
Electronic Preprint for Journal of Information Processing Vol.26

Invited Paper

Model-based Selective Layer-centric Testing

Fevzi Belli1 Nevin Güler Dincer2 Michael Linschulte3 Tugkan Tuglular4,a)

Received: May 10, 2018, Accepted: June 18, 2018

Abstract: Model-based testing of large systems usually requires decomposition of the model into hierarchical sub-
models for generating test sequences, which fulfills the goals of module testing, but not those of system testing.
System testing requires test sequences be generated from a fully resolved model, which necessitates refining the top-
level model, that is, by replacing its elements with submodels they represent. If the depth of model hierarchy is high,
the number of test sequences along with their length increases resulting in high test costs. For solving this conflict,
a novel approach is introduced that generates test sequences based on the top-level model and replaces elements of
these sequences by corresponding, optimized test sequences generated by the submodels. To compensate the short-
coming at test accuracy, the present approach selects components that have lowering impact on the overall system
reliability. The objective is to increase the reliabilities of these critical components by intensive testing and appropriate
correction which, as a consequence, also increases the overall reliability at less test effort without losing accuracy. An
empirical study based on a large web-based commercial system is performed to validate the approach and analyze its
characteristics, and to discuss its strengths and weaknesses.

Keywords: model-based testing, model refinement, event sequence graphs, software reliability, assignment problem,
Chinese postman problem

1. Introduction

Model-based testing (MBT) focuses on relevant aspects of the
system under consideration (SUC) and generates test cases from
the model of the SUC’s behavior. MBT approaches enable al-
gorithmic generation, updating, and reuse of sets of test cases,
forming test suites. Depending on the complexity of SUC, gen-
erating tests from the model can precipitate a state space explo-
sion. Therefore, most of the existing techniques require refine-
ment of the starting model by additional sub-models (represent-
ing components of the SUC), resulting in a hierarchical decom-
position [2].

Assuming that the model is represented as a directed graph
G = (V, E), where V denotes the set of vertices, and E the set
of edges (or arcs), test set generation usually requires generation
of paths along G. Furthermore, assuming the run-time complex-
ity of finding a minimal test set to cover the edges (as vertex se-
quences of the length two) of G is O(|V |3), where |V | denotes the
number of vertices [1], it is quite obvious that the test generation
effort increases with the increasing model size, that is, the num-
ber of hierarchy layers, and the length of vertex sequences to be
covered [2]. Depending on the chosen sequence length n to be
covered, graphs with (|V |n−1 ∗ (n − 1)) vertices have to be solved
in the worst case [1], [2]. For instance, if the model consists of 50
vertices, a graph with up to 25,000,000 vertices has to be solved
to reach a minimal coverage of all sequences of the length five.

1 University of Paderborn, Germany
2 University of Muğla SıtkıKoçman, Turkey
3 Andagon GmbH, Cologne, Germany
4 Izmir Institute of Technology, Turkey
a) tugkantuglular@iyte.edu.tr

A test generation method recently introduced could factor in
the advantage of the hierarchical structure in order to reduce the
effort of test generation [2]. In addition, Belli et al. [3] analyzed
the effect of test sequence length on the fault detection capabil-
ity of model-based testing for a single layer model. It turned out
that there is a diminishing return in terms of the additional faults
detected by longer sequences; yet, there is some value in the ad-
ditional faults detected, and it would be desirable to cover longer
sequences if the cost could be controlled.

A way out of this conflicting situation is a selective construc-
tion of the test suites, that is, not considering all of the compo-
nents included by the fully resolved (FR) model, but only a subset
of it for further testing. All other submodules will be represented
by test sequences constructed by unit testing, using graph theo-
retic optimization techniques [1], [2], [3]. Consequently, such a
strategy would lead to a compromising of the thoroughness of test
coverage. In this context, the following questions are addressed:

Q1. How can components be selected for more intensive test-
ing that provide a better chance of detecting additional “attrac-
tive” faults than others?
To answer Q1, we propose to measure the impact of each compo-
nent on overall system reliability by determining
(i) the usage ratio (UR) of components,
(ii) the reliability of each component (Rk, k = 1, 2, . . . , number

of components),
(iii) combined reliability (Rc) as overall reliability of SUC.
This paper proposes a new technique to calculate Rk.

Q2. What is the impact of the selective layer centric testing
strategy on the system reliability?
To answer Q2, the reliability level achieved by using the new se-
lective layer centric strategy is to be compared with the reliability

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

level provided by the fully resolved model.
In answer to all of these questions, this paper introduces a novel

selective layer-centric testing (SLC) approach. In the proposed
method, at the first step layer-centric (LC) testing is performed
and detected faults are categorized. At the second step, com-
ponents and their respective layers are selected according to the
impact of each component on the reliability of the overall system
for further testing, based on the reliability and usage ratio of each
component. At the last step, layer-centric testing is re-executed
for the critical layers only by increasing the sequence length.

The novelties of our approach are as follows: There is no ap-
proach to our best knowledge that calculates the reliability on the
basis of a hierarchical model used for testing a given SUC and
that uses this kind of information to detect further faults to in-
crease the overall reliability as is common in reliability growth
models. Moreover, to our best knowledge, there is no approach
comparable to the one presented in this paper for making use of
model hierarchy for producing optimized test suites.

Section 2 summarizes related work. Section 3 presents the the-
ory behind and describes LC testing through a running example.
Section 4, the core of the paper, describes the SLC strategy for
selecting a fault-sensitive subset of components and generating
tests for them. Section 5 validates the approach and determines its
characteristic features in an empirical study based on a web-based
software system. Section 6 concludes the paper with a summary
of the results and an outline of the research work planned.

2. Terminology, Related Work

The approach combines techniques from two areas that will be
reviewed in the following.

2.1 Software Testing
Numerous monographs are dedicated to software testing; e.g.,

Mathur [4] systematically reviews and presents existing knowl-
edge whereas Binder [5] summarizes relevant techniques for test-
ing object-oriented systems. The books of Myers and Beizer
are well-known as well [6], [7], [8]. A common problem that
is described in all the books is the derivation of meaningful test
cases. A stringent problem is generation of expected test out-
comes, which represents test oracle problem. Very often the us-
age of models is suggested to fill this gap [9].

A broad variety of formal and informal models exists for
testing software as recommended in de-facto standards such as
UML [1] or TTCN-3 [10]. Depending on user needs, those mod-
els enable a state-based or event-based description of the SUC
at different levels of granularity and preciseness. These methods
and their features will be summarized in the following.

State-based vs. Event-based models State-based, graphic
models [4], [11] have been in use for a long time, e.g., for confor-
mance testing [12], [13] as well as for specification and testing of
system behavior [14] [15], [16]. One of the earliest models based
on finite state machines (FSM) was introduced by Chow [17].
Soon, event-based models were also introduced, e.g., using event-
flow graphs (EFGs) [18], and in a broader sense, event sequence
graphs (ESGs) [19]. Although nodes are interpreted in both mod-
els as operations of an event set [20], EFGs are primarily designed

for GUI modeling. A further difference is that ESGs enable a
complementary, analytic view which is necessary to model and
algorithmically detect potential user errors and undesirable situa-
tions [21], [22].

Test Adequacy A common problem of model-based testing
is that a very large number of test cases can be derived from a
model. This requires a stopping rule for testing, known as test
adequacy criterion, which can also be used to determine the “thor-
oughness” of the testing process [4]. Apart from several model-
specific test selection criteria [23], well-known criteria for graph-
based models are coverage of all-nodes and all-edges [24].

Test Sequence Length Also the sequence “length” to be cov-
ered has to be taken into account [19]. Arcuri [25] investigated the
role played by the length of test sequences, particularly branch
coverage, and has empirically shown that longer test sequences
can improve the results. Contrarily, Belli et al. [3] showed that
the number of faults additionally detected decreases when the
length of test sequences is steadily increased. They found that
most of the faults are detected by covering event sequences of
minimal length; that is, 2. Fraser et al. [50] performed a set of ex-
periments, using a genetic algorithm, on the properties of test se-
quence length and how to counter the effects of length bloat in the
context of branch coverage. Their experiments showed that the
success rate and coverage for the same amount of resources are
significantly higher when applying the bloat control techniques,
which are used in search-based testing for object-oriented soft-
ware [50].

Test Generation The test generation method for fulfilling the
selected adequacy criterion plays an important role in the test pro-
cess. Jourdan et al. [26] analyzed the lower bounds on lengths
of checking sequences for FSMs where it is hard to achieve a
guaranteed minimum for test execution. However, algorithms to
derive a minimal set of test sequences can often be related to com-
mon graph problems, e.g., the Chinese postman problem for cov-
ering each edge [27], [28] or the traveling salesman problem for
covering each vertex [29]. Under certain circumstances, it is even
possible to form the (sub-) problem as a linear program, which
can then be solved by the simplex method if a minimum is de-
sired [30]. An example is the assignment problem which has to
be solved within the Chinese postman problem although solutions
with a better runtime exist [1], [29].

Solutions to the assignment problem [29] attempt to assign n
items (agents) to n other items (tasks), in such a way that the to-
tal cost of the assignment is minimal. It is known from graph
theory [44] that the construction of a minimal set of edges, which
creates a Eulerian graph, leads to the assignment problem that can
be solved in alternative ways. One of the fastest methods for solv-
ing assignment problems is the Hungarian method [29], which
provides a solution in O(n3) time. Apart from the Hungarian
method, other O(n3) solutions are given by Dinic-Kronrod [29]
and Cycle Canceling [28].

