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Abstract: Sufficient supervised information is crucial for any machine learning models to boost performance. How-
ever, labeling data is expensive and sometimes difficult to obtain. Active learning is an approach to acquire annotations
for data from a human oracle by selecting informative samples with a high probability to enhance performance. In
recent emerging studies, a generative adversarial network (GAN) has been integrated with active learning to generate
good candidates to be presented to the oracle. In this paper, we propose a novel model that is able to obtain labels
for data in a cheaper manner without the need to query an oracle. In the model, a novel reward for each sample is
devised to reflect the degree of uncertainty, which is obtained from a classifier trained with existing labeled data. This
reward is used to guide a conditional GAN to generate informative samples with a higher probability for a certain label.
With extensive evaluations, we have confirmed the effectiveness of the model, showing that the generated samples are
capable of improving the classification performance in popular image classification tasks.

1. Introduction
Machine learning models including traditional ones and new

emerging deep neural networks require sufficient supervised in-
formation, i.e., class labels, to achieve fair performance. In sit-
uations in which labeled data is expensive or difficult to obtain,
these models degenerate in performance. Active learning [21] is
proposed for handling such a problem. It aims to find the best ap-
proach to leverage a limited number of labeled data and to reduce
the cost of data annotation. Active learning selects informative
samples from a pool of unlabeled data and obtains their labels by
involving a human oracle. In this paper, we investigate the prob-
lem of lack of labeled data from a new and different perspective.
We propose a model to improve learning performance, which is
able to make use of limited labeled data without using any addi-
tional unlabeled data nor involving any human oracle to acquire
labels.

As to a classification model, informative samples are those that
are able to better contribute to improve classification performance
than other samples. For example, samples close to the hyper-
plane are often uncertain for a support vector machine (SVM)
based classifier. Therefore, acquiring labels of those samples
can reduce the uncertainty, thereby reducing classification errors.
In the area of active learning, informative samples are selected
from a pool of unlabeled data by using criteria, such as degree
of uncertainty. The labels of the selected samples are obtained
by querying a human oracle. Recently, there have been attempts
[10], [29] which label informative samples generated from a gen-
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erative adversarial network (GAN) [9]. In these works, GAN is
used to generate samples with the same distribution as the unla-
beled dataset. In [29], latent variables, which are able to gener-
ate samples that have small distances to the classification hyper-
plane, are selected. These latent variables are used to generate
samples that are labeled by involving an oracle. In [10], a GAN is
used to generate samples compound of two classes and the human
oracle has to choose the sample which cannot be clearly assigned
to either class. However, the above methods still need to use a
pool of unlabeled data and query the human oracle.

Unlike the above methods, we investigate the problem of how
to acquire labeled data to improve the classification performance
by only using a limited number of labeled data. A straightforward
way is to use conditional GAN [15], [18] for generating labeled
samples. However, for a class of samples, most generated sam-
ples may fall inside its convex hull. Samples inside this convex
hull are less discriminative to other classes, while samples along
or even outside of the convex hull are informative to optimize
the hyper-plane of the classifier. In the idea of active learning, a
classifier trained with existing labeled data provides a signal to
determine if a sample is uncertain to the hyper-plane of the clas-
sifier. In this work, we use this external signal to guide the con-
ditional GAN in generating informative labeled samples with a
higher probability that contribute to improving classification per-
formance. This can be regarded as an optimization with a trade-
off between generation of samples with the same distribution as
the training samples and generation of informative samples. This
optimization philosophy is widely used in machine learning, such
as penalizing complexity of parameters to avoid over-fitting. The
contribution of our work is two-fold:
( 1 ) We propose a model that provides a cheaper way than active
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learning to acquire labeled samples. Instead of querying the
oracle, our model generates labeled samples with a higher
probability that are informative to optimize the hyper-plane
of a classifier.

( 2 ) We propose a novel loss function for training generative net-
work model to generate informative samples with a specific
label that is inspired by the idea of policy gradient [25] in re-
inforcement learning. We regard generated samples and the
external signal related to uncertainty as action and reward,
and use this reward to update the parameters of network for
generating informative samples.

2. Related Work
Handling a limited amount of labeled data is a long-standing

and important problem in the area of machine learning. Differ-
ent philosophies and problem settings exist for dealing with this
problem, such as transfer learning [19] and active learning [21].

