitelisting method for protecting low-cost IoT
devices. IoTProtect consists of three whitelists and a checker pro-
gram. The pathname whitelist is a list of pathnames of all legit-
imate executables. The hash value whitelist records MD5 hash
values of binaries on IoT devices. The cmdline whitelist is a list
of string which we extract from cmdline files of the legitimate
processes. The comparison and whitelist of cmdline content are
optional and performed only if there are processes that cannot
display their pathname and exe links in the proc filesystem.

We first explain the creation of whitelists. Here we assume that
the device to be protected has already been developed and that the
device developer is to install IoTProtect on top of the existing sys-
tem. We skip the files coming from on-the-fly filesystems, such
as sysfs, proc, usbfs, and I/O files. If developers know precisely
which executable files to include on the whitelist, they can create
their own whitelist manually. However, recent IoT device prod-
ucts are often not developed by a single manufacturer, and each
developer does not know all of the legitimate executables exactly.
In such a case developers can still create whitelists that include
all executables existing in the system by using the Linux com-
mand find with the -exec expression and md5sum. Moreover,
the cmdline whitelist can be created by find with the -exec ex-
pression and cat Linux commands.

IoTProtect conducts process checks through the following
steps. The input data come from entry files of the proc filesystem
and whitelists. The output is the removal of malicious processes.
The notations used in the pseudocode are shown in Table 2.

We explain the details of the IoTProtect procedures with the
following pseudocode:

1. while true
2. find and grep Pni from M, i = 1 to n
3. PN← {Pn1, Pn2, . . . , Pnn}
4. Comp (PN, WLP)
5. SP← {Pid1, Pid2, . . . , Pidj} ∀Pidi ∈ A: Pni �WLP, I = 1

to j
6. Hj ←MD5(Ej) ∀Ej ∈B: Pidi ∈ SP, j = 1 to |SP|

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 2 Table of symbols.

7. H← {H1, H2, . . . , Hj}, j=1 to |SP|
8. Comp (H, WLH)
9. SP − {Pid1, Pid2, . . . , Pidk} ∀Pidk ∈ C: Hk ∈WLH

/*optional step of cmdline whitelisting */
10. find and grep Cli from Cmd, i=1 to n
11. CL← {Cl1, Cl2, . . . , Cli}, i = 1 to n
12. Comp (CL, WLC)
13. SP − {Pid1, Pid2, . . . , Pidr} ∀Pidr ∈ D: CLr ∈WLC

/*optional step of cmdline whitelisting */
14. Kill (SP)
15. Sleep (t)
16. Endwhile

IoTProtect first filters processes that are not included in the
pathname whitelist, and then filters the remaining processes ac-
cording to the hash value whitelist. It then filters the remain-
der with the cmdline whitelists if there are any processes with no
pathname and exe links. Finally, it removes all remaining pro-
cesses.

5. Evaluation

We developed a prototype of IoTProtect using shell scripts with
Linux commands and AWK scripts, such as grep, find, and head.
We conducted experiments with four actual IoT devices and 4,981
malware binaries captured by our IoT honeypot for evaluation.
We show three different experiments to evaluate the effectiveness
and overhead of IoTProtect.

5.1 Data collection and experimental devices
We chose four IoT devices for conducting experiments. These

devices were known to be vulnerable and compromised by IoT
malware [37], [38], [39]. The brands and specifications of the de-

Table 3 IoT devices used in conducting the experiments.

Table 4 IoT malware used for conducting the experiments.

vices are listed in Table 3. According to their disk information,
previous commercial products cannot be installed on the four de-
vices. The Dahua IPC-HFW3300 does not support MD5 hash
libraries. Therefore, IoTProtect checks only the pathnames and
cmdline of corresponding processes in the IP Camera.

