
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Automatic Construction of Name-Bound Virtual Networks
for IoT and its Management

Kenji Fujikawa1,a) Ved P. Kafle1,b) PedroMartinez-Julia1,c) Abu Hena AlMuktadir1,d)

Hiroaki Harai1,e)

Received: November 10, 2017, Accepted: June 8, 2018

Abstract: In this paper, we propose a mechanism for automatic configuration of name-bound virtual networks
(NBVNs) for Internet of Things (IoT). Generally, IoT devices indicate their correspondent nodes by names. How-
ever, current technologies for the construction of virtual networks (VNs) rely on VLANs, IP routing, and OpenFlow
control, thus they do not provide a name-based solution. Our proposal fills this gap. We first define business players
and their roles for constructing and using the NBVNs. The players are application service provider (ASP), virtual
network operator (VNO), and infrastructure provider (InP). Subsequently, we propose a system to automatically con-
struct NBVN. It automatically allocates and assigns the IPv6 addresses required by the network nodes, including IoT
devices, of each NBVN. Moreover, it auto-configures the mechanisms for data forwarding and name resolution. Thus,
the proposed system constructs area- and/or time-bound VNs for offering network services to event-centric IoT appli-
cations, such as outdoor concerts and sporting events. Furthermore, we apply our proposed system to automatically
construct wide-area management networks. Finally, we demonstrate that the constructed NBVNs are capable of con-
figuring thousands of addresses and name entries within a minute, thus IoT devices can communicate with each other
by using names instead of addresses.

Keywords: NBVN, name-bound, autoconfiguration, area-bound, time-bound, virtual network, IoT, SDN, NFV

1. Introduction

It is estimated that tens of billion devices will be connected
in the Internet of Things (IoT) era [1]. The diversity of devices
found in IoT includes sensors, cameras, vehicles, and robots, as
well as other devices carried by humans such as PCs and smart-
phones.

A key aspect of IoT devices is that they can be used both out-
doors and indoors. For instance, a vehicular network is an out-
door IoT network, in which vehicles equipped with sensors ex-
change information such as traffic, accidents, and public trans-
portation status. This type of network exists permanently and
widely. In contrast, we define a time-bound and area-bound vir-
tual network (VN) for IoT devices, and focus on an automatic
construction method of time-/area-bound VNs. They are sup-
posed to be used at outdoor concerts, sporting events and so on.
IoT devices communicate with each other by names on the VNs.
For these use cases, the current VN configuration methods are
insufficient.

Current computer and network virtualization technologies are
not capable of delivering functions of automatic addressing, rout-
ing and naming. Cloud computing [2] only provides computa-

1 National Institute of Information and Communications Technology,
Koganei, Tokyo 184–8795, Japan

a) hudikaha@nict.go.jp
b) kafle@nict.go.jp
c) pedro@nict.go.jp
d) muktadir@nict.go.jp
e) harai@nict.go.jp

tional resources placed somewhere, but is not able to provide net-
work resources in a specified area. Software Defined Network-
ing (SDN) [3] configures network resources in the specified area.
However, it does not automatically construct VNs that support
end-to-end communications for IoT devices. In such cases, hu-
man network managers have to manually set up the required IP
addresses, IP routing and name resolution systems for the VN.
Provision of time-bound VNs is difficult without automation of
constructing VNs.

Service provider, virtual network operator, virtual network
provider, and physical infrastructure provider are defined in
Ref. [4], as business players that construct and use VNs. How-
ever, it does not provide a clear explanation about the informa-
tion flow among the players and the tasks performed by a network
manager of each player. Presently, the human network managers
of the networks owned by such business players must construct
the VNs manually. Such operation can take a few days to be com-
pleted, so it is impossible for them to provide time-bound VNs.
Thus, the interactions among the business players must be clearly
defined in order to automate the construction of VNs. Further-
more, the current approaches for VN construction only provide
the links as pipes, but they do not provide a method for automat-
ically configuring name resolution and data forwarding mecha-
nisms. Therefore, the network manager of each player has to
configure them manually.

Naming is a mandatory function for IoT devices to commu-
nicate with each other. Several Application Programming Inter-
faces (APIs) for IoT device communication have been defined at

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

organizations such as Open Connectivity Foundation (OCF) [5]
and Open Mobile Alliance (OMA) [6]. On them, the IoT devices
address their correspondent nodes and resources by using their
names, also in the Representational State Transfer (REST) pro-
tocol used by such APIs. Naming is also important for the net-
work managers of the aforementioned players. Thus, the network
manager of each player gives unique names to the network de-
vices that he/she operates. In essence, the network only needs to
provide the necessary communication functions for nodes and re-
sources to be specified by names. From this perspective, there is
a gap between the required VN and the VN based on the current
technologies.

We also focus on management networks for wide areas. Laying
physical lines in a wide area costs much, therefore the manage-
ment channel and the data channel tend to share the same laid
lines. Traditionally, the management channel is separately con-
structed by VLAN on the shared lines. IP addresses are assigned
to the network nodes on it manually, or automatically with DHCP.
In either case, in order to access to the nodes by names, the net-
work manager must manually prepare a name/address translation
table, or manually configure a name resolution system.

In this paper, we propose a method to automatically and in-
stantly deploy a Name-Bound Virtual Network (NBVN) at a
given place for a given time to offer network services to event-
centric IoT applications, such as outdoor concerts and sporting
events. This is proposed in Ref. [7]. We define the Application
Service Provider (ASP), Virtual Network Operator (VNO) and
Infrastructure Provider (InP) as the business players. We then
specify their roles and the tasks for the network manager of them,
and propose interactions among them.

We exploit the specification of such interactions in the method
for the automation of the NBVN construction. We also propose
a simple network layer model to construct multiple NBVNs and
distinguish their data packets. The NBVN natively includes a
name resolution system and an address assignment mechanism
that allow the NBVN nodes to automatically configure their ad-
dresses and setup the data forwarding mechanism.