Transfer learning focuses on how to optimize a model with
a limited amount of labeled data by transferring the knowledge
from a similar yet different source task with sufficient labeled
data, thereby reducing the cost of data annotation for the task
at hand. Zero-shot learning [8], [13] is a variation of transfer
learning, in which unseen, and therefore un-labeled object are
expected to be recognized by transferring knowledge from seen
classes [21]. Active learning [21] is based on a different phi-
losophy. Typically, a pool of unlabeled data is available to this
learning paradigm, in which the most informative samples from
the pool of unlabeled data are selected to query an oracle. Typi-
cally active learning provides a schema to limited the number of
queries by selecting the most informative samples to maximize
the effect of the acquired labels. To determine the degree of un-
certainty used in the query strategy, uncertainty sampling [11] is
the most simple, yet widely used criterion to measure informa-
tiveness. Other criteria for the query strategy may include query
by committee (QBC) [7], expected error reduction [16], [20] and
density weighted methods [2], [6], [23].

A generative adversarial network (GAN) [9] is a neural net-
work model trained in an unsupervised manner, aiming to gen-
erate new data with the same distribution as the data of interest.
It is widely applied in computer vision and natural language pro-
cessing tasks, such as generating samples of images [5] and gen-
erating sequential words [14]. One of its variants, conditional
GAN [15], uses both label information and noisy latent variables
to generate samples for a specified label. A variant of condi-
tional GAN, called Auxiliary Classifier GAN (AC-GAN) [18],
uses supervised information to generate high quality images at
pixel level.

Recently, the GAN models have been used with transfer learn-
ing [1], [4], zero-shot learning [26], [27] and active learning
[10], [29]. In most these studies, the GAN models are used to
generate expected candidates that help to solve problems in zero-
shot learning and active learning. Unlike the works [10], [29]
in which the generated samples are presented to the oracle, this
work focuses on directly generating informative labeled samples
that might contribute to boosting learning performance. This does
not require to query an oracle. To the best of our knowledge, this

is the first study that uses a GAN to generate informative samples
by incorporating a new devised factor to measures the degree of
uncertainty. This study provides a new paradigm that augments
labeled data to improve learning performance without using any
other unlabeled data nor involving a human oracle.

3. Preliminary
In this section, we introduce the preliminaries of GAN and ac-

tive learning that serves the basis to derive our new model. A
GAN [9] consists of a generator G and discriminator D that com-
pete in a turn-wise min-max game. The discriminator attempts
to distinguish real samples from synthetic samples, and the gen-
erator attempts to fool the discriminator by generating synthetic
samples looking like real samples. The D and G play the follow-
ing game on V(D,G)

min
G

max
D

V(D,G) = Exi∈pdata(x)[log D(xi)] +

Ez∈pz(z)[log(1 − D(G(z)))], (1)

where xi represents a sample. pdata and pz represent the distri-
bution of real samples and synthetic samples, and z represents a
noise vector. A GAN tries to close pz to pdata; that means the
generated samples from G are desired to own a high likelihood
to pdata which is also the distribution of training samples. In the
original GAN model only z is used to generate samples. In a
variation called conditional GAN (CGAN) [15], a condition yi,
which is a class label of xi, is included in addition to z to control
the sample generation. The objective function becomes

min
G

max
D

V(D,G) = Exi∈pdata(x)[log D(xi|yi)] +

Ez∈pz(z)[log(1 − D(G(z|yi)))], (2)

where yi could be a one-hot representation of the class label. Dur-
ing training of the CGAN model, yi is used to instruct the gener-
ator G to synthesize samples for this given class.

Active learning is a machine learning method that is able to
interactively query an oracle to obtain labels for samples. These
samples are selected from an unlabeled sample pool by using a
criterion to measure if the selected sample is able to reduce the
learning error. To be more specific, standard supervised learning
problems assume an instance space of data X and labels Y . A
mapping function f : X → Y is optimized by minimizing error:

f ∗ = arg min
f∈F

∑
Y

L( f (X),Y), (3)

where F represents a space over a predefined class of functions.
The error is measured by a loss function L that penalizes disagree-
ment between f (X) and Y . In the typical setting of active learning
[22], a pool of unlabeled samples U = {xu