IoTPOT collected 4,981 different IoT malware binaries for
ARM and MIPSEL from January 2016 to March 2017. The mal-
ware labels, such as Bashlite, Tsunami, and Mirai, come from
local scans by Kaspersky, an anti-virus engine that we consider,
from our previous experience of submitting 12,000 samples to the
Virustotal web service application programming interface (API),
to be one of the most reliable anti-virus products for IoT mal-
ware [40]. VirusTotal is a website that aggregates many antivirus
products and online scan engines [41]. The distribution of our
malware samples is shown in Table 4.

5.2 Removal experiment
We conducted experiments involving the malware removal pro-

cess on the four IoT devices as follows:
1. Login to the device as root via telnet.
2. Download malware using the wget or tftp command.
3. Assign the 755 privilege to the malware binary.
4. Execute the downloaded malware.
5. Conduct a process check using IoTProtect
6. Check whether IoTProtect can kill the malware process.
5.2.1 Experimental Results

The results are shown in Table 5. We see that there are many
segmentation faults (7% to 14%) and bus errors (0% to 0.8%)
when we execute the malware binaries on these devices. There
are two ARM malware binaries and one MIPSEL binary that
finished execution before we started process checks of IoTPro-
tect. These three malware binaries are similar and contain the
same functions in their binaries. All they attempted was to in-
stall python on target devices using apt-get and yum. When the
installation failed as a result of the installation utilities not being
available on these devices, the malware simply terminated. The

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 5 Results of the removal experiments.

Table 6 IoTProtect overheads.

complete execution of the malware takes less than one second,
and the process disappeared after termination. The purpose of the
malware is to infect an IoT OS that can install python, such as the
IBM Watson IoT Platform [42]. IoTProtect successfully removed
the processes of all but three of the malware binaries. The suc-
cess rate of removal by IoTProtect against triggered malware was
99.92% if the above three cases are considered as failed protec-
tion, but was 100% if they are considered as successful protection
because the malware could not function properly.

The overheads of IoTProtect on the four devices are shown in
Table 6. The disk overheads include the sizes of whitelists. The
size of the IoTProtect checker program is only 1.6 KB. Our path-
name whitelist includes all of the pathnames from the read-only
filesystem. The manufacturer of a device might use a more effi-
cient whitelist. The central processing unit (CPU) overheads are
the maximum values during execution time. The three devices
other than the IPC-HFW3300 can finish a process check of IoT-
Protect in four seconds. Despite the fact that the IP Camera spent
44 seconds executing the checker program, the original monitor
and display systems of the camera functioned normally without
delays.

5.3 Mitigating outgoing attacks
In reality, IoTProtect would continuously check existing pro-

cesses in some designated scan intervals. Therefore, it is impor-
tant to ask whether IoTProtect is sufficiently fast to kill a mal-
ware process before it conducts outgoing attacks against other
devices. To measure the worst case, we chose a Mirai variant,
one of the fastest spreading IoT worms, which conducts a telnet
scan on port 2323/tcp right after its execution before even con-
necting its command-and-control server. The MD5 hash value of

Fig. 5 Experimental environment for measuring outgoing attack mitigation
by IoTProtect.

Fig. 6 Results ofexperiments onmitigating outgoing attacks.

the sample is “d6e99a59d44b83e8360745145fa5d2b3.”
5.3.1 Design of experiment

As shown in Fig. 5, we conducted this experiment on the ASUS
RT-AC3200 Wi-Fi Router. All traffic is contained in a LAN net-
work. At the beginning of the experiment, we executed malware.
After a fixed scan interval, we executed IoTProtect to conduct a
process check. To simulate different detection timings, we started
the process check of IoTProtect at one, five, ten, 20, 30, and 60
seconds after malware execution, respectively. We then measured
how many packets went out from the devices before the IoTPro-
tect checker killed the malware process. We conducted this trial
100 times for each setting.
5.3.2 Experimental results

The results of the experiment are illustrated in Fig. 6. Those re-
sults confirm that IoTProtect cannot block every scan by Mirai but
does reduce the number of scan packets significantly. Measure-
ment shows that this Mirai variant generates nearly 2,000 scan
packets for one minute after it begins its execution and would
continue to scan at the same rate if it were not killed by IoTPOT.