As an extension of our previous work [7], we design a method
for applying NBVNs to construct management networks over
wide areas. Our proposed system automates most of the con-
struction procedures of the management networks, and requires
only very few tasks to be performed manually by the network
managers.

Finally, we implement a proof-of-concept experimental system
by using Virtual Machines (VMs) running Linux to automati-
cally construct the NBVNs. We validate that the system we im-
plemented constructs area/time-bound NBVNs and enables IoT
devices to communicate with each other by using their names.
It also enables ASP and VNO to operate network nodes and/or
servers in NBVNs by using their names. In addition, a network
manager can manage the nodes on the management networks that
are mostly automatically constructed.

The reminder of this paper is organized as follows. We first
describe limitations for the current approaches for the construc-
tion of VNs in Section 2. We then define ASP, VNO and InP,
propose their roles and interactions between them, and propose a

network layer model of NBVN in Section 3. We describe our de-
sign and simple proof-of-concept implementation used to actually
construct NBVNs in Section 4. We apply our proposed system to
construct management networks in Section 5. We evaluate our
system in Section 6. We conclude this paper in Section 7.

2. Limitations of the Current Virtual Network
Construction Technologies

In this section, we discuss the limitations of the current tech-
nologies from the viewpoint of constructing area/time-bound net-
works.

2.1 Cloud, Fog and Edge Computing
Cloud computing [2] has been commercially developed such

as Amazon Web Services (AWS). In cloud computing, ASP
requests resources as needed, which are located somewhere in
the Internet. However, when it requires an area/time-bound net-
work, a cloud provider provides computing resources, but does
not provide area-bound network resources, such as connectivity
and required amount of bandwidth within a certain area. Fog
computing [8] and edge computing [9] move a part of computing
resources to local area networks and end terminals. Those ap-
proaches help constructing area-bound networks, but do not pro-
vide network resources either.

2.2 SDN and NFV
Software Defined Networking (SDN) [3] and Network Func-

tion Virtualization (NFV) [10] technologies implement Virtual
Networks (VNs) over physical networks. OpenFlow is the best
known protocol that implements SDN. However, the currently
proposed approaches only control flows in the pre-constructed
network, or construct only pipes of the network.

Dedicated flows for network services are created over a pre-
constructed network in Ref. [11]. Similarly, SDN is used as a
traffic engineering tool on a pre-constructed network [12]. They
are not construction technologies of VNs, but flow control tech-
nologies over pre-constructed networks.

GENI [13] and AutoVFlow [14] construct VNs using Open-
Flow. Constructed VNs can be utilized for application service
networks over InPs, isolated networks on a campus network, and
multi-tenant data centers [3]. They actually construct VNs iden-
tified by VLAN IDs, although the proposals do not restrict their
applications to VLAN. Thus, those approaches construct only
pipes for VNs. For end-to-end communication, a network man-
ager must allocate and assign addressees to network devices over
the pipes, configure a data forwarding mechanism, and set up
a name resolution system, e.g., DNS. Nevertheless, tasks of
network managers are not clearly mentioned in the existing ap-
proaches.

So far, the current SDN/NFV approaches only construct VNs
where network managers are responsible for setting addressing,
forwarding and naming. In addition, as mentioned in the previ-
ous section, the interactions between the business players are not
clear. Automation of constructing VNs is difficult without a clear
definition of the interactions. Thus, provision of time-bound VNs
becomes difficult. Our objective is to provide IoT devices with

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

area/time-bound VNs where addressing, forwarding and naming
are automatically configured. The network manager is released
from the tasks of these configurations.

3. Proposal of Name-Bound Virtual Networks

For the purpose of providing area/time-bound networks, we
propose Name-Bound Virtual Networks (NBVNs) and their dy-
namic autoconfiguration method [7]. An NBVN is restricted to a
certain area and lasts for hours or days. Such NBVNs are very
useful to promptly provide IoT applications in area/time-bound
outdoor events such as concerts, sports and seasonal festivals.

In this section, we clarify the roles of ASP, VNO and InP
when constructing NBVNs. Then, we define the interactions be-
tween ASP, VNO and InP. We also define the protocol stacks
of NBVNs and show that the protocol stack is simpler than the
current VLAN-bound VNs. IoT devices communicate with each
other by names on the constructed NBVN. The network manager
of VNO only has to assign unique names to network nodes in or-
der to construct the NBVN. He/she does not have to assign IP
addresses or VLAN IDs to the nodes, configure a data forward-
ing mechanism, or configure a name resolution system, which is
configured in a server provided by InP.

3.1 Name-Bound Virtual Network Construction Model
We have envisioned a virtual network construction model for

future IoT applications [15]. We extend this model to the NBVN
construction model (Fig. 1).

Infrastructure Providers (InPs) provide physical networks.
Edge networks and data centers are connected to a large-scale
core network. The edge networks are composed of equipment
collecting/processing data from various IoT devices such as PCs,
smartphones, vehicles, sensors, and robots. An NBVN is con-
structed over physical networks of InPs with computational re-
sources (CPU, memory, and storage) and network resources (con-
nectivity, link bandwidth and delay guarantee).

Application Service Provider (ASP) provides network services
to IoT devices over the NBVN. However ASP does not know

Fig. 1 NBVN construction model.

how and from which InP it can obtain the resources that satisfy
its request. Thus, ASP sends a request to Virtual Network Oper-
ator (VNO) for the NBVN. The request includes information of
required computational and network resources.

VNO receives requests from ASP. VNO knows rough loca-
tions of computational and network resources, and which InPs
can provide them. VNO prepares requests that indicate physi-
cal network nodes according to the request from ASP, and sends
each request to the correspondent InP. For this, VNO must know
node information of InPs. Finally, the NBVN is constructed us-
ing physical resources of InPs. VNO manages the NBVN, and
delegates the operation of the allocated servers in the NBVN to
ASP.