Model Refinement An interesting question is the role that
model refinement, more precisely the “depth” of the modeling
or its granularity, plays in MBT. The principle of “divide-and-
conquer” is not new; Parnas [31] was already considering hier-
archical structures for modularization of computer programs in

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 1 Classification of some NHPP Models.

1972. His thesis that “the effectiveness of modularization de-
pends upon the criteria used in dividing the system into modules”
is valid also for test case generation from hierarchical graph-
based models as practiced by MBT. As an example, Memon
et al. [32] use an automatic planning system to generate test cases
from GUI events and their interactions called planning assisted
tester for graphical systems (PATHs). Paiva et al. [33] presented
an approach based on hierarchical FSMs where the hierarchical
structure is given special attention during the test case genera-
tion process. The structure of hierarchical FSMs is exploited to
reduce the number of states in the “flat” finite state machines,
thus providing a way to deal with the state explosion problem.
Andrews et al. [34] propose a system-level testing technique that
combines test generation based on FSMs with constraints. They
use a hierarchical approach to model large web applications and
use constraints to select a reduced set of inputs to decrease the
state space explosion. Reza et al. [35] use hierarchical predicate
transition Petri nets to model the behavior of SUC and to generate
adequate test cases.

All of the above-mentioned approaches deploy hierarchical
structures. However, to our best knowledge, there is no approach
comparable to the one the present paper introduces for making
use of this hierarchy for producing optimized test suites.

2.2 Software Reliability and Its Modeling
Software reliability (SR) models Since the early seventies of

the last century, probabilistic models have been used to determine
the software reliability (SR) based on observations obtained from
software testing. SR is usually used to decide when to stop test-
ing. Some authors use SR models also to analyze the role of dif-
ferent test sequence lengths with respect to its fault detection ef-
fectiveness [3]. In this context, non-homogenous Poisson Process
(NHPP) models are good candidates because of their compatibil-
ity with real world situations and simplicity of computation. They
belong to the class of “reliability growth models” since they as-
sume that faults are incrementally detected by tests and immedi-

ately (and perfectly) corrected, thus continuously improving the
reliability of the SUC.

Musa-Okumoto (M-O) [65], Goel-Okumoto (G-O) [60], and
Delayed S-Shaped (D-S) [36], [62] are well-known NHPP mod-
els that are recommended by standards [37], [38], [39]. The criti-
cal question when applying a NHPP model is that of determining
the appropriate mean value function, which eases the derivation
of software reliability. This paper considers NHPP models that
follow the Musa-Okumoto classification scheme to cover the dif-
ferent types of the models instead of considering all the numerous
existing models [36].

Poisson type models can be classified as Homogenous Poisson
Process (HPP) and Non-Homogenous Poisson Process (NHPP).
HPP models assume that failure rate does not change during the
testing process, in other words, SUC has constant failure inten-
sity. In case, where failure intensity varies with the time param-
eter since faults are only counted once and it is assumed that no
new faults are inserted, NHPP models are favored [2]. Overview
of the some NHPP Models is given in Table 1.

Component-based SR Reliability can be determined twofold:
through (i) system-level reliability estimation for SUC as a whole,
and through (ii) component-based reliability estimation using the
reliability of the individual components of SUC and their inter-
connection mechanisms. The following questions thereby arise:
How to estimate the reliability of individual components, and
how to aggregate and analyze these reliabilities. State-based
frameworks for component-based software reliability prediction
are available in Ref. [40]. A different approach identifies critical
components and investigates the sensitivity of the application re-
liability with respect to these components [41]. Krishnamurthy
et al. [42] assess the reliability of component-based applications
based on test information and test cases.

Tyagi et al. [57] focused on four factors that have the strongest
effect on component-based software system (CBSS) reliabil-
ity: two main factors to estimate component reliability; (i) the
reusability of the component, (ii) the operational profile for the

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

component, and two main factors to estimate interface reliability;
(iii) component dependency, (iv) application complexity. Based
on these four factors, they proposed a new fuzzy-logic-based
model for estimating CBSS reliability.

Singh et al. [58] proposed an approach to predict the software
reliability by modelling the software system through Petri Net,
converting it into Markov chain and solving the linear system
mathematically. Li et al. [59] proposed a reliability evaluation
model for component-based software systems, which utilizes the
complex network theory based on the state-based evaluation ap-
proach. In their model, the most influential node discovery algo-
rithm in complex network theory is used to calculate the impact
factor of each component and then the reliability of the software
system is evaluated based on these impact factors.

Obviously, component-based reliability estimation techniques
are promising candidates to be considered for the selective testing
strategy presented in this paper because the layers of hierarchical
models represent components of the SUC. There is no approach
to our knowledge that (i) calculates the reliability on the basis of
a hierarchical model used for testing a given SUC, and that (ii)
uses this kind of information to detect further faults to increase
the overall reliability as is common in reliability growth models.
The approach presented in this paper introduces a solution to this
problem.

2.3 Selective Testing
Offutt et al. [51] suggested selective mutation testing as a way

to approximate mutation testing, so that the number of mutants to
be executed is reduced. They found out that selective mutation-
adequate test sets are effectively equivalent to non-selective test
sets in their power to kill mutants for small programs. Chen
et al. [52] proposed a system called TestTube that uses static anal-
ysis to perform selective retesting of software. With each new
version of software, TestTube determines the entities changed and
selects tests that covers those changed entities.

Hirayama et al. [53] proposed a selective software testing based
on priorities assigned to functional modules. Their method con-
sists of three steps as follows: (i) assign priorities, which are cal-
culated using product and process properties, to functional mod-
ules, (ii) derive test specification, and (iii) construct a test plan
according to the priorities. They showed that their method is su-
perior to the conventional testing method. Hirayama et al. [54] in-
troduced test item prioritizing metrics for selective software test-
ing. The priorities used in test selection are determined based
on the evaluation of three metrics for functions: the frequency of
use, the complexity of use scenario, and the fault impact to users.
Through experiments they confirmed that their selective system
testing can detect both fatal faults related to key functions as well
as critical faults for the system.

Steinert et al. [55] proposed an approach that automatically de-
rives a subset of unit tests based on actual modifications to the
code base at hand, then continuously executes them transparently
in the background. To determine the subset of unit tests, their
approach relies on dynamic analysis using internal program rep-
resentation available in IDEs. Andrews et al. [56] provided a cost-
benefit tradeoff framework to determine whether selective regres-

sion testing or brute force regression testing is preferable.
Different than the existing selective testing research, our ap-

proach uses component reliability values in selecting tests and
re-executing them not using the same length but longer test se-
quences.

3. Background

This section summarizes layer-centric (LC) test generation
technique introduced in previous work [2] in order to briefly ex-
plain the background for the proposed approach by a running ex-
ample. Formal definitions can be found in Refs. [2], [43].

The approach proposed in this paper prefers ESG notation for
modeling. This preference causes no loss of generality because
ESG, like EFG, is equivalent to FSM as all three can be repre-
sented by regular (type-3) grammars and thus can be interchange-
ably used [20]. The reason of this preference stems from the fact
that events are externally perceptible and thus objectively observ-
able phenomena, contrary to “states” that are internal to the SUC.
Thus, events enable controllability of the test process [49].

3.1 Event Sequence Graphs
Vertices of ESG represent events, that is, environmental or

user stimulus, or system responses punctuating different stages
of system activity. Directed edges connecting two events define
allowed sequences among these events. Formal definitions and
detailed explanations related to ESG can be found in Ref. [43].

A vertex representing a single, self-contained event is called
an atomic event/vertex. Alternatively, a vertex can be refined by
another ESG as a sub-graph (see Fig. 1), the vertices of which
can also be refined, resulting in a hierarchy of models. Events
that can be refined are compound events/vertices consisting of
atomic events and/or even other compound events (for details see
Ref. [43]).

A sequence of n + 1 consecutive events that represents the se-
quence of n edges is called an event sequence (ES) of length n+1,
e.g., an ES of length 2 is an event pair (EP). An ES is complete if
it starts at the initial event of the ESG and ends at the final event;
in this case, it is called a complete ES (CES). Occasionally, CESs
are also called walks (or paths) through the given ESG. Accord-
ingly, a faulty event sequence (FES) of length n consists of n − 2
EPs and ends up with an FEP. An FES is complete if it starts
at the initial vertex of the ESG; in this case, it is called a faulty
complete ES, abbreviated as FCES. An FCES must not neces-
sarily end at the final event. FESs that are not complete, can be
completed by ESs (starters) that begin at the entry and end at the
first node of the considered FES (for details see Ref. [43]).

CESs and FCESs form test cases for the SUC. A CES is sup-
posed to lead to the exit vertex. If this is not feasible, the corre-
sponding CES is marked as failed (positive testing, that is, check-
ing whether or not SUC is doing what it is expected to do). In
contrast, an FCES is not supposed to lead to the final event since
it ends with an FEP, which should not be executable (negative
testing, that is, checking whether or not SUC is not doing what it
is not expected to do). If this is feasible, the corresponding FCES
is marked as failed. Hence, by analyzing ESG models, merely
faults on events and their order can be detected. Other types of

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 1 Refinement of compound vertices.