5.4 Trade-off between security and device performance
We measured the impact of IoTProtect on the performance of

the devices. We chose a low-cost device, ShAirDisk, and ana-
lyzed the trade-off between the security and overhead of IoTPro-
tect.
5.4.1 Experimental design

As illustrated in Fig. 7, we conducted this experiment in a lo-
cation at which there were no other Wi-Fi access points. Then,
we uploaded a 200 MB file five times into Wi-Fi storage to mea-
sure the device performance for uploading files. We conducted

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 7 Experimentalenvironment formeasuringthetrade-off between perfor-
mance and security.

Fig. 8 Results of experimentsmeasuring trade-off.

this experiment under two conditions, one with only IoTProtect
running and the other with IoTProtect and malware running. The
same procedure as in the previous experiment was followed for
malware execution. The MD5 hash of the Mirai variant used for
this experiment is “018cb18e9cb415af453ee020fa33aa28.”
5.4.2 Experimental results

Figure 8 presents the different upload time costs under differ-
ent scan intervals of IoTProtect. In the figure, the values of the
blue bars are the average upload times in a situation with only
IoTProtect. The values of the orange bars are the average upload
times in the situation in which both malware and IoTProtect are
executed. We can see that the differences between the orange and
blue bars in the same scan interval are not significant, measuring
less than 12.4 seconds. This means the malware infection caused
a limited delay of fewer than 12.4 seconds of file upload time.
However, if we shorten the scan interval of IoTProtect process
checks to 1.0 second to increase security, the overhead increases
significantly, measuring a 55% increase in upload time compared
to the case without IoTProtect. On the other hand, we can also
see that scan intervals of more than 30 seconds do not harm per-
formance significantly.

5.5 Evaluation of easy deployment
The deployment of IoTProtect involves two steps, the creation

of whitelists and the installation of the IoTProtect checker. We
create worst-case whitelists as we are not the developers of these
devices. These whitelists can filter out only sysfs, proc, usbfs,
and I/O files. The time costs are shown in Table 7. General users
can quickly create worse-case whitelists in only a few minutes.

Table 7 Cost of creating whitelists.

The installation procedure for the IoTProtect checker is very
light and quick. The checker program is written using Bash
scripts, leading to portability between different Linux distribu-
tions. Moreover, the fact that the size of the checker program
is only 1.5 KB resulted in easy deployment on low-cost IoT de-
vices. Finally, the installation procedures of this program include
only a copy of a file and assignment of the execute privilege. The
checker script was executed independently of most Linux kernel
modules. Users can easily invoke it in the Linux startup process
and have it run in the background or as a daemon.

6. Discussion

From the removal experiment, we see that our method applies
to different CPU architectures and models of IoT devices. Fur-
thermore, IoTProtect successfully removed several thousand dif-
ferent malware processes with nearly 100% success. According
to the mitigation of outgoing attacks, IoTProtect reduced the scan
attack traffic caused by a rapidly spreading Mirai variant, even if
the process check is not very frequent. The results of the perfor-
mance experiment show that IoTProtect can be installed in some
low-cost devices without a significant drop in performance if the
process checking interval is configured appropriately.

We found that IoTProtect was significantly slow when imple-
mented in one of the tested devices, the Dahua IP Camera, as
shown in Table 4. We could improve the performance of IoTPro-
tect by implementing it in the C language and by reducing the size
of the whitelists. According to a comparative study of program-
ming languages in 2015, C is the best language for computing-
intensive tasks [43]. Moreover, the whitelists we created for the
experiments in the worst case contain thousands of pathnames
and MD5 hashing values. Manufacturers can build much better
whitelists for their products.