ASP sometimes prepares an NBVN in response to a request
from Event Organizer (EO). EO organizes events such as outdoor
concerts and sporting events, and wants to make use of NBVNs
for them, but is not professional in network management and op-
eration. Currently, preparing VNs for some events is a hard task
for EOs. Our proposed system enables EO to easily prepare an
NBVN for the event by sending a request to VNO.

3.2 ASP/VNO/InP Interactions
We describe interactions between ASP and VNO, and between

VNO and InPs. However, we do not specify here any method for
interaction between EO and ASP, since we assume that the EO
sends its requests to the ASP through Web interfaces, phone, or
any other human interaction methods.

In our NBVN construction model, there are network man-
agers who operate NBVN servers, NBVN nodes, and physical
servers/nodes in ASP, VNO and InP, respectively. We define ded-
icated management servers VNO server and InP server for VNO
and InP, respectively. Those servers are started in advance before
constructing NBVNs. Figure 2 shows the interactions between
the network managers and the servers, and information and re-
quests exchanged between them.

The network manager of ASP sends a request to the VNO
server, and operates the allocated NBVN servers. The request
includes access point locations, specifications of NBVN servers,
network resources, and desired lease duration. The NBVN
servers have the functions of naming, addressing and name res-
olution, or computational and/or storage servers such as Web
servers. They are started when an NBVN is being constructed.

Fig. 2 Interactions between ASP, VNO and InP.

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

The duration describes when the NBVN service starts and ends.
The network manager of VNO operates a VNO server, and

allocates resources for NBVNs through it. The VNO server is
informed in advance by the InP about the names and locations
of access points and names and specifications of NBVN servers,
and rough information of network resources. Here, “rough infor-
mation” means that the information is a subset of the complete
information about available network resources. The VNO server
receives the request from the network manager of ASP. Then,
it plans to construct the NBVN using resources of multiple InPs,
and requests the InPs by including names of access points, NBVN
server names and specifications, network resources, and service
duration. Subsequently, it sends each of the requests to the corre-
spondent InP.

The network manager of InP maintains the physical network,
which consists of network switches and routers as well as access
points and servers that are to be used as NBVN servers. He/she
also starts an InP server. The InP server informs the VNO server
of the rough network information as mentioned above, each time
the information is updated (e.g., some network resources are con-
sumed by another VNO server). The request from the VNO in-
cludes physical access point names and physical server names,
however does not include switch and router names. Therefore,
the InP server must search switches and routers in order to con-
struct the NBVN assuring complete connectivity among all the
requested access points and servers. It also starts an NBVN node
program on each physical node, in order to make the node to be
one of the component nodes of the NBVN. The NBVN node pro-
gram configures interface addresses and forwarding information
base (FIB) on each physical node for constructing the NBVN. It
also starts a name resolution system on a specified node.

Names configured by the name resolution system are used by
VNO and ASP as well as by IoT devices. IoT devices use the
names for end-to-end communication. VNO (the network man-
ager and the VNO server) uses the names for NBVN node op-
eration. ASP (the network manager) uses the names for NBVN
computational server operation.

3.3 Protocol Stack and Packet Format
Figure 3 shows protocol stacks and packet formats of

conventional VLAN-bound VN, our implemented NBVN and
essentially-simplified NBVN, respectively.

As for VLAN-bound VNs, VNO constructs a VN with settings
of VLAN. The data packets are assigned to the VN by insert-

Fig. 3 Packet formats and protocol stacks.

ing the corresponding VLAN ID into their headers. The network
manager of ASP must assign IP addresses to network nodes and
configure a name resolution system.

Essentially, in order to implement an NBVN for IoT, the pro-
tocol stack and the packet format shown on the right most side in
Fig. 3 are sufficient. The data packet includes a field of domain,
which is used to assign the packet to the corresponding NBVN.

In our implementation, we use the overlay approach. Our pro-
posed system automatically allocates different IP address spaces
to different NBVNs, as shown by the middle in Fig. 3. The data
packet is categorized into the correspondent NBVN by its ad-
dress field. For example, two types of packets that include IPv6
addresses starting 2001:db8:1 and 2001:db8:2 in their address
fields are distinguished belonging to different NBVNs. Thus, the
data packets are distinguished by IPv6 addreses, not by VLAN
IDs. Our system also automatically sets up a name resolution sys-
tem for each NBVN. Therefore, the network managers of ASP
and VNO do not have to assign IP addresses to network nodes,
configure a data forwarding mechanism, or configure a name res-
olution system.

Our system enables the different NBVNs to share the same
datalink layer without requiring to use distinguishable tags such
as VLAN IDs. Therefore, VLAN is not mandatory for the con-
struction of VNs, thus in our implementation, we do not assign
VLAN IDs on the datalink layer. However, our system can also
run over VLANs by treating VLAN links as logical links for con-
necting nodes. Moreover, we will describe that configurations of
addresses and name resolution systems are not mandatory tasks
for the network managers of ASP or VNO.

4. Design and Implementation of NBVN Auto-
matic Construction System

In this section, we design and implement the proposed mecha-
nisms in a proof-of-concept (PoC) network. We describe the de-
veloped program modules and the procedures for the automatic
construction of an area/time-bound NBVN on the PoC network.

4.1 Proof-of-Concept Network
In order to validate the proposed concept of automatic con-

struction of an NBVN, we setup a network as shown in Fig. 4.
Two InPs, InP1 and InP2, have 11 and 10 network nodes, respec-
tively. Routers are core Layer 3 (L3) routers, and switches are
edge L3 switches. All of them have capability of forwarding L3

Fig. 4 PoC network.

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Fig. 5 Developed programs.

packets, i.e., IPv6 packets. Each node has one or more point-to-
point links. For example, in InP1, router RT1 is connected to L3
switch SW1, physical server SV1, access point AP4, InP server
InP1, and VNO server VNO1 by point-to-point links. Router RT1
in InP1 is also connected to router RT1 in InP2.