1, . . . , x
u
n} is given. De-

note M = {(x1, y1), . . . , (xn, yn)}, where xi ∈ X and yi ∈ Y . Active
learning performs in an iterative way: (1) training a classifier f on
M; (2) using a query function Q( f ,M,U) to select an unlabeled
sample i∗ to label; (3) removing xu

i∗ from U and adding (xu
i∗ , yi∗ )

to M. The target of active learning is to choose samples i∗ to be
labeled by asking an oracle, and reduce the learning error with
as few queries as possible. The selected samples are regarded as
more informative than other unselected ones in terms of contribu-
tion in learning error reduction.
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Fig. 1: Architecture of our proposed model. (1) a conditional GAN. It generates samples by training a generator and a discriminator
with a class label one hot vector yi from training sample as a condition. In our case, we introduce a Classification Loss follows AC-GAN
[18] to make sure the generated sample is highly related to the specific given label condition. The discriminator also determines the
possibility if a generated sample is fake used as our Adversarial Loss to make the distributions of generated and real samples similar.
Simultaneously, (2) a classifier C trained with existing labeled data. It calculates a reward for a sample related to the degree of uncertainty
includes smallest margin and label entropy. (3) a Gaussian mixture model (GMM). It calculates a likelihood of a sample to be generated
from current distribution of synthetic samples. Uncertainly Loss consists of a likelihood and rewards of each generated sample, and we
use it to train the generator for generating informative samples via policy gradient.

4. Proposed Method
In this section, we discuss the details of the proposed method.

Without loss of generality, we take a classifier as the example of
supervised learning, in which we are given a set of labeled data
Sl = {(x1, y1), (x2, y2), . . . , (xN , yN)} where xi is a sample, yi is its
corresponding label, and N represents the number of samples.

The overview of our proposed model is shown in Figure 1. This
model mainly consists of a classifier C trained with existing la-
beled data, a conditional GAN, and a Gaussian mixture model
(GMM). The conditional GAN is used to generate labeled sam-
ples. A novel reward is devised to measure the degree of infor-
mativeness for each generated sample. This reward is calculated
according to a degree of uncertainty for a sample with respect to
the hyper-plane of the pretrained classifier. In general, the more
informative a sample is, the higher probability this sample is able
to improve classification performance if it is included in the ex-
isting labeled data. The GMM model provides a likelihood of a
generated sample to be generated from a recent set of generated
samples. Together with the likelihood, the reward is used to up-
date parameters for the generator in the conditional GAN. This
model makes a trade-off between generating samples with the
same distribution as the labeled data and generating informative
samples to improve classification performance for the pretrained
classifier.

4.1 Generation of labeled samples
Since we focus on image classification tasks, the proposed

model uses a variant of conditional GAN, called AC-GAN [18],
which shows its promising performance on generating images.

Given a set of labeled images {(x1, y1), . . . , (xN , yN)}, the AC-
GAN model is used to generate labeled samples with the inputs
of both a noise latent variable and a one-hot representation of a
class label. In the AC-GAN, the generator G generates a syn-
thetic sample x̂i = G(z, yi) with the noise latent vector z and
a label yi. The discriminator gives two kinds of probabilities.
One is a probability distribution over sources, i.e., P(real|xi) and
P(fake|̂xi). The other one is posterior probabilities over the class
labels, i.e., P(yi|xi) and P(yi |̂xi). The objective functions of gen-
erator and discriminator in the AC-GAN are formulated as

LD
AC-GAN = E[log P(real|xi)] + E[log P(fake|̂xi)]+

E[log P(yi|xi)] + E[log P(yi |̂xi)]
(4)

LG
AC-GAN = E[log P(real|̂xi)] + E[log P(yi |̂xi)]. (5)

The discriminator D is trained to maximize LD
AC-GAN, and the gen-

erator G is trained to maximize LG
AC-GAN. For the discriminator

D, the first two terms in Equation 4 expect that both real and fake
samples are classified correctly. The last two terms in Equation
4 expect that both real and fake samples have correct class la-
bels. For the generator G, it is expected that generated samples
are classified as fake, and have correct class labels as well.
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4.2 Measure of uncertainty
In this subsection, we discuss how the degree of uncertainty

is measured in the proposed model. Among the samples gener-
ated by the AC-GAN model, only informative samples might be
able to contribute to improving classification performance. In the
area of active learning, uncertainty sampling is the most widely
used query strategy. The intuition behind uncertainty sampling is
that if a sample is highly uncertain with a hyper-plane of a classi-
fier, obtaining its label will improve the degree of discrimination
among classes. In other words, this sample is considered to be
informative in improving the classification performance. In our
model, we use SVM as the classifier. In our paper, we mainly
use two metrics based on the label probabilities to measure the
uncertainty of a sample.