For mitigating outgoing attacks, we find that IoTProtect cannot
block all outgoing scan packets. It can remove the malware pro-
cess, but the malware has already conducted thousands of scan
packets before it is killed. We consider this shortcoming to be a
limitation of IoTProtect. If we shorten the scan interval of IoT-
Protect’s process checks from 60 seconds to 20 seconds, 66% of
scan packets can be reduced. Moreover, a scan interval of one
second could stop 96.72% of the scan packets that could have
been sent out in one minute. Note that we used a Mirai variant,

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

one of the fastest known IoT worms that begins scanning right
after execution as the worst-case scenario. However, most Mi-
rai malware would connect the command-and-control server first
and then start the scan and DoS attack after receiving commands.
Hence, in most real cases, IoTProtect could have blocked most of
the outgoing attacks within an acceptable scan interval.

Our performance experiment on Wi-Fi storage shows that the
file upload speed of the device is significantly affected by the scan
interval of IoTProtect’s process check. On the tested Wi-Fi stor-
age devices, the best scan interval can be 20 to 30 seconds, which
will introduce a 7.1% to 12.4% increase in file upload time while
protecting from and mitigating most of the attacks by the malware
infection, as discussed above.

IoTProtect is easy to deploy, but the creation of the proper
whitelists can take some effort. Supposing that the developers
use some third-party libraries and an open source OS for their
IoT products, they might know only the processes caused by their
own applications and have limited information for all of the other
benign processes. In such a case, the developers must pick up all
execution files installed in the device, such as the files in /bin
and /usr/bin, as we did in the experiment. When they conduct
a software testing process, they must record all of the created pro-
cesses to avoid false positive detection by IoTProtect.

6.1 Comparison with previous studies
• The method by Paleari et al. must apply QEMU and behav-

ior clustering [16], which are too expensive to implement on
low-cost devices.

• In Ref. [17], Shahzad et al. analyzed 11 features from the
kernel and achieved 93% detection accuracy. However, the
system requests many features, executes a decision tree al-
gorithm, and is difficult to install on low-cost devices. IoT-
Protect, in contrast, was able to remove 99.92% of malware
processes from four thousand malware binaries. We assume
here that our method does not cause false positives as long as
the whitelist is created appropriately by the device develop-
ers. However, as discussed in the previous section, the cre-
ation of whitelists can involve difficulties during the manu-
facturing process. Our future work will include investigating
proper whitelisting.

• Tamiya et al. investigated a simple solution for malware re-
moval by rebooting the device, which can be applied to low-
cost IoT devices [18]. However, they do not offer the de-
tection methodology of the malware infection, and they also
mention that the connected vulnerable devices would again
be infected after removal unless the vulnerability is fixed.
Therefore, their solution would not be able to defend the de-
vice.

• There are platform and resource constraint issues for
McAfee Embedded Control 6.x. These solutions cannot be
installed on low-cost IoT devices. Moreover, McAfee Em-
bedded Control 6.x must rebuild the kernel when installed
on a Linux distribution, introducing significant engineering
cost, especially if deployed on existing commercial prod-
ucts.

• Koike et al. developed a whitelisting-type execution con-

trol module WhiteEgret on Linux [11]. Similarly to McAfee
Embedded Control, WhiteEgret also builds the Linux ker-
nel upon installation, also introducing substantial engineer-
ing cost.

6.2 Limitations
IoTProtect does have some limitations. Many of the limita-

tions come from the design of Linux process information and our
whitelisting idea. First, IoTProtect depends on exe and maps en-
tries in the proc filesystem. Kernel-level malware and toolkits
that disable or alter these functionalities would evade detection
by IoTProtect. Moreover, checks and removal by IoTProtect are
performed on filesystems, with the result that code injection on a
legitimate process in memory cannot be detected.

Second, the defense offered by IoTProtect is not prevention but
mitigation of malware infection. It would help substantially in de-
fending against long-lasting malicious activities such as DDoS,
spamming, bitcoin mining, click fraud, and stepping stones for
other attacks. On the other hand, attacks that can be performed
in a very short time, such as credential and privacy data exfiltra-
tion, might not be mitigated well. Applying a whitelist before
malware execution would require process creation hooking. We
did not choose this approach for two reasons. First, the hook-
ing of process creation would involve modification of the Linux
kernel [44] and hence increase the deployment cost for device de-
velopers. We believe that IoTProtect is easier to implement and
use than the hooking method. Second, hooking every process cre-
ation and checking all created processes before they are executed
would slow down the principal functionality of the devices, es-
pecially at the time of device boot-up when many processes are
created and checked.