Fig. 2 A full resolved model integrating the models given in Fig. 1 (a full resolution).

faults, for example the ones likely in database interactions, are
not within the scope of this testing but they might be detected by
chance. However, before test sequences can be generated, com-
pound vertices are to be resolved according to ESG definitions
(for details see Ref. [43]).

Example 1. In Fig. 1, the refinements of vertices c, e, h of
Model 1 are given as Model 2, Model 4, and Model 5, respec-
tively. Since hierarchy of models is allowed in ESG models, there
is a refinement also in Model 3, e2 is refined through Model 4.
The resolved version of models in Fig. 1 is given in Fig. 2. Model
1 is defined as

V1 = {a, b, c, d, e, f, g, h},
E1 = {(a, d), (b, c), (c, d), (c, g), (d, b), (d, e), (e, f), (g, d), (g, h)},
Ξ(Model 1) = {a, x} and Γ(Model 1) = {f, h}.
(Ξ and Γ denote the start and exit vertices, respectively).

In the refinement, there are four models given in Fig. 1. For
instance, the compound event c is resolved by Model 2. The re-
finement of Model 2 is given by

V2 = {c1, c2, c3},
E2 = {(c1, c2), (c1, c3), (c3, c2)},
Ξ(Model 2) = {c1} and Γ(Model 2) = {c2}.
The full resolved model shown in Fig. 2 is given as

Model 6 = (V6,E6) with

V6 = {a, b, c1, c2, c3, d, e1, e21, e22, f, g, h1, h2, h3} and

E6 = {(a, d), (b, c1), (c1, c2), (c1, c3), (c3, c2), (c2, d), (c2, g),

(d, b), (d, e1), (e1, e21),@(e21, e22), (e22, f), (e22, g), (g, d),

(g, h1), (g, h2), (g, h3)},
Ξ(Model 3) = {a, b} and Γ(Model 3) = {f, h1, h2, h3}. �

3.2 Test Case Generation from ESG
CESs and FCESs form the test sequences (test cases). For a

thorough positive testing of ESGs, all EPs of a given ESG are to
be covered by CESs of minimal total length and/or minimal num-
ber. This problem is a derivation of the Chinese postman problem

that attempts to find the shortest path or cycle in a graph by visit-
ing each arc Ref. [1].

As already mentioned above, hierarchical models are supposed

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 3 Degrees of the vertices of the ESG given in Fig. 2.

to be resolved completely before CESs are generated. The run-
time complexity of finding a minimal solution is O(|V|3), where
|V| denotes the number of vertices [1]. The number of FCESs
for negative testing increases with in-creasing number of vertices
since |FCES| = |V|2 − |E|.

Example 2. The technique proposed in Ref. [1], [43] produces
the following CESs, which cover all EPs of the given ESG, as test
sequences for the model given in Fig. 2:

CES1 = [a d e1 e21 e22 g d e1 e21 e22 f]

CES2 = [b c1 c3 c2 g h1]

CES3 = [b c1 c2 d b c1 c2 g h2]

CES4 = [b c1 c2 g h3]

Below, some of the produced FCESs are presented as negative
test cases.

FCES1 = [a a

FCES2 = [a b

The set of negative tests has |FCES| = |V|2 − |E| = 142−17 = 179
elements. Adding the four positive test cases results to a total of
183 test cases for this example. The set of CESs of Example 2 has
been generated by a solution to the Chinese postman problem. �

Figure 3, based on Fig. 2, shows the degrees for each vertex of
Fig. 2 with set A = {],],], b, d} and set B = {[, c1, e22, g, g}. The
vertex] occurs three times in set A since its degree is +3. The
vertex g occurs twice in set B since its degree is −2. Note that an
edge is added from end vertex] to start vertex [in Fig. 3 to fulfill
the requirement of strong connectivity.

The challenge in deriving the minimal set of edges, i.e., for
balancing the graph, is to assign each element of set A to exactly
one element of set B so that there is no unassigned element in
either set and there is no other assignment with a lower number
of edges to be added (according to the assignment). This leads to
an assignment problem.

Considering ESGs, the costs are defined by the number of
edges of the shortest path between vertex i ∈ A and vertex j ∈ B,
and n is the number of elements of set A or B, respectively. An
assignment of vertex i to vertex j indicates that edges along the
shortest path from vertex i to vertex j have to be added. Note
that set A and B should have the same size since the sum of all

Table 2 The Resulting Cost Matrix out of Fig. 3.

degrees in a given graph is zero; i.e.,
∑
v∈V δ(v) = 0 and hence,

n = |A| = |B|.
Example 3. Table 2 shows the resulting cost matrix to be

solved for Fig. 2. The matrix elements grade the minimal num-
ber of edges (as costs) if a node represented by row i is assigned
to (connected with) a node represented by column j. The goal
is to find an assignment of row i to column j so that each row i

is assigned exactly once to one column j, and each column j is
assigned exactly once to one row i. A minimal assignment is in-
dicated by dark grey boxes in Table 2. Furthermore, there should
be no other assignment with a lower sum of costs. According to
Table 2, the following shortest paths must be added to the ESG
given in Fig. 2 to create a minimal Eulerian cycle:] → [,] → g,
b→ c1, d → e22. �

3.3 Layer-centric (LC) Testing and Its Reliability Analysis
The new strategy introduced in Section 4 is built up on top

of an existing strategy [2], which is briefly summarized in this
section. The ESG notions and graph-theoretic results introduced
above help to address the question: “How can the effort of test

generation as well as the excessive number of test cases be re-

duced?”
The basic idea for solving the problem of increasing complex-

ity endemic to resolving the hierarchical structure is to generate
test cases for each ESG individually, which is called layer-centric
testing [2]. This reduces the effort of finding a minimal solution
since O(|Vresolved |3) > O(|V1|3) + · · · + O(|Vk |3), where k is the
number of single ESGs forming the hierarchy that is, k = 5 for
Fig. 1. This strategy will also reduce the number of negative test
cases significantly since FEPs between different ESG layers are
not considered. As a consequence, faults occurring between dif-
ferent layers cannot be detected. But generating test cases for

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 3 Number of CESs and FCESs for Models in Fig. 1.

each ESG on its own also introduces several problems for test
generation, which is discussed below.
Problem 1: Effect of Compound Vertices on Test Generation

Compound vertices, which represent compound events, consist
of atomic ones; however, their influence on test generation is not
clarified.
Example 4. Consider Model 1, Model 2, Model 3, Model 4,
and Model 5 of Fig. 1. The optimization algorithm given in
Ref. [1], [43] generates the following CESs for five models of
Fig. 1.

Model 1:

T1 = [a d b c d e g d e f]

T2 = [b c g h]

Model 2:

T3 = [c1 c2]

T4 = [c1 c3 c2]

Model 3:

T5 = [e1 e2]

Model 4:

T6 = [e21 e22]

Model 5:

T7 = [h1]

T8 = [h2]

T9 = [h3] �

For positive testing, 9 test cases in total are generated (instead
of 4, Example 2). The number of the resulting FCESs (negative
testing) for Models in Fig. 1 are given in Table 3. Compared to
Example 2, the total number of test cases has been reduced from
183 to 84.

Analysis of Example 4 reveals the following problem: Com-
pound vertices, e.g., e in Example 4, have more nodes than the
atomic ones do. This implies, if there are many test sequences
that include compound vertices, test length will very likely in-
crease, and, accordingly, test costs will increase. Therefore, there
is a need to determine the weight of the compound events based
on the number of atomic events they include.
Problem 2: Executing Compound Vertices

The next problem to be considered is: How can test sequences
be executed that contain compound vertices? An example of this
problem can be seen in test case T3 of Example 6, where vertex
b represents a compound vertex.

A straightforward strategy is to replace the compound vertices
by test case(s) generated from the lower-layer ESG. If this lower-
layer ESG also contains compound events, one has to move down
to the next lower-layer ESG, etc., and propagate test cases gener-

ated in these layers to upper layers.
Example 5. Since the weight of a compound vertex is given by

the length of the shortest CES [2], the weight of Model 2 of Fig. 1
is 2 because the shortest CES possible is [c1 c2]. The weight
of Model 3 of Fig. 1 is 3 because the shortest CES possible is
[e1 e21 e22]. Note the recursive nature of weight calculation. �

Example 6. If the weight of the compound event is taken into
account, the test cases T1 and T2 are modified as follows:

T1 = [a d b c d e g d e f]

T1′ = [a d b c d e1 e21 e22 g d e1 e21 e22 f]

T2 = [b c g h]

T2′ = [b c1 c2 g h3]. �

Problem 3: Executing Lower Layer Test Cases
T1′ and T2′ can be executed using Model 1 at the top layer

when considering Example 6. T4, T7, and T8 are to be executed
using Model 2 and Model 5 at the next lower layer, which is not
desirable. In a potential solution the compound vertices c, e, and
h have to occur in the minimal coverage of Model 1 at least as
many times as its atomic refinement has test cases. Model 2 has
two test cases, namely T3 and T4. Therefore, the solution has
to contain at least two occurrences of c. The same procedure
has to be repeated for h with at least three occurrences and for
e with at least one occurrence. These requirements can be ful-
filled through an extension of the assignment matrix of Model 1
by adding columns and rows for the vertices as multiple times
needed. The final test case set is:

T1 = [a d e1 e21 e22 g d e1 e21 e22 f],

T2 = [b c1 c3 c2 g h1],

T3 = [b c1 c2 d b c1 c2 g h2],

T4 = [b c1 c2 g h3].