Smallest Margin Margin sampling is an uncertainty sampling
method in the case of multi-class [21], which is defined as

x̂M = arg min
x̂i

(P(y′1 |̂xi) − P(y′2 |̂xi)), (6)

where y′1 and y′2 are the first and second most probable class la-
bels of a generated sample x̂i under the specified classifier, re-
spectively. Intuitively, samples with large margins are easy, since
the classifier has little doubt in differentiating between the two
most likely class labels. Samples with small margins are more
ambiguous, thus knowing the true label will help the model to
discriminate more effectively between them.

Label Entropy A more general uncertainty sampling strategy
uses the entropy of posterior probabilities over class labels. In
smallest margin, posterior probabilities of labels other than the
two most probable class labels are simply ignored. To mitigate
this problem, the entropy over all class labels is used, which is
formulated as

x̂LE = arg max
x̂i

−
∑
y′

p(y′ |̂xi) log p(y′ |̂xi). (7)

4.3 Loss on uncertainty
In this subsection, we discuss how to devise a loss function

for the generated samples based on the degree of uncertainty to
update the parameters of the generator.

Policy gradient [25] has been successfully applied in reinforce-
ment learning to learn an optimal policy. As one target of this
work is to guide the generator to synthesize informative samples,
we regard the degree of uncertainty and the generated samples as
reward and action, respectively. In general, the higher the degree
of uncertainty is, the higher the reward becomes. If a generated
sample has a high degree of uncertainty, this sample is encour-
aged to be generated with a high probability. To the best of our
knowledge, we are the first to use the idea from policy gradient to
model the degree of uncertainty in active learning.

In the following we discuss how to convert the degree of un-
certainty into a reward. With respect to smallest margin, for each
generated sample x̂i, the reward is calculated by rm (̂xi) = e(1−um),
where um = P(y′1 |̂xi) − P(y′2 |̂xi). If the difference between the
probabilities of the two most probable class labels for a generated
sample is small, it means this generated sample is uncertain. This
results in a larger value of rm than other certain samples. With

respect to label entropy, we can calculate the reward similar to
rle (̂xi) = eule , where ule = −

∑
y′ p(y′ |̂xi) log p(y′ |̂xi). The reward

for a generated sample is calculated by combining the above two
factors, which is formulated as

r(̂xi) = α · rm (̂xi) + (1 − α) · rle (̂xi), (8)

where α is a parameter that balances the importance between the
two metrics of smallest margin and label entropy. According to
policy gradient, we devise the loss for generated samples formu-
lated as follows:

Luncertainty =
∑

x̂i

r(̂xi)P(̂xi|Θ), (9)

where x̂i represents a generated sample from the generator
G(z, yi), P(̂xi|Θ) represents the probability of x̂i that is generated
by the generator. However, the generator does not directly pro-
vide such a probability for each generated sample. Therefore, we
have to estimate this probability based on a model with the param-
eters Θ. In our work, we choose GMM. To estimate this proba-
bility in a dynamic manner during the training of model, we set a
buffer to store the latest m batches of generated samples to train
the GMM model, and estimate the probabilities of generated sam-
ples in the current batch. The intuition to set a buffer is to make a
trade-off between the instability of modeling GMM caused when
using only a limited number of samples, and using the most re-
cent samples only to represent the current parameters Θ accu-
rately. During the training, the distribution of the generated sam-
ples becomes close to that of the original samples. Therefore,
using the generated samples from earlier batches is improper to
model the latest distribution of generated samples. The GMM
models a mixture of Gaussians for the generated samples in the
buffer with parameters Θ = {µ,Σ}, where µ = {µ1, µ2, . . . , µK} and
Σ = {Σ1,Σ2, . . . ,ΣK}, where µi and Σi are the mean and deviation
of the i-th component in the mixture Gaussians, K is the num-
ber of mixture Gaussians. Note that the features of the generated
samples are the output of the convolution layers in the discrimi-
nator D of the AC-GAN model. These features are shared by the
two kinds of probabilities, which are probability distribution over
sources and posterior probability over the class labels.