When designing and developing new products of IoT devices,
developers may be able to select and use secure OS distribution.
However, changing an OS for existing already-developed prod-
ucts involves a lot of engineering efforts. If the manufacturers
change the OS of an existing product to a secure OS solution,
such as Tomoyo Linux [19] or SELinux [20], they have to modify
a considerably large part of the firmware including rebuilding the
kernel and installing necessary libraries, each of which requires a
careful test to see the product still fulfill the specification of the
product after the modification. They may be able to use an al-
ready prepared system image for some secure OS but since those
images are not built to run on particular products, the developers
still need to install additional libraries and programs to the im-
age required by the products. Such customization also involves
considerable engineering cost including the product tests.

Compared with these secure OS solutions, IoTProtect is user
space solution without the need of kernel rebuilding and requires
a simple script with few dependent programs such as hash func-
tion. As a result, the modification necessary to adopt IoTPro-
tect is much smaller compared to the adoption of the secure
OS. For a large scale of compromised IoT devices, such as Mi-
rai, the observed population initially fluctuated between 200,000
and 300,000 devices with a brief peak of 600,000 devices from
September 2016 to February 2017. The targeted devices con-
sist of more than 84 kinds of devices [45]. Moreover, building

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

a secure OS for each device will consume substantial engineer-
ing efforts and time. To cyberattacks like Mirai, IoTProtect is the
ultimate solution to protect these devices.

There are four major conditions that a developer must follow
in order to deploy IoTProtect as described in Section 3.3. These
can be the constraints for device developers. In addition, if the
conditions are not satisfied by existing devices, this might require
additional effort to modify the firmware, thereby limiting the ad-
vantage of easy deployment. We can at least say that these condi-
tions are satisfied for the four existing devices we tested.

7. Conclusions

We have shown that IoTProtect is a valid solution that can
remove IoT malware processes with reasonable implementation
and resource costs. Moreover, we implemented a shell script pro-
totype and showed that it could be executed successfully on low-
cost IoT devices, such as Wi-Fi routers and storage, with marginal
cost. We tested more than four thousand different IoT malware
binaries, and IoTProtect removed 99.92% of these malicious pro-
cesses successfully.

Acknowledgments A part of this work was conducted un-
der the auspices of the MEXT Program for Promoting the Re-
form of National Universities. A part of this work was funded
by the WarpDrive: Web-based Attack Response with Practical
and Deployable Research Initiative project, supported by the Na-
tional Institute of Information and Communications Technology
(NICT).

References

[1] Loshin, P.: Details emerging on Dyn DNS DDoS attack, Mirai IoT
botnet (2016), available from 〈http://searchsecurity.techtarget.com/
news/450401962/Details-emerging-on-Dyn-DNS-DDoS-attack-
Mirai-IoT-botnet〉 (accessed 2016-11-20).

[2] Pa, Y.M.P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama, T. and
Rossow, C.: IoTPOT: A Novel Honeypot for Revealing Current IoT
Threats, Journal of Information Processing, Vol.24, No.3, pp.522–533
(2016).

[3] Auchard, E.: Deutsche Telekom attack part of global campaign on
routers (2016), available from 〈https://www.reuters.com/article/us-
deutsche-telekom-outages/deutsche-telekom-attack-part-of-global-
campaign-on-routers-idUSKBN13O0X4〉 (accessed 2017-11-26).

[4] Franceschi-Bicchierai, L.: How 1.5 Million Connected Cameras Were
Hijacked to Make an Unprecedented Botnet (2016), available from
〈https://motherboard.vice.com/en us/article/8q8dab/15-million-
connected-cameras-ddos-botnet-brian-krebs〉 (accessed 2017-11-26).