4.2 Developed Program Modules
We developed server programs vno.rb and inp.rb as VNO

server and InP server, respectively, in Ruby programming lan-
guage (Fig. 5). They communicate with each other by exchanging
JavaScript Object Notation (JSON) [16] format or YAML Ain’t
Markup Language (YAML) [17] format, according to Represen-
tational State Transfer (REST) protocol. JSON is widely-used
and human-readable text to transmit data objects in Web applica-
tions. YAML has compatibility with JSON, and has better human
readability. Vno.rb and inp.rb also load setting files written in
JSON or YAML format. We describe configuration files and ex-
changed data using YAML format for readability, hereafter.

In addition, we developed an NBVN node program vnn.rb.
It runs on each physical node for automatically assigning IPv6
addresses to interfaces and building up FIB. For automatic
IPv6 address allocation and assignment to their interfaces, we
use Hierarchical/Automatic Number Allocation (HANA) proto-
col [18]. For automatic FIB set up, we use a link-state routing
protocol Hierarchical QoS Link Routing Protocol (HQLIP) [19].
Each vnn.rb starts HANA/HQLIP protocol software on each
physical node. The nodes exchange HANA/HQLIP protocol mes-
sages with each other, and assign addresses to their interfaces and
set up FIBs.

4.3 NBVN Construction
We assume that ASP receives a request of NBVN for a

time/area-bound event such as bike racing from EO. The net-
work manager of ASP compiles the EO’s request and generates
data that includes the event information in YAML format. The
data is contained in a request to a VNO server (i.e., vno.rb), which
includes access point locations and NBVN server specifications
to be used and service duration. Then, it sends the request to the
VNO server vno.rb according to REST. Here, we assume that the
communication channel between the network manager of ASP to
vno.rb is prepared in advance. Access points, which are supposed
to provide Wi-Fi access, are indicated by their locations.

Figure 6 shows an example of ASP’s request description along
with ASP/VNO interaction described in Section 3.2. NBVN
servers, which are supposed to provide Web and video stream-

Fig. 6 ASP’s request.

Fig. 7 NBVN for bike race event.

Fig. 8 Vnn.rb command options.

ing, are also indicated by their computational resources. The net-
work manager of ASP grasps the required locations for the ac-
cess points, without information which access points are placed
in those locations. Similarly, the network manager of ASP grasps
the required NBVN server specifications without information
which NBVN servers satisfy the required specifications. Duration
when the event starts and ends is also specified in the request.

Figure 7 shows an example of NBVN for the bike race event.
We design and implement interactions between VNO server
vno.rb and InP servers inp.rbs according to Section 3.2. We re-
fer the reader to Ref. [7] for the detailed information about the
implementation.

Inp.rb on each of InPs starts vnn.rb on each of the selected
nodes with appropriate options, as shown in Fig. 8 (a), after it re-
ceives a request from vno.rb. Inp.rb defines a domain name as
race1, which is written in the request. Each node belonging to

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Fig. 9 Interface names in InP1.

InP1 has a name that ends with .inp1, e.g., sv1.inp1 and rt1.inp1.
The way to name them in InP1 is described in Section 5. Sv1.inp1,
ap1.inp1, ap4.inp1, ap5.inp1 and ap6.inp1 are indicated in the
request coming from vno.rb. In the request, vno.rb defines the
names of the specified nodes as sv101, ap101, ap102, ap103, and
ap104, respectively.

Furthermore, in order to accomplish the complete connectiv-
ity in the NBVN, inp.rb finds additional nodes, rt1.inp1 and
sw1.inp1 in this case, according to the Floyd-Warshall algo-
rithm [20], [21]. Inp.rb assigns the selected nodes with names like
rt1-inp1.race1 and sw1-inp1.race1 by just combining the name
in InP1 and domain name race1, by changing “.” into “-”, e.g.,
rt1.inp1 into rt1-inp1, and starts vnn.rbs on them, as shown in
Fig. 8 (b). This naming convention makes the human network
manager of VNO to easily distinguish the event name and the
node name in the NBVN. Vno.rb preserves the uniqueness of the
names by not assigning names ending with an InP name such as
inp1 or inp2.

Each vnn.rb takes a unique index of the virtual network num-
ber (VNNO) by the option —vnno. VNNO automatically deter-
mines IPv6 address space to be used in the NBVN. For example,
2001:db8:<VNNO>::/48 is determined for the NBVN.

A name resolution server is separately placed in each NBVN.
SV1 becomes a name resolution server as well as an NBVN
computational server, by the option –offer, which is followed by
interface names. The option —domain specifies domain name
of race1. Currently, we employ BIND, which is a major DNS
software suite. SV1 also becomes a HANA server and allo-
cates IPv6 addresses to the other nodes via the specified in-
terfaces. As for the specified interface names, refer to Fig. 9,
hereafter. The other nodes become HANA clients and request
address spaces for their interfaces by option —req, which is
followed by the interface names. SV1 registers DNS entries
of rt1.inp1.race1, sw1.inp1.race1, sv101.race1, ap101.race1,
ap102.race1, ap103.race1 and ap104.race1. The name of each
node in the NBVN is defined by combining the domain name and
either of the name defined in InP1 or the name specified by VNO.
The latter five node names are specified by VNO, and are passed
to vnn.rb with the option –name.

Table 1 shows the addresses assigned to the inter-
faces of each node. The address is constructed as
2001:db8:<VNNO>:<link ID>::<node ID>. Here, the link
ID and the node ID are automatically determined and assigned
by HANA. The link ID is a unique number in each NBVN,
which is dynamically assigned to each point-to-point link. Thus,

Table 1 Names and addresses of bike race NBVN.

eth1 eth2 eth3 eth6
rt1.inp1.race1 X:3:1::1 X:3:2::1 X:3:3::1 X:3:4::1
sw1.inp1.race1 X:3:1::2 X:3:5::2 – –
sv101.race1 X:3:2::3 – – –
ap101.race1 X:3:5::4 – X:3:6::4 –
ap102.race1 X:3:3::5 X:3:7::5 X:3:8::5 –
ap103.race1 X:3:7::6 X:3:8::6 X:3:9::6 –
ap104.race1 X:3:8::7 – X:3:a::7 –

(IPv6 prefix of 2001:db8 is replaced by X for readability.
For instance, X:3:1::1 means 2001:db8:3:1::1.)

two end interfaces of adjacent nodes share the same value of the
link ID. The node ID is also a unique ID in each NBVN, which
is dynamically assigned to each node.