Algorithm 1 describes the LC testing approach for positive
testing. This algorithm differs from the former one [1] in that
it generates CESs for each ESG on its own instead of resolving
the set of hierarchical ESGs. The runtime complexity depends
mainly on balancing the corresponding ESG, which is O(n3),
according to the Hungarian method. However, since this algo-
rithm generates CESs for each ESG on its own, it has a better
runtime complexity than solving the fully resolved ESG since
O(|Vresolved |3) > O(|V1|3) + · · · + O(|Vk |3), where k is the number
of ESGs forming the hierarchy.
Algorithm 1.
Determination of CESs for a Hierarchical ESG According to LC.
Input: ESG = (V,E) with ε = [, γ =] (denoting the start and
exit vertices)
Output: a set of CESs
FOR EACH compound event of ESG DO

set weight of compound event in ESG;
generate CESs for the corresponding ESG’ of the compound
event;

balance current ESG considering the generated CESs;
determine CESs on the basis of the balanced ESG; //Euler Tour
replace compound events in the resulting CESs by the CESs of

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

the compound events; �
In contrast to generating CESs, calculating FCESs for nega-

tive testing is considerably easier. FCESs of ESGs of the lower
layer are generated first and then returned to the next higher layer,
where the shortest path [44] from start vertex [to the correspond-
ing compound vertex v ∈ V is calculated and concatenated with
the given FCESs of the lower layer model. Algorithm 2 generates
FCESs. The runtime complexity depends mainly on deriving the
shortest path for every vertex. Dijkstra’s algorithm can find the
shortest path in O(|V |2). Since the shortest path has to be found
for every vertex in the graph, the overall runtime complexity is
O(|V | ∗ |V |2) = O(|V |3). Algorithm 2 also contains the method
for deriving FCESs covering FESs of higher length. A detailed
description of deriving CESs covering ESs of higher length can
be found in Ref. [2].
Algorithm 2.
Determination of FCESs for a Hierarchical ESG according to LC.
Input: a weighted ESG = (V,E) with ε = [, γ =] (denoting
the start and exit vertices) and the desired length of FESs to be
covered
Output: a set of FCESs covering faulty event sequences of length
FOR EACH compound event of ESG DO

generate FCESs for the corresponding ESG’ of the compound
event;
FOR EACH FCES DO

prepend shortest path from start vertex [to compound event;
set up all FESs of length;
FOR EACH FES DO

prepend shortest path from start vertex [to first event of FES;
FOR EACH compound event in FES DO

IF compound event is last vertex THEN
replace with one of the start vertices of ESG’ of the com-
pound event;
ELSE
replace with shortest path through ESG’ of the compound
event; �

4. Selective Layer-Centric Testing (SLC)

This section introduces the novel strategy to answer to the
first question raised in Section 1: How can components (or sub-

models, respectively) be selected for more intensive testing that

provide a better chance of detecting additional “attractive” faults

than others?

The conclusion that can be drawn from Section 3 is that the
test exhaustiveness and test execution effort can be controlled by
appropriate selection of
(i) the ES length to be covered, and
(ii) the strategy for handling model refinement.

The higher the chosen sequence length, the more exhaustive
the testing of the underlying SUC, but then the test execution ef-
fort is also higher. ESGs allow the generation of a very large set
of CESs for testing a given SUC by simply increasing the consid-
ered event sequence length step by step, whereby the test effort
increases with every step, usually exponentially. Unfortunately,
the chance to detect additional faults decreases with increasing
sequence length since most of the faults have been already de-

tected by test cases covering sequence length 2 [3]. However,
testing event sequences of higher length makes it possible to de-
tect critical faults that can only be detected in specific contexts.
Thus, there is a need to detect those critical faults with less testing
efforts. Assuming that critical faults are to be detected only by a
subset of the models forming the hierarchy, it should be possi-
ble to increase testing efforts based on this subset of models only.
But first, it is necessary to identify this subset of models that are
expected to have a higher fault detection capability.

The approach introduced in this paper assumes that compo-
nents, which are executed often and are of low reliability degree,
usually reveal critical faults. Based on this assumption, Fig. 4
gives a summary of the resulting steps to be performed for selec-

tive layer-centric (SLC) testing strategy, which will be explained
in detail in the following subsections.

4.1 Step 1: Perform Layer-Centric Testing and Categorize
Observed Faults

The basis for an ESG-based test process forms a set of test
cases that covers at least event sequences of length 2 (that is, EPs
and FEPs for positive and negative testing, respectively). Posi-
tive testing checks the conformity of expected behavior of SUC,
whereas negative testing is performed to check the SUT behavior
in unexpected, undesirable situations [48]. This set of test cases
also forms the basis for analyzing which component is likely to
conceal additional faults.

For further analysis, it is necessary to execute the underlying
test case set covering all EPs and collect the results of their exe-
cution. On the basis of the results, detected faults are to be cate-
gorized along the given components (represented by ESGs). This
is done by identifying each event, which cannot be executed in
a CES, and assigning this fault to the corresponding component.
The same is performed for each FCES that detects a fault. Sim-
ilarly, the event, which cannot be executed, along with the cor-
responding fault is assigned to the appropriate component. The
result of this categorization is a number of faults detected by each
component or ESG.

4.2 Step 2: Select Layers for Further Testing
To identify the component(s) that most endanger(s) the system

reliability, firstly, the reliability and usage ratio of each compo-
nent have to be calculated separately. Furthermore, the impact of
each component on the overall system has to be determined.
Step 2.1: Determining Usage Ratio (UR) for each Component

The Usage Ratio (UR) [45] considers the fact that the com-
ponents are tested with different efforts during testing. Since a
single test case may contain events of different components (test
cases are merged during LC testing), it is no longer sufficient to
use the number of test cases for reliability calculations. This ex-
plains why UR parameter represents the ratio of number of events
of each component over the number of events of the overall SUC.

URk =
Ek

TEOS
(1)

where Ek is number of events of k-th ESG/component and TEOS
is the total number of events of the overall test case set.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 4 Summary of the “SLC strategy”.

Step 2.2: Calculating Reliability (Rk) of Each Component and
Combined Reliability (Rc)

As each of the faults shall be counted only once, assuming they
were corrected upon detection without causing new faults, soft-
ware reliability growth models (SRGM) are used assuming that
the absolute number of faults remaining in the software decreases
and thus SR grows. Calculating the reliability of each compo-
nent (Rk) follows similar steps as does the one for calculating the
overall system reliability (Rc) [36].
Determine Testing Time and Type of Failure Data

There are several ways to measure test time during the testing
process, such as calendar time, number of test runs, and number
of test cases or execution time. Moreover, there are two types
of fault data for SRGMs: time intervals between successive ob-
served faults and the number of faults detected in a specified time
interval. Here, the cumulative number of events generated for
each component is used as time parameter. Fault data type is
the cumulative number of faults detected in each component. To
construct fault data, components are firstly sorted in descending
order in accordance with their URs.
Analyze the Statistical Properties

Statistical properties of fault data are analyzed subject to differ-
ent aspects, for example, whether they follow a specified proba-
bility distribution, or whether they form a specific stochastic pro-
cess. One-Sample Kolmogorov Smirnov Test (K-S) [46] is one of
statistical nonparametric tests used to determine whether a sam-
ple (failure data collected) fits the specified distribution. As pre-
sented in the empirical study, it is observed that the cumulative
number of faults builds up Poisson distribution according to K-S
test (Section 5.3, Table 8). As the exact nature of fault data is not
known a priori (except that it can be described as NHPP), several
NHPP models must be selected to ensure covering each type (see
Table 1).
Select Parameter Estimation Technique

For estimating parameters of SRGMs, Maximum Likelihood
Estimation (MLE) technique [46] is used because MLE fulfills
most of the favored properties, such as asymptotic normality,
robustness and consistency. Besides, MLE simultaneously esti-
mates model parameters and provides to easily de-rive confidence
intervals.

Calculate Goodness of Fit (GoF) Measures
GoF measures describe how well SRGMs fit a set of obser-

vations. Therefore, GoF measures can also be used to compare
different SRGMs according to their correlation to failure data. In
this study, Akaike Information Criteria (AIC) and Bayesian In-
formation Criteria (BIC) are used since these criteria are based
on the maximized value of likelihood. In addition, commonly
used Mean Square Error (MSE) is selected [47].

AIC = −2LLF + 2k (2)

BIC = −2LLF + kln(n) (3)

MSE =
∑

(y − ŷ)2/(n − k) (4)

where k is number of the model parameters, n is number of ob-
servation (number of components), LLF is the log likelihood, y is
the observed value, and ŷ is the predicted value.
Select Best Reliability Model and Calculate Rc

The SRGM with the smallest AIC, BIC, and MSE are selected
as best fitting model. Then, REs are determined according to the
best fitting SRGM model as follows:

Rk = e−μ(tk)+μ(tk−Δt) (5)

where Rk represents the reliability of k-th component of sorted
components, tk is equal to the number of events generated for
k-th component, Δt is a small-time interval defined by the user.
However, it can be selected as the minimum number of events
from among the number of events generated for components. The
combined reliability Rc is then defined as follows.