[5] McAfee Embedded Control, available from 〈http://support.
intelsecurity.com/us/products/embedded-control.aspx〉 (accessed
2017-11-20).

[6] Kaspersky Embedded Systems Security 2.0, available from
〈https://support.kaspersky.com/kess2#requirements〉 (accessed 2017-
11-19).

[7] Supported embedded operating systems in OfficeScan 10.6, available
from 〈https://success.trendmicro.com/solution/1060451-supported-
embedded-operating-systems-in-officescan-10-6〉 (accessed 2017-11-
19).

[8] SymantecTM Critical System Protection Version 5.2 RU9 MP6 Plat-
form and Feature Matrix, available from 〈https://symwisedownload.
symantec.com/resources/sites/SYMWISE/content/live/
DOCUMENTATION/8000/DOC8022/en US/SCSP Platform
Feature Matrix.pdf? gda =1511283679
42c5dda9b7a1075c7b46cc29d7137977〉 (accessed 2017-11-20).

[9] User Guide McAfee Embedded Control 6.5.1, available from
〈https://kc.mcafee.com/resources/sites/MCAFEE/content/live/
PRODUCT DOCUMENTATION/25000/PD25615/en US/mec 651
ug en us.pdf〉 (accessed 2017-11-20).

[10] Symantec Critical System Protection 5.2.9 Installation Guide, avail-
able from 〈https://origin-symwisedownload.symantec.com/
resources/sites/SYMWISE/content/live/DOCUMENTATION/5000/

DOC5944/en US/SCSP Installation Guide.pdf〉 (accessed 2017-11-
20).

[11] Koike, M., Ogura, N., Takumi, S., Hanatani, Y. and Haruki, H.: Devel-
opment of WhiteEgretTM: A Whitelisting-type Execution Control on
Linux, Computer Security Symposium 2017, Session 3D3-4 (2017).

[12] Pareek, H., Romana, S. and Eswari, P.R.L.: Application whitelist-
ing: Approaches and challenges, International Journal of Computer
Science, Engineering and Information Technology (IJCSEIT), Vol.2,
No.5 (2012).

[13] Obermeier, S., Schierholz, R. and Hristova, A.: Securing industrial
automation and control systems using application whitelisting, 2014
IEEE Emerging Technology and Factory Automation (ETFA), pp.1–4,
IEEE (2014).

[14] Bhardwaj, R., Daftari, M., John, D., Shinde, N. and Deshpande, V.:
Whitelisting and Blacklisting for Private Execution of Processes in
Linux (2015).

[15] Debsums: check the MD5 sums of installed Debian packages, avail-
able from 〈http://manpages.ubuntu.com/manpages/zesty/en/man1/
debsums.1.html〉 (accessed 2017-06-25).

[16] Paleari, R., Martignoni, L., Passerini, E., Davidson, D., Fredrikson,
M., Giffin, J.T. and Jha, S.: Automatic Generation of Remediation
Procedures for Malware Infections, USENIX Security Symposium,
pp.419–434 (2010).

[17] Shahzad, F., Bhatti, S., Shahzad, M. and Farooq, M.: In-execution
malware detection using task structures of linux processes, 2011 IEEE
International Conference on Communications (ICC), pp.1–6, IEEE
(2011).

[18] Tamiya, K., Nakayama, S., Ezawa, Y., Tie, Y., Wu, C., Yang, D.,
Yoshioka, K. and Matsumoto, T.: Experiment on removal and preven-
tion of IoT malware using real devices, Symposium on Cryptography
and Information Security 2017, Session 3E1-5 (2017).

[19] Harada, T., Horie, T. and Tanaka, K.: Task oriented management ob-
viates your onus on Linux, Linux Conference, Vol.3, p.23 (2004).

[20] Peter Loscocco, N.S.A.: Integrating flexible support for security poli-
cies into the Linux operating system, Proc. FREENIX track: USENIX
Annual Technical Conference (2001).