4.4 Algorithm
By integrating the loss measuring the degree of uncertainty for

the generated samples, our proposed model, called ActiveGAN,
has the following loss function for the generator, which is maxi-
mized.

LG
ActiveGAN = LG

AC-GAN + λLuncertainty

= E[log P(real|̂xi)] + E[log P(y|̂xi)]

+ λE[log P(̂xi|Θ)r(̂xi)], (10)

where LG
AC-GAN is the loss function of the generator in AC-GAN.

The discriminator in Active-GAN is the same as that in AC-GAN,
which is denoted by LD

ActiveGAN. The notations Ψg and Ψd in Algo-
rithm 1 represent the parameters of generator and discriminator in
the ActiveGAN, respectively. λ is a parameter that balances the
importance between the loss for the generator in the AC-GAN
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Algorithm 1 ActiveGAN
Input training data xi and its label yi where i ∈ [1, . . . ,N].
Output Ψd and Ψg

1: Initialize α, λ, Θ, Ψd and Ψg.
2: Set the buffer size to be M
3: Train SVM with grid-search for best parameters
4: Train the generator G and the discriminator D with first m iterations
5: Save generated samples in m iterations into the buffer
6: repeat
7: Generate a sample x̂i ← G(z, yi)
8: Use Equation 8 to calculate the reward r(̂xi) for x̂i.
9: Use generated samples in the buffer to estimate parameters Θ of GMM

10: Calculate the probability P(̂xi |Θ) for x̂i

11: Use Equation 9 to calculate the loss LU related to the degree of
uncertainty for x̂i

12: Update parameters for the generator G: Ψg ← 5Ψg
LG

ActiveGAN

13: Update parameters for the discriminator D: Ψd ← 5Ψd LD
AC-GAN

14: Update the buffer by adding the sample x̂i

15: until

model and the loss related to the degree of uncertainty for the
generated samples. The larger the value of λ is, the more likely
the model is forced to generate samples that contribute to improv-
ing the classification performance instead of generating samples
whose distribution is the same as the training ones. The learning
process of ActiveGAN is detailed as pseudo-code in Algorithm
1.

The evaluation of ActiveGAN is conducted as follows. We use
the trained generator G to synthesize a specific number of sam-
ples, which we denoted by Sg. Together with the labeled data Sl,
we retrain the SVM to examine improvements in the classifica-
tion performance.

5. Experiments
5.1 Evaluation settings

We utilize three datasets CIFAR10 [12], MNIST [17] and
Fashion-MNIST [28] for evaluation of the proposed model Ac-
tiveGAN. MNIST consists of 50,000 training samples, 10,000
validation samples and 10,000 testing samples of handwritten
digits of size 28 × 28. CIFAR10 has colored images for 10 gen-
eral classes. Again we find 50,000 training samples and 10,000
testing samples of size 32 × 32 in CIFAR10. Fashion-MNIST has
a training set of 60,000 examples and a test set of 10,000 exam-
ples. Each example is a 28 × 28 grayscale image, associated with
a label from 10 different classes associated with fashion items.

We used the same network structure for the generator and
discriminator as in [18] for CIFAR10 and [3] for MNIST and
Fashion-MNIST. To train a stable ActiveGAN, the parameters of
the discriminator are updated once after those of the generator are
updated for a specified number of iterations. Adam was used as
the gradient method for learning parameters of the network. Its
initial learning rate is searched in the set {0.0002, 0.001}. We used
SVM as classifier, which is trained using grid-search for the best
hyper-parameters. We used a pre-trained VGG-16 [24] to extract
features for images for all datasets. The balancing parameter α in
Equation 8 was set to 0.5. The balancing parameter λ in Equation
10 was set to 10 to guarantee that values of two terms LG

AC-GAN

Table 1: F-score of models on CIFAR10, MNIST, Fashion-
MNIST (F-MNIST). n represents the number of labeled images
used for training SVM.