In addition, each access point starts a DHCP server with an al-
located address space. For example, ap101.race1 starts a DHCP
server with an address space of 2001:db8:3:6::/64. This is ex-
ecuted by the option of –dhcps followed by an interface name,
e.g., eth3. Here, each access point has eth3 as a wireless in-
terface (Fig. 9). It provides wireless access with SSID contain-
ing domain name race1, which is delivered by HANA proto-
col. Mobile terminals and IoT devices search SSID containing
race1, and connect to NBVN race1. According to DHCP, access
point ap101.race1 assigns IP addresses and DNS names such as
mb1.ap101.race1 and mb2.ap101.race1 to mobile terminals and
IoT devices that are connected to ap101.race1. In the current im-
plementation, the HANA sever node (sv101.race1) registers 200
of these names for each access point to its DNS entries by default,
when it allocates address spaces to access points for DHCP.

Our proposed system automatically sets up FIB in each node
owned by InP. It can distinguish packets belonging to different
NBVNs, since different NBVNs use different address spaces. We
show a setting example in Section 6.

As described so far, our proposed system automatically con-
structs time/area-bound NBVNs for IoT devices. IoT devices
use automatically-assigned names for communication with each
other. ASP uses the names for managing Web or streaming
servers. VNO uses the names for managing the NBVN nodes.

5. Proposal of Applying NBVNs to Manage-
ment Networks

Before an InP server inp.rb communicates with each of the
nodes in the InP and starts a vnn.rb on it, a management chan-
nel between the InP server and the other nodes must be con-
structed. In closed areas such as data centers, it is easy to prepare
management physical lines that are separated from the data lines.
However in wide areas, which are the primary target fields of our
research, the management channel and the data channel tend to
share the same laid physical lines, since laying them costs much.
Therefore, in this paper, we newly apply NBVNs to construct InP
management networks on the shared lines. The InP server can
communicate with the other nodes by names on the constructed
InP management NBVN, which provides addressing, routing and
name resolution functions. If VLAN is applied to construct the
management network instead, the network manager must manu-
ally configure those functions.

Similarly, we apply an NBVN to construct the VNO/InPs man-
agement network, which is to be used for the communication be-

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

tween VNO and InPs.
These management networks are constructed for the automa-

tion of the other NBVNs. They are not automatically constructed
according to the proposed procedure described in Section 3.2.
The network managers must specify network nodes and inter-
faces, and assign names to the nodes. However, L3 functions
such as addressing, forwarding and name resolution, are still au-
tomatically configured.

5.1 Requirements and Conditions of NBVNs for ASP and
the Management NBVNs

We summarize the requirements and conditions of NBVNs for
ASP and the management NBVNs, and clarify the differences
between the two types of NBVNs, before we describe the con-
struction procedure of the management NBVNs.

The requirements of NBVNs for ASP is to construct an NBVN
that provides addressing, routing and name resolution functions.
The NBVN is used for the ASP to make an access to the access
points and the servers, and is used for IoT devices to communi-
cate with each other by names.

Conditions are that the network manager of ASP knows lo-
cations where access points are to be placed and server specifi-
cations, without information about names of access points and
servers and their connections. InP management networks and
VNO/InPs management network are constructed in advance.

In order to construct the NBVN for ASP, the network man-
agers ASP makes a request to the VNO server vno.rb via generic
communication means such as the Internet. Then, vno.rb makes a
request to each of the InP servers inp.rbs via the VNO/InPs man-
agement NBVN. Subsequently, each inp.rb starts a vnn.rb on the
nodes in the NBVN for ASP via each InP management NBVN
(see Section 4.3 in detail).

As for the requirements of InP management NBVNs, the net-
work manager of InP and inp.rb can access the network nodes
inside his/her InP. As for the requirements of VNO/InPs Man-
agement NBVNs, the vno.rb can access each of inp.rb in InPs.

As for conditions for constructing the management NBVNs,
the network managers of InP and/or VNO must assign names to
the network nodes, and collect names of the interfaces to be used
for the NBVN.

In order to construct the management NBVNs, the network
managers of InP and/or VNO separately execute a vnn.rb on each
network node with the names of the interfaces (see details below
in Section 5.2 and Section 5.3).

5.2 Construction of InP Management NBVNs
A vnn.rb starts on each node in InP1 with specifying interfaces,

VNNO of 1 and domain name inp1 in order to construct the InP
management NBVN, as shown in Fig. 10.

In the actual field, we suppose that a vnn.rb should be exe-
cuted at the time each node is powered on, with specifying inter-
faces that should be shared to data channels. Even in this case,
as shown in Fig. 10, before powering on the nodes, the network
manager only has to assign a node name and the shared domain
name to each node. He/she does not have to assign addresses or
configure a name resolution system. Our proposed system con-

Fig. 10 Vnn.rb command options in InP1.

Fig. 11 VNO/InPs management NBVN.

Fig. 12 Vnn.rb command options for VNO/InPs management NBVN.

siderably reduces the tasks of the network manager.
The network manager does not necessarily have to assign

VNNO. This is because different InPs are allowed to use the
same number of VNNO, since the InP networks are separated
from each other. Thus, the VNNO is fixed to 1 in all the InPs. As
a result, the same IPv6 address space is used in them. For this,
the network interface that is connected to another InP must not be
specified in the vnn.rb command options. In Fig. 10, eth6 is not
specified, which is connected to InP2.