[21] What is GNU/Linux?, available from 〈http://www.getgnulinux.org/
en/linux/〉 (accessed 2017-06-21).

[22] Yocto Project, available from 〈https://www.yoctoproject.org/〉 (ac-
cessed 2017-11-27).

[23] Yocto Project Linux Kernel Development Manual, available from
〈http://www.yoctoproject.org/docs/2.0.2/kernel-dev/kernel-dev.html〉
(accessed 2017-11-27).

[24] Mitchell, M., Oldham, J. and Samuel, A.: Advanced linux program-
ming, pp.147–156 (2001).

[25] Proc - process information pseudo-filesystem, available from
〈http://man7.org/linux/man-pages/man5/proc.5.html〉 (accessed 2017-
06-21).

[26] Brown, E.: Open Source Operating Systems for IoT (2016), available
from 〈https://www.linux.com/news/open-source-operating-systems-
iot〉 (accessed 2017-07-30).

[27] Nguyen, B.: Linux Filesystem Hierarchy, Binh Nguyen (2003).
[28] fstab: static information about the filesystems, available from

〈http://man7.org/linux/man-pages/man5/fstab.5.html〉 (accessed 2017-
06-21).

[29] Landley, R.: Ramfs, rootfs and initramfs (2005), available from
〈https://www.kernel.org/doc/Documentation/filesystems/ramfs-
rootfs-initramfs.txt〉 (accessed 2017-07-10).

[30] Lougher, P. and Lougher, R.: SquashFS (2008).
[31] G.K.H.: Driver Core: devtmpfs - kernel-maintained tmpfs-based /dev

(2009), available from 〈https://lwn.net/Articles/345480/〉 (accessed
2017-07-10).

[32] Snyder, P.: Tmpfs: A virtual memory filesystem, Proc. Autumn 1990
EUUG Conference, pp.241–248 (1990).

[33] Mochel, P.: The sysfs filesystem, Linux Symposium, p.313 (2005).
[34] Brown, N.: Containers, pseudo TTYs, and backward compatibil-

ity (2016), available from 〈https://lwn.net/Articles/688809/〉 (accessed
2017-07-10).

[35] Woodhouse, D.: JFFS: The journalling flash filesystem, Ottawa Linux
Symposium, Vol.2001 (2001).

[36] Hards, B.: The Linux USB sub-system, Sigma Bravo Pty Ltd., avail-
able from 〈http://www.linux-usb.org/USB-guide/book1.html〉.

[37] Vulnerability Details: CVE-2017-7253. (n.d.), available from
〈http://www.cvedetails.com/cve/CVE-2017-7253/〉 (accessed 2017-
07-30).

[38] Cimpanu, C.: 40 Asus RT Router Models Are Vulnerable to Simple
Hacks (2017), available from 〈https://www.bleepingcomputer.com/
news/security/40-asus-rt-router-models-are-vulnerable-to-simple-
hacks/〉 (accessed 2017-07-30).

[39] Sudo, T.: 無線 LAN 機器，出荷停止 サイバー攻撃に悪用の恐れ
(2016)，available from 〈http://www.asahi.com/articles/

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

ASJDN5GJ5JDNUUPI00C.html〉 (accessed 2017-07-30).
[40] VirusTotal Public API v2.0, available from 〈https://www.virustotal.

com/en/documentation/public-api/〉 (accessed 2017-06-23).
[41] Lardinois, F.: Google Acquires Online Virus, Malware and URL Scan-

ner VirusTotal, TechCrunch (2012), available from
〈https://techcrunch.com/2012/09/07/google-acquires-online-virus-
malware-and-url-scanner-virustotal/〉 (accessed 2017-06-22).

[42] IBM Watson IoT, available from 〈https://github.com/ibm-watson-iot〉
(accessed 2017-06-23).

[43] Nanz, S. and Furia, C.A.: A comparative study of programming
languages in Rosetta Code, 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering (ICSE), Vol.1, pp.778–
788, IEEE (2015).