CIFAR10 MNIST F-MNIST
Method 5k 10k 500 1k 5k 10k
SVM 83.4 85.3 94.6 96.2 87.1 88.1
AC-GAN 81.4 82.7 94.1 95.8 85.4 86.4
AC-GAN+F 82.5 83.2 94.5 95.9 86.2 87.3
ActiveGAN 83.3 84.8 94.9 96.1 86.8 87.8
ActiveGAN+F 84.5 86.8 95.3 96.8 87.9 89.2

and LU are in the same scale.
We compare the performance of the proposed model for a

number of settings. Together with images in the training set,
the generated images from AC-GAN or ActiveGAN are used to
retrain the SVM. According to the principles of AC-GAN and
ActiveGAN, not all generated images are able to improve the
classification performance. Due to this reason, we have two dif-
ferent settings for dealing with those generated images. The first
setting is to use all generated images, and the second one is to
apply a constraint to filter out images that are not regarded as in-
formative by the criteria used in active learning. The margin over
posteriors of most the two most probable class labels, which is
calculated by Equation 6, is used as the constraint. The margin is
also tuned in our evaluation. We use notations AC-GAN+F and
ActiveGAN+F to represent that the margin constraint is applied
to the generated samples from AC-GAN and ActiveGAN. As the
image classification task in this evaluation is a multi-class prob-
lem, the F-score is used as the metric for evaluating performance.
F-score is calculated by 2·P·R

P+R , where P are R are precision and
recall, respectively.

5.2 Image Classification
Table 1 shows the classification performances of models

for three different datasets. Note that the threshold for
the margin constraint is tuned for each data set in the set
{0.1, 0.15, 0.20, 0.25, 0.3}. The best F-scores are shown. MNIST
is a simple dataset. Using a SVM with advanced features easily
achieves almost 99% classification accuracy. In such a case, it
is not easy to assess the effectiveness of the generated samples.
Therefore, we artificially limited the number of labeled samples
available for training to n chosen as 500 or 1, 000 for MNIST and
as 5, 000 or 10, 000 for the other data-sets. Note that all testing
samples are used in each dataset.

We can see that when the number of images used for train-
ing the SVM increases, F-scores are improved for every dataset,
which is consistent with common sense. When the generated im-
ages from AC-GAN are used for training together with the ex-
isting labeled images, the classification performance even drops.
For example, in CIFAR10, the classification performance drops
by 2.0% and 2.5% for the case of n set to 5, 000 and 10, 000,
respectively. By applying the margin constraint, the classifica-
tion performance is slightly improved. However, the side effect
is not fully mitigated, and performance is still lower as compared
to the baseline SVM. This empirically explains that the generated
samples from AC-GAN, whose distribution is similar to that of
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Fig. 2: Visualization of confusion matrix of ActiveGAN+F (top) and SVM (bottom) for each dataset, CIFAR10, MNIST and Fashion-
MNIST (F-MNIST). For ActiveGAN+F. The number of images used in the training for (a)(d), (b)(e) and (c)(f) are 10k, 1k and 10k,
respectively. The thresholds for the margin constraint in (a), (b) and (c) are 0.2, 0.15, and 0.15, respectively.

images in the original training data, do not provide more infor-
mation than the original training images already could.

Interestingly, using the generated samples from ActiveGAN is
able to achieve similar or even slightly better performance than
the baseline SVM. For example, in MNIST, ActiveGAN is able
to achieve slightly better performance than the case SVM by
0.3%. If the margin constraint is applied, the generated sam-
ples with the same distribution as the training images might be
filtered out, only keeping informative samples that are consid-
ered to contribute to the learning performance. In such cases,
ActiveGAN+F achieves a better performance than the base SVM
for all datasets. For example, in both CIFAR10 evaluations,
ActiveGAN+F reaches F-scores of 84.5% and 86.8% in different
settings, which are improvements of 1.1% and 1.5% compared to
the base SVM, respectively.

Due to the multi-class problem in the image classification task,
we also show how the F-score of each category changes com-
pared to the baseline SVM if ActiveGAN+F is used. Figure 2
shows the confusion matrix for each dataset. We can observe that
the F-score of each category is evenly improved for MNIST. In
CIFAR10, except the class ‘automobile’, the recall of all classes
is improved. Among the improvements, the recall of the class
label ‘cat’ is improved by 3%. In MNIST, the recall of the class
‘2’, ‘3’, ‘4’, and ‘8’ is improved. The recall of the class label ‘3’
is improved by 4%.