5.3 Construction of VNO/InPs Management NBVN
The VNO/InPs management NBVN (Fig. 11) is constructed for

the communication between VNO server vno.rb and InP servers
inp.rbs. VNO receives information and sends a request from/to
InPs on the NBVN, as depicted in Fig. 2. For the network con-
struction, both of InP1 and InP2 network managers start vnn.rbs
on InP1 and InP2 management NBVNs, respectively (Fig. 12).

These commands are executed on the nodes of the both InPs,
therefore, nodes of vno1.inp1, inp1.inp1 and rt1.inp1 in InP1,
and on nodes of inp2.inp2 and rt1.inp2 in InP2. When the net-
work manager of InP1 logs in inp1.inp1, then he/she can log in
vno1.inp1 and rt1.inp1. He/she starts vnn.rbs on them via the con-
structed InP1 management NBVN in Section 5.2. Similarly, the
network manager of InP2 starts vnn.rbs on inp2.inp2 and rt1.inp2

nodes in InP2. Each of the network managers must select names
that are different from node names used in another InP, e.g., rt1-

inp1 and rt1-inp2. Vnn.rbs on rt1-inp1 and rt1-inp2 are executed
with network interfaces that are connected to each other.

As a result, vno1.vno1, inp1.vno1, rt1-inp1.vno1, inp2.inp2,
and rt1-inp2.vno1 are assigned to the nodes. The name space
ends with vno1, and is completely separated from the name space

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Fig. 13 Names and IPv6 addresses in NBVNs.

of InP management NBVNs, which end with inp1 and inp2, re-
spectively.

The network managers of InPs must know the interfaces in
InPs that connect to each other, and specify those interfaces, as
shown in Fig. 12. Here, eth6 of rt1 in InP1 and eth6 of rt1 in
InP2 are included in the command options.

6. System Evaluation

We used two physical machines to validate the operation of the
proof-of-concept network. Two InPs, InP1 and InP2, are con-
structed on two physical machines. They have 11 and 10 vir-
tual machines (VMs), respectively. Each of the network nodes
shown in Fig. 4 is constructed in a VM. Each physical ma-
chine is equipped with dual Intel Xeon X5670 (2.93 GHz/6 core),
64 GBytes memory, and two GbE network interfaces. All the
VMs are connected to a single L2 switch using one of the GbE in-
terfaces. All the point-to-point links depicted in Fig. 4 are defined
by Generic Routing Encapsulation (GRE) tunnels.

Figure 13 shows the registered names and IPv6 addresses in
InP1 management NBVN, VNO/InPs management NBVN and
race event NBVN. The name resolution servers (DNS servers)
are executed at inp1, vno1, and sv1 in InP1, respectively, on which
each vnn.rb is executed with the option –offer. InP1 and InP2 use
the same address space 2001:db8:1, since the nodes are executed
with the same VNNO of 1. Note that the DNS entry for one node
has only one line in Fig. 13 for simplicity. However, the DNS en-
try in the actual system can have multiple lines, which correspond
to IPv6 addresses assigned to the various interfaces of the node.

Figure 14 shows the interface address and FIB on rt1. The
interface addresses for the race event NBVN, which start with
2001:db8:3 as shown in Table 1, are assigned to GRE interfaces
greth1, greth2, greth3 and greth6. The domain name and VNNO
are race1 and 3, respectively. Similarly, interface addresses that
start with 2001:db8:2 are assigned to greth4, greth5 and greth6

for the VNO/InPs management NBVN, of which domain name
and VNNO are vno1 and 2, respectively. These interfaces are
connected to InP1 server and VNO1 server, respectively. Inter-
face addresses that start with 2001:db8:1 are assigned to GRE in-

Fig. 14 Interface addresses and FIB on rt1.

terfaces from greth1 to greth5 for the InP1 management NBVN,
of which domain name and VNNO are inp and 1, respectively.

As shown in Fig. 14, the routing entries that start with
2001:db8:3 are registered for the race event NBVN. Similarly,
the routing entries that start with 2001:db8:2 are registered for
the VNO/InPs management NBVN. Routing entries that start
with 2001:db8:1 are configured for the InP1 management net-

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Fig. 15 Traceroute in each NBVN.

Table 2 Times to construct NBVNs.

Construction Average time
DNS IP time of of starting
entries addresses NBVN (sec) one node (sec)

15 36
Race event NBVN (+1600) (+1600) 34.15 2.28
VNO/InPs
management NBVN 5 8 13.29 2.66
InP1
management NBVN 11 20 26.19 2.38
InP2
management NBVN 10 18 23.27 2.38

work. Each of the rest parts of the addresses consists of link ID
and node ID. These values can be different from each other even
in the same interface.

Figure 15 shows the results of traceroute6 commands
from ap108.race1 to ap101.race1 in race event NBVN, from
vno1.vno1 to inp2.vno1 in InP1 management NBVN, and from
inp1.inp1 to ap6.inp1 in VNO/InPs management NBVN. All the
packets are forwarded by L3 forwarding.

These configurations prove that our proposed system automat-
ically configures IP addresses and FIB on each NBVN node,
and that data packets that belong to different NBVNs are distin-
guished and forwarded accordingly, as shown in Fig. 3.

We counted the numbers of configured DNS entries and IPv6
addresses on the constructed NBVNs, as shown in Table 2. 15
DNS entries for network nodes, and 1600 DNS entries for mo-
bile terminals and/or IoT devices are automatically configured.
36 IPv6 addresses for network nodes, and 1600 IPv6 addresses
for mobile terminals and/or IoT devices are automatically config-
ured. An IPv6 address is assigned to each link of each network
node, thus, the number of IPv6 addresses is larger than that of
DNS entries.

We also measured the construction time of the NBVN. The
construction time starts from the time when InPs start vnn.rb on
the first network node to the time when they start vnn.rb on the
last network node. In the current system, InPs sequentially start
vnn.rbs on the nodes. For example, it took 34.15 seconds to start
all the 15 nodes for the race event NBVN. Average time of start-
ing one node is 2.28 seconds.