Rc = 1 −
m∑

k=1

(1 − Rk)URk (6)

where Rk represents reliability of k-th component and m is the
number of components.
Step 2.3: Calculating Impact of Each Component on Overall
System Reliability

The impact of a component (EI) [45] on overall system relia-
bility can then be determined as follows.

EIk = 1 − (1 − Rk)URk

1 − Rc
(7)

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

where EIk represents the impact of k-th component on overall
system reliability. Note that components with a low EI value have
a higher (negative) influence on the overall system reliability than
those with a higher EI value. Thus, the overall system reliability
can be improved by increasing EIs of these components.

Components with a small EI value have a (statistically) higher
fault detection capability since they also have a high degree of
UR and thus, for further testing they can be considered of having
a low reliability degree. Following assumptions are made:
• Test process can be stopped if Rc is satisfactory, e.g., if it has

a value higher than 0.95.
• Test process can continue if Rc is not satisfactory by select-

ing the components that have EI values in lowest 25% of all
EI values. In statistics, this definition corresponds to the first
quartile. Thus, the 1st quartile of EI values determines the
set of components with the worst EI values. The selection is
made as follows:

– EI values of n components are ranked from lowest to high-
est.

– 1st quartile is bordered by the EI value of the component
at position p = (n + 1)/4. If p is not an integer, e.g.,
p = 3.5, the EI value at position p is calculated as follows:
IEp = IEp< + (IEp> − IEp<) ∗ (p − p<) where p< is the (inte-
ger) position before p (that is, p is rounded down to the next
integer leading to p< = 3) and p> is the (integer) position
after p (that is, p is rounded up to the next integer leading
to p> = 4). Quartiles can be computed by using software
packages such as MINITAB (http://www. minitab.com).

• If the 1st quartile approach cannot be considered as adequate
to improve Rc, testing can be continued using other criteria,
e.g., by starting with the component that has the lowest EI
value, and then taking the one with the closest value, etc.
until test budget is run out.

4.3 Step 3: Re-execute Layer-Centric Testing by Increasing
the Sequence Length for the Critical Layers Only

On the basis of the analysis in Step 2, the test effort is to be
increased only for the components which have been identified as
putting the overall system reliability most at risk. The open ques-
tion is: How can test efforts be increased for these components?

LC testing generates test sequences for every individual model
of a given model hierarchy to reduce the test generation and exe-
cution effort compared to the FR approach. But the LC testing ap-
proach also enables another method of controlling the thorough-
ness of the test and test execution effort. Based on LC testing, it is
possible to increase event sequence length to be covered only for
some selected individual models of the hierarchy. Assuming that
a given model hierarchy consists of three models, it is possible
to generate longer test sequences for just a subset (one or two) of
the models whereas the other models are covered by shorter test
sequences. The precondition is that the given SUC is represented
by a hierarchical set of models. This strategy leads to selective
layer-centric testing (SLC).

4.4 Arising Problems
Applying SLC to real-life SUCs introduces some problems.

If tests are generated for the uncritical components as well, this
leads to additional test effort since a test case set covering se-
quence length 2 forms the basis for the identification of critical
components. Therefore, tests of the uncritical components are
expected to have no additional benefit; that is, they are not likely
to detect any additional faults. Hence, it would be worthwhile to
generate tests only for the critical components. This, however,
leads to the following questions that can easily be answered.
1. How can test sequences containing compound vertices be

executed if no tests have been generated for the compound

vertex? Answer: Since the goal is to minimize the test ex-
ecution effort, the compound vertices are to be replaced by
the shortest path through the corresponding ESG. Note that,
if some tests have been generated for the compound vertex,
they are to be considered during sequence generation as de-
scribed for LC testing in Section 4.

2. How can test sequences of lower layers be executed if no

tests are to be generated for upper layers? Answer: Move
them to the upper layer as well; that is, generate test se-
quences for the upper layer so that lower layer tests can be
executed. Further details are given in the following.

Executing Lower Layer Test Cases
The second question above refers to the fact that CESs of lower

layers are to be executed somehow in the context of upper layers,
even if no tests are generated for the upper layer. To keep the
costs as low as possible in such cases, a set of CESs is needed for
the upper layer containing the number of compound vertices for
which as many tests as needed are generated. Furthermore, this
set should not be replaceable by another set of CESs with a lower
number of total events.

Example 9. Consider Fig. 5, where an ESG is given with re-
fined vertices c, e, and h that are symbolized as dashed circles.
Temporarily ignore the dashed lined arc from vertex] to vertex [.
The ESGs of the compound vertices c and e have been identified
as neuralgic and test sequences (CESs) to cover ESs of higher
length have been generated for them. The numbers next to the
vertices indicate how many CESs have been generated for them,
that is, 2 CESs for vertex c and 3 CESs for vertex e. Thus, the
number indicates how often this compound vertex will be needed
in a solution. Here, the goal is to derive one or more CESs, which
contain vertex c at least twice and vertex e at least three times and
the total number of events is minimal. �
Solving the Traveling Salesman Problem For Testing Lower
Layers

Adding an edge from pseudo end vertex] to pseudo start ver-
tex [(as shown in Fig. 5) produces a strongly connected ESG
which helps to derive the required set of CESs. This edge enables
the problem to be transferred to determine a minimal tour, which
starts and ends at pseudo start [and which visits the compound
vertices as much as needed. If every compound vertex needs to be
visited only once, this problem forms a derivation of the traveling

salesman problem (TSP) [29].
The TSP attempts to find the shortest possible tour that visits

each entry (“city”) of a given list. The underlying assumption is
that the pairwise distances are known for the cities, e.g., given as
a matrix C = (cij). Considering ESGs, the distances consist of the

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 5 Example of an ESG with compound vertices c, e, and h.

Fig. 6 The resulting tour through compound vertices c and e (above) deter-
mined by the solution of the TSP on the basis of the distance matrix
(below).

minimal number of edges between two vertices. Solving the TSP
can also be regarded as solving the AP, but where the resulting
assignment needs to describe a cyclic permutation.

Example 10. The right-hand side of Fig. 6 shows the under-
lying distance matrix for solving the TSP. The numbers of the
matrix represent the minimal number of edges to be visited if a
vertex represented by row i is assigned to a vertex represented by
column j. The dark grey boxes indicate the minimal tour; that is,
seven edges have to be visited to follow the minimal tour. Ac-
cording to the table in Fig. 6, the following shortest paths must be
added to the ESG to denote the shortest tour: [→ c, c→ e, e→ [.
The left-hand side of Fig. 6 illustrates the minimal tour. �
Extending the Tour by Solving the Assignment Problem

On the basis of this initial solution, the next goal is to extend
this tour in a minimal way so that the resulting tour contains
the desired number of compound vertices needed. This can be
achieved by adding this tour into a graph with all edges of the
original graph having been deleted (as can be seen in Fig. 6). Af-
ter that, this graph is to be extended by additional edges so that
the resulting Eulerian cycle contains the compound vertices as
many times as needed. As already described in Section 3, deter-
mining the set of additional edges can be achieved by setting up
and solving the assignment problem.

Example 11. As it can be seen in Fig. 6, vertex c is needed
one more time in the solution and vertex e is needed two more
times in the solution. The right-hand side of Fig. 7 shows the cost
matrix of the corresponding assignment problem to be solved. A
minimal assignment is indicated by dark grey boxes. According
to this assignment, the following shortest paths must be added to
the ESG given in Fig. 6: c→ e, e→ c, e→ e. The resulting ESG
can be seen in Fig. 7. On the basis of this graph, the resulting
Eulerian cycle starting in pseudo vertex [, looks as follows:

Fig. 7 The extended ESG (above) along the assignment matrix (below).

[b c d e g d b c d e g d e f] [�

Note that the last vertex [of the resulting Eulerian cycle does
not contribute to the desired result and can be deleted. Further-
more, it might occur that the edge between vertex] and vertex [is
traversed more than once in the resulting tour. Thus, the resulting
tour is to be split up between the vertices] and [in every place to
gain the desired set of CESs.

In contrast to generating CESs, calculating FCESs for negative
testing in SLC is considerably easier. As performed similarly in
LC, FCESs of selected ESGs of lower layer are generated first and
then returned to the next higher layer, where the shortest path [44]
from start vertex [to the corresponding compound vertex v ∈ V

is calculated and concatenated with the given FCESs of the lower
layer model.

5. Empirical Evaluation

For demonstration and validation of the approach, and anal-
ysis of its characteristic features, including a comparison of FR
with LC and SLC, a large commercial web application is used.
We refrained from a comparison of our approach with random
testing because our previous work [3], [43] has already demon-
strated the overall effectiveness of ESG approach upon random
testing. Instead, in this paper we compare the full resolution and
the layer-centric approach with the novel selective layer-centric
approach to determine the strengths and weaknesses of the both
approaches. The goal is to find out what kind of faults can be
detected by our approach and how the detectability changes with
varying the test generation method (FR, LC, SLC).

As practiced in real world projects, the testers had learned and
understood the system and did not have any prior knowledge
about its development to assure the independency between the
tester and SUC.

The experiments carried out focus on investigating the third

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 8 Screenshot of ISELTA.

question raised in Section 1: What is the impact of the test case

selection process for cost reduction on the overall system relia-

bility?