[44] Morris, J., Smalley, S. and Kroah-Hartman, G.: Linux security mod-
ules: General security support for the linux kernel, USENIX Security
Symposium (2002).

[45] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E.,
Cochran, J. and Kumar, D.: Understanding the mirai botnet, USENIX
Security Symposium (2017).

Chun-Jung Wu received his B.S. in
mathematics from National Taiwan Uni-
versity, Taiwan in 2003 and M.S. in
computer Science from National Taiwan
University of Science and Technology,
Taiwan in 2007. From 2008 to 2016,
he was an engineer at Institute for In-
formation Industry, Taiwan. Currently,

he is a doctoral student at the Graduate School of Environment
and Information Sciences, Yokohama National University. His
research interest is IoT Security.

Ying Tie received her M.E. and Ph.D. in
information sciences from Yokohama Na-
tional University in 2012 and 2018 respec-
tively. Her research interests include net-
work security and malware analysis.

Satoshi Hara received his B.E. and M.E.
in mechanical engineering from Meiji
University in 2002 and 2005. He is cur-
rently a doctor course student at the Grad-
uate School of Environment and Informa-
tion Sciences, Yokohama National Uni-
versity. He also works as an engineer in
the FUJISOFT INCORPORATED, Japan

from 2005. His research interest is embedded device security.

Kazuki Tamiya is currently second year
Mater student of Information Media and
Environmental Science Course of Grad-
uate School of Environmental Sciences,
Yokohama National University. He is go-
ing to finish M.E. in Computer Engineer-
ing in March 2019. His research interest
is IoT Security.

Akira Fujita received his B.A., M.Sc.
and Ph.D. in information science from
Yokohama National University in 2008,
2009 and 2012 respectively. After work-
ing as a researcher at Yokohama National
University and National Institute of Infor-
matics, Dr. Fujita is a project assistant pro-
fessor at Yokohama National University.

His research interests include network security, natural language
processing and cognitive science.

Katsunari Yoshioka received his B.E.,
M.E. and Ph.D. degrees in Computer En-
gineering from Yokohama National Uni-
versity in 2000, 2002, and 2005, respec-
tively. From 2005 to 2007, he was a Re-
searcher at the National Institute of Infor-
mation and Communications Technology,
Japan. Currently, he is an Associate Pro-

fessor at the Graduate School of Environment and Information
Sciences, Yokohama National University. His research interest
covers wide range of information security, including malware
analysis, network monitoring, intrusion detection, etc. He was
awarded 2007 Prizes for Science and Technology by The Com-
mendation for Science and Technology by the Minister of Educa-
tion, Culture, Science and Technology.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Tsutomu Matsumoto is a professor of
Faculty of Environment and Information
Sciences, Yokohama National University
and directing the Research Unit for Infor-
mation and Physical Security at the Insti-
tute of Advanced Sciences. He received
Doctor of Engineering from the Univer-
sity of Tokyo in 1986. Starting from Cryp-

tography in the early 80’s, he has opened up the field of security
measuring for logical and physical security mechanisms. Cur-
rently he is interested in research and education of Embedded Se-
curity Systems such as IoT Devices, Network Appliances, Mobile
Terminals, In-vehicle Networks, Biometrics, Artifact-metrics,
and Instrumentation Security. He is serving as the chair of the
IEICE Technical Committee on Hardware Security, the Japanese
National Body for ISO/TC68 (Financial Services), and the Cryp-
tography Research and Evaluation Committees (CRYPTREC)
and as an associate member of the Science Council of Japan
(SCJ). He was a director of the International Association for
Cryptologic Research (IACR) and the chair of the IEICE Tech-
nical Committee on Information Security. He received the IEICE
Achievement Award, the DoCoMo Mobile Science Award, the
Culture of Information Security Award, the MEXT Prize for Sci-
ence and Technology, and the Fuji Sankei Business Eye Award.

c© 2018 Information Processing Society of Japan