These results show that our proposed system constructs an
NBVN that consists of 15 network nodes with a name resolu-

tion system within one minute. The names of mobile terminals
and IoT devices are pre-set in DNS, thus they can communicate
with each other by names. Furthermore, the names of NBVN
servers and NBVN nodes for operations of ASP and VNO are
automatically configured. These prove that our proposed system
practically constructs NBVNs that are used for area/time-bound
events.

We discuss the scalability of our proposed system. The number
of nodes in the actual infrastructure may reach millions. How-
ever, the number of nodes that are required for each NBVN only
reaches hundreds, since the NBVN is used for an area-bound
event, and the number of attendees may be in the order of tens
of thousands. The total starting time of an NBVN is proportional
to the number of NBVN nodes. Therefore, it is expected to take
tens of minutes to construct the NBVN for the event of tens of
thousands of attendees from our PoC network experiments.

We suppose an event lasts for hours or days, thus construction
of the NBVN within tens of minutes is practical. Our system pro-
cesses the requests in the manner of first come first serve. There-
fore, the system blocks the process of a newly-arrived request
until it finishes the process of another request. Consequently,
the process of the request may be postponed for tens of minutes.
However, this is not a problem for practical use, since the network
manager of ASP has only to send the request tens of minutes or a
few hours before the event.

Previous approaches based on VLAN and OpenFlow such as
GENI [13] and AutoVFlow [14] did not mention L3 addressing,
forwarding and name resolution. Therefore, we cannot compare
our proposed NBVN to those approaches in terms of the total
VN construction times including the configuration and operation
of L3 functions. However, we have proven through experiments
that the proposed NBVN system can construct VNs including L3
functions with labor for management equal to or less than that re-
quired by the previous approaches, which do not include the L3
functions.

In order to construct a VN by the previous approaches, the net-
work manager has to specify access points and servers, and assign
a VLAN ID to them or the L2 edge switches that are directly con-
nected to them *1. In NBVN, the network manager of ASP spec-
ifies access point locations, server specifications, and an event
name. VNNO is automatically assigned by VNO (vnn.rb).

7. Conclusion

In this paper, we have proposed an automatic construction
mechanism of name-bound virtual networks (NBVNs) to be used
in IoT. We have defined ASP, VNO, and InP as the business
players behind the whole operation and exploitation of NBVNs.
We have also clarified the roles of ASP/VNO/InP and the tasks
to be performed by their network managers, also proposing the
required interactions among them. We have developed a poof-of-
concept system that implements the operations of ASP/VNO/InP,
and automatically constructs NBVNs.

*1 In addition, the network manager should assign the VLAN ID to the
trunk L2 switches for management and/or security reasons in general.
However, here we compare our approach to the others by ignoring this
operation.

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

In the NBVNs, the required IPv6 addresses are automatically
allocated to the network nodes and IoT devices, and the data for-
warding and name resolution mechanisms are also automatically
configured. Thus, the system is able to provide both area-bound
and time-bound event-oriented NBVNs to IoT applications such
as outdoor concerts and sporting events. In our experimental de-
ployment, thousands of addresses and name entries are automati-
cally configured on an NBVN within a minute, allowing IoT de-
vices to communicate with each other by their names. ASP/VNO
only need names to operate the servers, switches and routers
present in their NBVNs. Furthermore, our system constructs the
name-bound management networks for wide areas with requiring
very few tasks for the network managers.

For future work, we will define, design and implement methods
for the InP to inform the VNO of the network resources such as
bandwidth, delay and CPU, in addition to access point locations
and the server memory/storage resources. We will also design a
mechanism of VNO’s probing whether the requested NBVN is
to be satisfied with provisioned resources by InPs, before the ac-
tual allocation request. Moreover, we will apply our system to
construct actual area-/time-bound IoT networks.

References

[1] Gubbi, J., Buyya, R., Marusic, S. and Palaniswami, M.: Internet of
Things (IoT): A vision, architectural elements, and future directions,
Future Generation Computer Systems, Vol.29, No.7, pp.1645–1660
(2013).

[2] Mell, P. and Grance, T.: The NIST definition of cloud computing
(2011), available from 〈https://www.nist.gov/programs-projects/
cloud-computing〉.

[3] Bakshi, K.: Considerations for software defined networking (SDN):
approaches and use cases, 2013 IEEE Aerospace Conference, pp.1–9
(2013).

[4] Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R.,
Greenhalgh, A., Wundsam, A., Kind, M., Maennel, O. and Mathy,
L.: Network virtualization architecture: Proposal and initial proto-
type, Proc. 1st ACM Workshop on Virtualized Infrastructure Systems
and Architectures, pp.63–72 (2009).

[5] Open Connectivity Foundataion, available from
〈https://openconnectivity.org〉.

[6] Open Mobile Alliance, available from 〈http://www.
openmobilealliance.org/〉.

[7] Fujikawa, K., Kafle, V.P., Martinez-Julia, P., Al Muktadir, A.H. and
Harai, H.: Automatic Construction of Name-Bound Virtual Net-
works for IoT, IEEE Computer Software and Applications Conference
(COMPSAC 2017), pp.529–537 (2017).

[8] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S.: Fog computing and
its role in the Internet of things, Proc. 1st edition of the MCC Work-
shop on Mobile Cloud Computing, pp.13–16 (2012).

[9] Garcia Lopez, P., Montresor, A., Epema, D., Datta, A., Higashino, T.,
Iamnitchi, A., Barcellos, M., Felber, P. and Riviere, E.: Edge-centric
computing: Vision and challenges, ACM SIGCOMM Computer Com-
munication Review, Vol.45, No.5, pp.37–42 (2015).

[10] Hawilo, H., Shami, A., Mirahmadi, M. and Asal, R.: NFV: State of
the art, challenges, and implementation in next generation mobile net-
works (vEPC), IEEE Network, Vol.28, No.6, pp.18–26 (2014).