5.1 System Under Consideration, Setup and Tool Support
SUC is a large commercial web portal with 53 K LOC (lines of

code) called ISELTA (“Isik’s System for Enterprise-Level Web-
Centric Tourist Applications”). This portal enables travel and
tourist enterprises, e.g., hotel owners, to create their own indi-
vidual search and service offering masks. These masks can be
embedded in an existing homepage as an interface between user
and system. Customers can then use those masks to select and
book services, e.g., hotel rooms, rental cars, etc. See Fig. 8 for
the entry screenshot of ISELTA.

The sub-system hotel administration with the following struc-
ture has been selected for performing the empirical study.
• hotel administration forms a hierarchy of components rep-

resented by seven ESGs with a total of 73 vertices and 207
edges.

• More than 60,000 tests have been generated and executed.
• •Three sets of tests, varying the length of ES to be covered

(2, 3, 4) have been generated for each of both approaches, FR
and LC.

Thus, the chosen sub-system is non-trivial, large, and indepen-
dent of the others so that it can be viewed as a system on its own.
Thus, SUC is an impartially-chosen system. One of the seven
ESGs is given in Fig. 9.

To support the empirical study, all of the algorithms created
for the LC strategy (see Section 3) as well as the SLC strategy
(see Section 4) have been implemented and integrated in a tool
called Test Suite Designer (TSD) written in Java. TSD automates
following steps:

– Modeling of hierarchical components by ESGs via GUI,
– CES and FCES generation following FR, LC or SLC,
– Test script generation for automated test execution.
Vertex annotations of constructed ESGs refer to source code

executing the underlying event within a separate test execution
environment (see Fig. 10). This enables the automatic generation
of test scripts along the calculated test sequences. The assumption
is that the code snippet can identify the “right” object. Just the
name will of course not be sufficient; Object-IDs and other tech-
niques were used to identify objects reliably. In the end, there was

Fig. 9 ESG for modeling the change of hotel data.

Fig. 10 Entities dialog of an event.

no manual conversion necessary to execute the test which is also
one of the strength of the approach. Furthermore, the test oracle
defined in Section 3 is easily adaptable to test automation tools
like the one used in this study, Selenium (http://seleniumhq.org/).

The comparison of the new approaches, that is, LC and SLC,
has been performed in two consecutive steps: First FR with LC,
then FR and LC with SLC.

5.2 Comparing FR with LC
Based on TSD, CESs and FCESs for positive and negative test-

ing have been generated and executed along LC and FR covering
event sequences of length 2, 3, and 4. The results of the tests
are summarized in Table 4. It can be seen that the number of
CESs in the LC approach is lower than the number of CESs of
the conventional FR approach.

To enable a more detailed comparison of the test effort reduc-
tion, the number of events to be executed according to each ap-
proach is shown in Table 5. In total, LC strategy reduced the
number of events by 78%. Surprising is the fact that this effort
(20% of the original test effort) could detect already 80% of the
faults! 31 faults were detected using the LC approach and 39
faults using the FR approach. Thus, LC detected 20% less faults.
However, the LC approach reduced the test effort by about 80%.
Test execution effort reflected this saving which was reduced from

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 4 Positive and negative tests subject to ES length.

Table 5 Number of events to be executed.

4 days to round about one day. The data (in Table 5) show that
much of the 74/78% saving is accounted for by reduction in the
FCES events. The reduction in CES events is much less: it ranges
from 3% to 10%. However, we observed that this saving corre-
lates to the detected faults. It is worth noting that these faults
are real faults of the system with respect to the model. They are
neither hand-seeded nor resulting from mutation operators.

A reliability analysis (not shown here; however, supplementary
material can be provided) compared the reliability of the LC ap-
proach (RLC = 0.99940) with the FR approach (RFR = 0.99870)
and revealed that the LC approach leads to an even slightly better
reliability level than the FR approach (RLC > RFR) [2].

5.3 Comparing FR and LC with SLC - Identifying the Crit-
ical Sub-Layers for Further Testing

The result of the comparison of LC and FR confirms the result
achieved in previous experiments with FR testing (see Ref. [3]).
Testing with higher event sequence length also leads here to a
great deal of additional test effort while detecting fewer faults.

The question that arises now is: Would it have been possible
to achieve a similar reliability level as in LC and FR with less
testing effort? To answer this question, the three steps described
in Section 4 are carried out.
Step 1: Perform Layer-Centric Testing and Categorize Ob-
served Failures.

Table 6 shows the results of LC testing for each component.
The resulting test case set has been analyzed and the events oc-
curring in the resulting test case set have been counted for each of
the components. Furthermore, the failures have been categorized
along the components. It is assumed now that only the CESs and
FCESs covering sequence length 2 based on LC testing have been
generated and executed.
Step 2: Select Layers for Further Testing

As mentioned in Section 4.2, the first step to identify a subset
of components which have a higher fault detection capability is
to calculate usage ratio of each component (UR). Then, the reli-
ability of each component and impact of components on overall

Fig. 11 Failure data used to calculate the reliability of each ESG.

system reliability are determined.
Step 2.1: Calculating the Usage Ratio of Components

Equation 1 is used to calculate the usage ratio of the compo-
nents. Table 7 shows the usage ratio of each component. Ac-
cording to Table 7, the component with the highest usage is rep-
resented by ESG 4. The component represented by ESG 1 has the
lowest usage.
Step 2.2: The New Approach to Calculation of Component
Reliabilities

For calculating the reliability of each component, the number
of failures observed during the test process and the correspond-
ing number of events (length 2) are sorted in descending order
subject to their URs (Fig. 11).

To decide whether or not Poisson type models can be used in
this study, a K-S test is performed with following hypotheses:

H0: Cumulative number of failures follows Poisson distribu-
tion.
H1: Cumulative number of failures does not follow Poisson
distribution.
The analysis of the results of the K-S test (Table 8) indicates

that the cumulative number of failures follows Poisson distribu-
tion (mean parameter = 19.4286) since p-value (0.239) is greater
than 0.05.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 6 The number of failures categorized according to the number of events.

Table 6 (continued) The number of failures categorized according to the number of events.

Table 7 Usage ratio of ESGs.

Table 8 One-sample Kolmogorov Smirnov test.

The next step is to apply the NHPP models given in Table 1 to
the fault data given in Fig. 11 and to compute GoF measures for
each SRGM to determine the best fitting model. Figure 12 shows
the results of the GoF measures.

In our previous study, G-O model provided the best perfor-
mance. However, it can be seen from Fig. 12 that D-S model
provides the best performance in all GoF measures since it has
the smallest AIC, BIC, MSE values. Therefore, D-S model has
been used to calculate the reliability of each component in this
study. Table 9 shows reliability results of each component and
combined reliability (Rc).

As can be seen in Table 9, Rc (0.9354) is smaller than RLC

(0.99940) and RFR (0.99870) given in Section 5.2. The goal now

is to enhance Rc. This will be achieved by performing SLC test-
ing with higher length for components that have a small EI value
compared to the overall system reliability.
Step 2.3: Calculating Impact of Component on Overall Sys-
tem Reliability

Table 10 shows the sorted EI values of components on the
overall system reliability in line with Eq. (7).
Step 3: Re-execute Layer-Centric Testing by Increasing the
Sequence Length for the Critical ESGs Only

SLC testing with sequences of higher length is performed for
ESG 3 and ESG 7 (see Table 6) since EI values of these compo-
nents are equal or less than the 1st quartile of EI values which is
calculated as IEp = 0.75 with p = (n + 1)/4 = (7 + 1)/4 = 2.

If re-executing LC testing for ESGs in the 1st quartile is not
adequate concerning Rc, testing can continue with ESG 4, ESG
6 etc. (see Table 6) respectively. However, there is no need
re-executing LC testing for the components that have EI values
which are equal or closely equal to 0.9.

In order to demonstrate that the 1st quartile is adequate con-
cerning the reliability requirements for this empirical study, all

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 12 GoF measures.

Table 9 Reliability results of each ESG and Rc.

Table 10 Impact of each ESG on overall system reliability.

Table 11 The new combined reliabilities calculated by removing ESGs step by step and changes in Model
Parameters.

ESGs are considered for calculating Rc. Then, data related to
ESGs is removed step by step from Rc calculation. Rc is re-
calculated at every turn and compared with LC testing. After
removing them, the changes become apparent. Finally, the per-
centages of changes in the parameters are compared to LC testing,
which are calculated as described in Eq. (8).

CP =
|pk − pLC |
|pLC | ∗ 100 (8)

where pk shows the values of model parameters obtained after

removing k-th component and pLC shows the parameters of LC
testing.

Table 11 shows the new combined reliabilities and changes
in model parameters CP, indicating that removing ESG 7 has
caused sudden decrease in Rc. When looking at Table 11 from
the bottom-up, it can be seen that Rc has increased from 0.9353
to 0.985 as a result of SLC testing with length 3 for ESG 3 and
ESG 7. In addition, maximum changes in “a” (representing the
expected number of faults to be detected) and “b” (representing
the fault detection rate) occur when removing ESG 7 and ESG 3.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 12 Effort comparison of LC and SLC (length 3 testing).

5.4 Results of the Case Study
When performing SLC testing with length 3 for only ESG 3

and ESG 7, SLC reached a reliability level close to the ones
achieved by LC and FR with one difference: the test effort could
be reduced even further by approximately 30% with length 3 test-
ing for SLC when directly compared to length 3 testing for LC
(see Table 12). Compared to FR testing, the test effort has even
been reduced by 84%.

5.5 Threats to Validity
Layer-centric (LC) testing has been introduced to reduce the

costs of test case generation and test execution for large systems
that are modeled in several hierarchical layers. The novel, selec-
tive LC strategy, introduced in this paper, brings further valuable
control and cost reduction capabilities for the test process. The re-
sults of the empirical study have been far above the expectations.
However, there are also some limitations and threats to validity
which should be mentioned.
Test Approach

The focus of the approach is on testing based on ESGs for
detecting faults in sequences of events. However, the real SUC
is usually more complex than its model; some aspects might be
neglected. Therefore, in reality events may have complex side-
effects, and the test data thus generated based on the model might
not consider these side effects. Moreover, test data influence test
sequences, and thus events may have further side-effects, and the
test data thus generated might not be the most appropriate for
testing the system. To reduce this inaccuracy, we extended ESG
by decision tables [48]. Nevertheless, the influence of test data is
still needed to be eliminated to compare the true fault detection
between the FR, LC and SLC approach. Thus, the approach cre-
ates test data assuming that they have no influence on the detected
faults. This can be seen as oversimplifying and thus restrictive;
however, the number and severity of the faults detected encour-
age the robustness of the approach (see Refs. [3], [43] for further
examples of the fault detection effectiveness of ESG approach).
Moreover, ESG concentrates on detection of the faults on events
and on their order. Other types of faults might be detected by
chance.

Mainly one large component of a large, commercial system
is experimentally tested. However, brief experiments with other
components encourage anticipation of similar effects of the test
suite reduction. The chosen sub-system considered here is inde-
pendent of the others so that it can be viewed as a system on its
own. Thus, SUC is an impartially-chosen system. However, these
results heavily depend on the given SUC and their transferability
to other systems requires further empirical studies.

Reliability Determination Approach
Most of reliability growth models, which are used also in this

paper, assume that fault correction introduces no new faults (per-
fect debugging). This assumption is often criticized for not be-
ing realistic. One can, however, very easily find out whether
the model chosen is appropriate or not, because the model will
be applied not only once, but subsequently many times to SUC,
as common in statistics. The predicted reliability values will be
compared with the measured, real ones, again and again. In case
the model selected is not appropriate, the correlation factor will
be unacceptable low. Moreover, if the fault correction is not per-
fect, the next test will reveal this flaw, and the reliability will not
grow, which in turn, will indicate that the model selected is not
the proper one. In our experiments, a good correlation could be
achieved, and reliability growth could be observed.

Reliability analysis is useful in determining when to stop test-
ing. The reliability estimations presented in Section 5 clearly
demonstrate the applicability of those models to our empirical
study. However, since reliability estimations heavily depend on
the given fault data, there is transferability concern for applica-
bility of reliability growth models used in our empirical study.

6. Conclusion and Future Work

Model-based testing is an attractive approach for testing since,
depending on the underlying model features and the test criterion
considered, test cases can be derived systematically, even auto-
matically [2]. This improvement is demonstrated by an empirical
study presented in Section 5.

For the SUC used in the empirical study, LC testing reduced the
test effort by approximately 80% with respect to full-resolution
(FR) testing. It turned out that the testing effort could be further
reduced by approximately 30% using SLC testing compared to
LC testing. When compared to the FR testing, SLC testing re-
duced the test suites by approximately 85% at a fault detection
rate of 80%. This fact encourages performing SLC testing over
LC testing.

As in our previous work [2], where we compared the fault de-
tection ability of LC testing over FR testing using a reliability
theoretical analysis, we repeated the same method for the fault
detection ability of the test suites generated by SLC testing to
compare with the fault detection ability of the test suites gener-
ated by the FR testing by means of a reliability theoretical anal-
ysis. This analysis shows that SLC testing achieves a reliability
level close to the one achieved by FR testing.

To sum up, the empirical evaluation, conducted using a com-
mercial web portal, shows that SLC testing can reduce the test
effort over the LC approach, which, in turn, can significantly re-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

duce the effort over the baseline FR testing approach. More im-
portantly, both the reductions have only a small negative impact
on fault detection capability.

Future work remains for checking and transferring the results
achieved in the empirical study to other systems or models, for
example, for testing web service compositions, since the results
heavily depend on the given SUC, its development process, and
on many more aspects. Moreover, soft computing techniques can
be used to consider almost all types of fault data, which in turn,
can help to overcome the burden of data dependency problem for
reliability determination.

References

[1] Belli, F. and Budnik, C.J.: Test minimization for human-computer in-
teraction, Journal of Applied Intelligence, Vol.26, No.2, pp.161–174,
Springer (2007).

[2] Belli, F., Güler, N. and Linschulte, M.: Does Depth Really Matter? On
the Role of Model Refinement for Testing and Reliability, IEEE 35th
Annual Computer Software and Applications Conference, COMPSAC
2011, pp.630–639 (2011).

[3] Belli, F., Güler, N. and Linschulte, M.: Are longer test sequences al-
ways better? A Reliability Theoretical Analysis, 4th IEEE Interna-
tional Conference on Secure Software Integration and Reliability Im-
provement, SSIRI 2010, pp.78–85 (2010).

[4] Mathur, A.P.: Foundations of software testing, Addison-Wesley Long-
man (2008).

[5] Binder, R.V.: Testing object-oriented systems: models, patterns, and
tools, Addison-Wesley Longman Publishing Co., Inc. (2008).

[6] Myers, G.J.: Software Reliability: Principles and Practices, John Wi-
ley & Sons, Inc. (1976).

[7] Myers, G.J.: The art of software testing, John Wiley & Sons, Inc.
(1979).

[8] Beizer, B.: Software testing techniques, 2nd ed., Van Nostrand Rein-
hold Co. (1990).

[9] Utting, M. and Legeard, B.: Practical model-based testing: A tools
approach, Morgan Kaufmann Publishers Inc. (2006).

[10] Grabowski, J., Hogrefe, D., Réthy, G., Schieferdecker, I., Wiles, A.
and Willcock, C.: An introduction to the testing and test control no-
tation (TTCN-3), Computer Networks: The International Journal of
Computer and Telecommunications Networking - ITU-T system design
languages (SDL), Vol.42, No.3, pp.375–403 (June 2003).

[11] Ammann, P. and Offutt, J.: Introduction to Software Testing, Cam-
bridge University Press (2008).

[12] Bochmann, G.V. and Petrenko, A.: Protocol testing: Review of meth-
ods and relevance for software testing, Proc. 1994 International Sym-
posium on Software Testing and Analysis (ISSTA), pp.109–124, ACM
(1994).

[13] Sabnani, K. and Dahbura, A.: A protocol test generation procedure,
Computer Networks and ISDN Systems, Vol.15, No.4, pp.285–297
(1988).

[14] Parnas, D.L.: On the use of transition diagrams in the design of a
user interface for an interactive computer system, Proc. 24th National
Conference, pp.379–385, ACM (1969).

[15] Shehady, R.K. and Siewiorek, D.P.: A method to automate user in-
terface testing using variable finite state machines, Proc. 27th Inter-
national Symposium on Fault-Tolerant Computing (FTCS), pp.80–88,
IEEE Computer Society (1997).

[16] White, L. and Almezen, H.: Generating test cases for GUI responsi-
bilities using complete interaction sequence, Proc. 11th International
Symposium on Software Reliability Engineering (ISSRE), pp.110–121
(2000).

[17] Chow, T.S.: Testing software design modeled by finite-state ma-
chines, IEEE Trans. Software Engineering, Vol.SE-4, No.3, pp.178–
187 (1978).

[18] Memon, A.M., Soffa, M.L. and Pollack, M.E.: Coverage Criteria for
GUI Testing, 8th European Software Engineering Conference Held
Jointly with 9th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering, ESEC/FSE-9, pp.256–267, ACM
(2001).

[19] Belli, F.: Finite-State Testing and Analysis of Graphical User Inter-
faces, 12th International Symposium on Software Reliability Engi-
neering, ISSRE 2001, pp.34–43 (2001).

[20] Belli, F., Beyazit, M. and Memon, A.: Testing is an Event-Centric
Activity, The 6th International Conference on Software Security and
Reliability (SERE) (2012).

[21] Gaudel, M.-C.: Testing can be formal, too, Proc. 6th International
Joint Conference CAAP/FASE on Theory and Practice of Software De-
velopment (TAPSOFT), pp.82–96, Springer-Verlag (1995).

[22] Koufareva, N.I., Petrenko, A. and Yevtushenko, N.I.: Test generation
driven by user-defined fault models, Proc. 12th International Work-
shop on Testing Communicating Systems: Method and Applications
(IWTCS), pp.215–236 (1999).

[23] Fujiwara, S.V., Bochmann, G., Khendek, F., Amalou, M. and
Ghedamsi, A.: Test selection based on finite state models, IEEE Trans.
Software Engineering, Vol.17, No.6, pp.591–603 (1991).

[24] Zhu, H., Hall, P.A.V. and May, J.H.R.: Software unit test coverage
and adequacy, ACM Computing Surveys, Vol.29, No.4, pp.366–427
(1997).

[25] Arcuri, A.: A Theoretical and Empirical Analysis of the Role of Test
Sequence Length in Software Testing for Structural Coverage, IEEE
Trans. Software Engineering, Vol.38, pp.497–519 (2012).

[26] Jourdan, G.V., Ural, H., Yenigün, H. and Zhang, J.: Lower bounds on
lengths of checking sequences, Formal Aspects of Computing, Vol.22,
No.6, pp.667–679 (2010).