[11] Dong, M., Kimata, T. and Zettsu, K.: Service-controlled networking:
Dynamic in-network data fusion for heterogeneous sensor networks,
2014 IEEE 33rd International Symposium on Reliable Distributed
Systems Workshops, pp.94–99 (2014).

[12] Akyildiz, I.F., Lee, A., Wang, P., Luo, M. and Chou, W.: Research
challenges for traffic engineering in software defined networks, IEEE
Network, Vol.30, No.3, pp.52–58 (2016).

[13] Berman, M., Chase, J.S., Landweber, L., Nakao, A., Ott, M.,
Raychaudhuri, D., Ricci, R. and Seskar, I.: GENI: A federated testbed
for innovative network experiments, Computer Networks, Vol.61,
pp.5–23 (2014).

[14] Yamanaka, H., Kawai, E. and Shimojo, S.: A technique for full flow
virtualization of multi-tenant OpenFlow networks, Computer Net-
works, Vol.102, pp.1–19 (2016).

[15] Miyazawa, T., Kafle, V.P. and Harai, H.: Reinforcement Learning
Based Dynamic Resource Migration for Virtual Networks, IFIP/IEEE
International Symposium on Integrated Network Management (2017).

[16] Introducing JSON, available from 〈http://www.json.org/〉.
[17] YAML: YAML Ain’t Markup Language, available from

〈http://yaml.org/〉.
[18] Fujikawa, K., Tazaki, H. and Harai, H.: Inter-AS Locator Allocation

of Hierarchical Automatic Number Allocation in a 10,000-AS Net-
work, 2012 IEEE/IPSJ 12th International Symposium on Applications
and the Internet (SAINT2012), pp.68–73 (2012).

[19] Fujikawa, K., Harai, H., Ohmori, M. and Ohta, M.: Quickly Con-
verging Renumbering in Network with Hierarchical Link-State Rout-
ing Protocol, IEICE Trans. Information and Systems, Vol.99, No.6,
pp.1553–1562 (2016).

[20] Floyd, R.W.: Algorithm 97: shortest path, Comm. ACM, Vol.5, No.6,
p.345 (1962).

[21] Warshall, S.: A theorem on boolean matrices, J. ACM, Vol.9, No.1,
pp.11–12 (1962).

Kenji Fujikawa received his M.E. and
Ph.D. degrees in Informatics, Kyoto Uni-
versity, Japan, in 1995 and 2000, respec-
tively. After completing graduate school,
he became Assistant Professor in the
Graduate School of Informatics, Kyoto
University in 1997, Senior Researcher at
ROOT Inc. in 2006, and joined National

Institute of Information and Communications Technology in
2008. His research topic is hierarchical routing and autoconfigu-
ration of network. He is a member of IEICE, IPSJ and IEEE.

Ved P. Kafle received his B.E. in Elec-
tronics and Electrical Communications
from Punjab Engineering College (now
PEC University of Technology), India, an
M.S. in Computer Science and Engineer-
ing from Seoul National University, South
Korea, and a Ph.D. in Informatics from the
Graduate University for Advanced Stud-

ies, Japan. He is currently a senior researcher at National Institute
of Information and Communications Technology (NICT), Tokyo,
and concurrently holding a visiting associate professor position at
the University of Electro-Communications, Tokyo. He has been
serving as a Co-rapporteur of ITU-T Study Group 13 since 2014.
His research interests include new network architectures, naming
and addressing, machine-to-machine communication, Internet of
things (IoT), and privacy, security management in networks. He
received the ITU Association of Japan Encouragement Award and
Accomplishment Award in 2009 and 2017, respectively, and two
Best Paper Awards (second prize) at the ITU Kaleidoscope Aca-
demic Conferences in 2009 and 2014. He is a senior member of
IEEE.

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Pedro Martinez-Julia received his B.S.
in Computer Science from the Open Uni-
versity of Catalonia, an M.S. in Advanced
Information Technology and Telematics
and a Ph.D. in Computer Science from the
University of Murcia, Spain. He is cur-
rently a full-time researcher at National
Institute of Information and Communica-

tions Technology (NICT), Tokyo. His main expertise is in net-
work architecture, control and management, with particular in-
terest in overlay networks and distributed systems and services.
He has been involved in EU-funded research projects since 2009,
leading several tasks/activities, and participating in IETF/IRTF
for the standardization of new network technologies. He has pub-
lished more than twenty papers in referred conferences and jour-
nals. He is a member of ACM and IEEE.

Abu Hena Al Muktadir received his
B.Sc. (Honors) and M.Sc. degrees from
the University of Rajshahi, Bangladesh
in 2004 and 2005, and a Ph.D. de-
gree from The University of Electro-
Communications, Tokyo, Japan in 2014,
with all degrees majoring in Information
and Communication Engineering. He

is currently working as a full-time Researcher at the National
Institute of Information and Communications Technology
(NICT), Japan. He worked as a full-time Lecturer at Daffodil
International University, Bangladesh from 2007 to 2009. His
research focuses on network resource management using Game
theory and machine learning, Internet of Things (IoT), network
design, routing, and network coding. He has published more than
twenty-five papers in referred conferences and journals. He is a
member of IEEE.

Hiroaki Harai received his M.E. and
Ph.D. degrees in Information and Com-
puter Sciences from Osaka University,
Japan in 1995 and 1998, respectively. He
is currently a Director at National Insti-
tute of Information and Communications
Technology (NICT), Tokyo, Japan, where
he is leading Network Science and Con-

vergence Device Technology Laboratory for the research and de-
velopment of new network architecture and optical networks. He
received the Outstanding Young Researcher Award from IEEE
ComSoc Asia-Pacific Region in 2007. He also received the
Young Researcher Award from the Ministry of Education, Cul-
ture, Sports, Science and Technology (MEXT), Japan in 2009.
He is a member of IEEE.

c© 2018 Information Processing Society of Japan