[27] Aho, A.H., Dahbura, A.T., Lee, D. and Uyar, M.: An optimization
technique for protocol conformance test generation based on uio se-
quences and rural chinese postman tours, IEEE Trans. Communica-
tions, Vol.39, No.11, pp.1604–1615 (1991).

[28] Thimbleby, H.: The directed Chinese Postman Problem, Journal of
Software - Practice and Experience, Vol.33, No.11, pp.1081–1096
(2003).

[29] Burkard, R., Dell’Amico, M. and Martello, M.: Assignment Problems,
Society for Industrial and Applied Mathematics, Philadelphia (2009).

[30] Suhl, L. and Mellouli, L.: Optimierungssysteme: Modelle, Verfahren,
Software, Anwendungen, Springer Berlin Heidelberg (2005).

[31] Parnas, D.L.: On the Criteria To Be Used in Decomposing Systems
into Modules, Comm. ACM, Vol.15, No.12, pp.1053–1058 (1972).

[32] Memon, A.M., Pollack, M.E. and Soffa, M.L.: Hierarchical GUI Test
Case Generation Using Automated Planning, IEEE Trans. Software
Engineering, Vol.27, No.2, pp.144–155 (2001).

[33] Paiva, A.C.R., Tillmann, N., Faria, J.C.P. and Vidal, R.F.A.M.: Model-
ing and Testing Hierarchical GUIs, Proc. 12th International Workshop
on Abstract State Machines, pp.8–11 (2005).

[34] Andrews, A.A., Offutt, J. and Alexander, R.T.: Testing Web applica-
tions by modeling with FSMs, Software and Systems Modeling, Vol.4,
No.3, pp.326–345 (2005).

[35] Reza, H., Endapally, S. and Grant, E.: A Model-Based Approach for
Testing GUI Using Hierarchical Predicate Transition Nets, Interna-
tional Conference on Information Technology (ITNG’07), pp.366–370
(2007).

[36] Lyu, M.R.: Handbook of Software Reliability Engineering, McGraw-
Hill (1996).

[37] IEEE STD, Recommended Practice on Software Reliability, 1633-
2008, c1-72 (2008).

[38] IEC 62628 ed1.0, Guidance on software aspects of dependability
(2012).

[39] AIAA STD: Recommended Practice for Software Reliability, AIAA
R-013-1992 (1992).

[40] Gökhale, S. and Trivedi, K.: Analytical Models for Architecture-
Based Software Reliability Prediction: A Unification Framework,
IEEE Trans. Reliability, Vol.55, No.4, pp.578–590 (2006).

[41] Yacoub, S., Cukic, B. and Ammar, H.H.: A scenario-based reliability
analysis approach for component-based software, IEEE Trans. Relia-
bility, Vol.53, No.4, pp.465–480 (2004).

[42] Krishnamurthy, S. and Mathur, A.P.: On the estimation of reliability of
a software system using reliabilities of its components, Proc. 8th Inter-
national Symposium on Software Reliability Engineering, pp.146–155
(1997).

[43] Belli, F., Budnik, C.J. and White, L., Event-based modeling, analy-
sis and testing of user interactions: Approach and case study, Journal
of Software Testing, Verification and Reliability (STVR), Vol.16, No.1,
pp.3–32, John Wiley & Sons, Ltd. (2006).

[44] West, D.B.: Introduction to Graph Theory, Prentice Hall (1996).
[45] Dolbec J. and T. Shepard: A Component Based Software Reliability

model, Proc. 1995 Conference of the Centre for Advanced Studies on
Collaborative Research, p.19 (1995).

[46] Birolini, A.: Reliability Engineering: Theory and Practice, Springer
(2007).

[47] Shibata, K., Rinsaka, K. and Dohi, T.: Metrics-Based Software Relia-
bility Models Using Non-homogeneous Poisson Processes, Proc. 17th
International Symposium on Software Reliability Engineering, pp.52–
61, IEEE Computer Society (2006).

[48] Belli, F. and Linschulte, M.: On Negative Tests of Web Applications,
Annals of Mathematics, Computing & Teleinformatics, Vol.1, No.5,
pp.44–56 (2007).

[49] Williams T.W. and Parker, K.P.: Design for Testability - A Survey,

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

IEEE Trans. Comp., Vol.31, pp.2–15 (1982).
[50] Fraser, G. and Arcuri, A.: Handling test length bloat, Software Test-

ing, Verification and Reliability, Vol.23, No.7, pp.553–582 (2013).
[51] Offutt, A.J., Rothermel, G., Christian Zapf: An Experimental Evalu-

ation of Selective Mutation, Proc. 15th International Conference on
Software Engineering (ICSE ’93), pp.100–107 (1993).

[52] Chen, Y., Rosenblum, D.S. and Vo, K.P.: TestTube: A system for
selective regression testing, ICSE ’94 Proc. 16th International Con-
ference on Software Engineering, pp.211–220 (1994).

[53] Hirayama, M., Yamamoto, T., Okayasu, J., Mizuno, O. and Kikuno,
T.: A selective software testing method based on priorities assigned
to functional modules, Proc. 2nd Asia-Pacific Conference on Quality
Software, pp.259–267 (2001).

[54] Hirayama, M., Mizuno, O. and Kikuno, T.: Test item prioritizing met-
rics for selective software testing, IEICE Trans. on Information and
Systems, Vol.87, No.12, pp.2733–2743 (2004).

[55] Steinert, B., Haupt, M., Krahn, R. and Hirschfeld, R.: Continuous
Selective Testing, Proc. 11th International Conference on Agile Pro-
cesses in Software Engineering and Extreme Programming (XP 2010),
pp.132–146 (2010).

[56] Andrews, A. and Do, H.: Trade-Off Analysis for Selective ver-
sus Brute-Force Regression Testing in FSMWeb, Proc. 15th IEEE
International Symposium on High-Assurance Systems Engineering,
pp.184–192 (2014).

[57] Tyagi K. and Sharma, A.: A rule-based approach for estimating the re-
liability of component-based systems, Advances in Engineering Soft-
ware, Vol.54, pp.24–29 (2012).

[58] Singh, L.K., Vinod, G. and Tripathi, A.K.: Approach for parameter es-
timation in Markov model of software reliability for early prediction:
a case study, IET Softw., Vol.9, No.3, pp.65–75 (2015).

[59] Li, K., Liu, L., Zhai, J., Kosgoftaar, T.M., Shaoa, M. and Liua, W.:
Reliability Evaluation Model of Component-Based Software Based on
Complex Network Theory, Qual. Reliab. Engng. Int., (wileyonlineli-
brary.com), DOI: 10.1002/qre.2033 (2016).

[60] Goel, A.L. and Okumoto, K.: Time-dependent error-detection rate
model for software reliability and other performance measures, IEEE
Trans. Reliability, Vol.R-28, No.3, pp.206–211 (Aug. 1979).

[61] Goel, A.: Software reliability models: Assumptions, limitations, and
applicability, IEEE Trans. Software Engineering, Vol.SE-11, No.12,
pp.1411–1423 (Dec. 1985).

[62] Yamada, S., Ohba, M. and Osaki, S.: S-shaped reliability growth mod-
eling for software error detection, IEEE Trans. Reliability, Vol.R-32,
No.5, pp.475–484 (Dec. 1983).

[63] Zhao, M. and Xie, M.: On the log-power NHPP software reliability
model, Proc. 3rd IEEE International Symposium on Software Reliabil-
ity Engineering (ISSRE), pp.14–22, IEEE Computer Society (1992).

[64] Duane, J.T.: Learning curve approach to reliability monitoring, IEEE
Trans. Aerospace, Vol.2, No.2, pp.563–566 (Apr. 1964).

[65] Musa, J.D. and Okumoto, K.: A logarithmic poisson execution time
model for software reliability measurement, Proc. 7th International
Conference on Software Engineering (ICSE), pp.230–238, IEEE Com-
puter Society (1984).

Fevzi Belli completed his Ph.D. in formal
methods for self-correction features in se-
quential systems in 1978 and his “Ha-
bilitation” (German Post-Doctoral degree)
in software engineering in 1986 at Berlin
Technical University. In 1983, he was
awarded a professorship at the University
of Applied Sciences in Bremerhaven; in

1989 he moved to the University of Paderborn. Between 2014–
2016, he has been a full professor at Izmir Institute of Technology.
Currently, he is emiritus at University of Paderborn.

Nevin Güler Dincer received her Ph.D.
degree in Mathematics from Mugla
SıtkıKoçman University, Turkey. She is
currently working as an assistant profes-
sor with department of statistics at the
same university. She is mainly working on
fuzzy modeling, fuzzy time series, fuzzy
clustering and soft computing techniques.

Michael Linschulte studied Business
Computing Systems and received his
Ph.D. degree at University of Paderborn
before he joined Adagon in Cologne. His
research interests include analysis and
testing of web applications as well as web
services by means of model-based testing.
Further, he is interested in test automation,

software reliability and fault tolerance.

Tugkan Tuglular received his B.S.,
M.S., and Ph.D. degrees in Computer En-
gineering from Ege University, Turkey in
1993, 1995 and 1999, respectively. He
worked as a research associate at Purdue
University from 1996 to 1998. He has
been with Izmir Institute of Technology
since 2000. He is interested in model-

based testing and test automation.

c© 2018 Information Processing Society of Japan