5.3 Discussion and Analysis
First, we examine the ratio of informative images to all gener-

ated images. Since it is difficult to claim if a generated image is
informative, we simply use the margin constraint to filter out im-
ages that are not treated as informative ones by setting the margin
between the probabilities of the two most probable classes. The
smaller value the margin is, the more uncertain the generated im-
age is. Figure 3 shows the ratios of ActiveGAN and AC-GAN for
each dataset. It can be seen that the ratio in ActiveGAN is always
higher than that in AC-GAN at every threshold in each dataset.
For example, in CIFAR10, the ratio is about 2% to 7% higher.
In MNIST, the ratio is about 0.3% to 2% higher. It explains that
ActiveGAN is more likely to generate informative images than
AC-GAN, due to the objective function in ActiveGAN having a
term to measure the degree of uncertainty. The informative gen-
erated images tend to contribute in improving the classification
performance. But we empirically found it does not mean that the
more informative the sample is, the more the classification per-
formance is improved. In the image classification task, the best
classification performance is not always achieved at the margin
of 0.1. It might be because few samples are kept under a strong
margin constraint, which is incapable of improving the classifi-
cation performance. Formulated differently, not only informative
samples are required to achieve good performance.

Second, to verify that ActiveGAN is more likely to generate
informative images than AC-GAN, we visualize the features of
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Fig. 3: Ratio of informative images to all training images at every margin threshold for each dataset.

(a) All:AC-GAN (b) All:AC-GAN+F (c) All:ActiveGAN+F

(d) Cat:AC-GAN (e) Cat:AC-GAN+F (f) Cat:ActiveGAN+F

Fig. 4: Visualization of features of training images and generated images. Blue points represent original training images and red points
represent generated images. Top row: (a), (b) and (c) represent visualization for AC-GAN, AC-GAN+F, and ActiveGAN+F for all class
labels, respectively. Bottom row: (d), (e) and (f) represent visualization for AC-GAN, AC-GAN+F and ActiveGAN+F for the class label
‘cat’, respectively. To ease visualization, we randomly choose 100 images from training images and generated images for each class.

training images and the generated images in CIFAR10 in a 3-
dimensional space, as shown in Figure 4. The 3-dimensional
space is obtained by principal component analysis (PCA). Let
cTRAIN denote the centriod of training images, and let cAC-GAN de-
note the centroids of images from AC-GAN. Let cAC-GAN+F and
cActiveGAN+F denote the centroids of images from AC-GAN+F and
ActiveGAN+F applied by the margin constraint, respectively. We
calculated Euclidean distances for features of training images and
generated images, as shown in Table 2. Two cases are shown, in-
cluding all class labels and a specific class label. For a specific
class label, we take the class label ‘cat’ as an example, since clas-

sification performance of this label is improved most after using
ActiveGAN+F. The columns of ‘centriod’ represent the distances
between centriods of features of generated images in each model
and those of features in the training images. The columns of
‘mean’ and ‘std’ represent averaged distances and their standard
deviations for each model. These distances are defined as ones
between the centriods of original images and image features from
each model. For cases of both all class labels and class label ‘cat’,
cActiveGAN+F is higher than those of cAC-GAN and cAC-GAN+F. This
implicitly explains that the generated images from ActiveGAN+F
are located slightly farther from training images than those from
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Table 2: Statistics on Euclidean distances for features of training images and generated images.
AC-GAN AC-GAN+F ActiveGAN+F

Class label centriod mean std centriod mean std centriod mean std
All labels 21.05 75.42 6.81 18.84 85.99 10.93 31.43 106.70 7.70

‘Cat’ 8.59 49.30 8.44 11.07 58.09 6.39 13.43 69.77 7.49

(a) CIFAR10 (b) MNIST (c) F-MNIST

(d) CIFAR10-ours (e) MNIST-ours (f) F-MNIST-ours

Fig. 5: Samples of generated images (a), (b) and (c) are images randomly sampled from training images. (d), (e) and (f) are images
generated from ActiveGAN. Each row shares same label and each column shares the same latent variables.

Table 3: Ablation study when α changed in Eq. (8) for n=10k.
Setting of α α = 0 α = 0.3 α = 0.5 α = 0.7 α = 1.0
F-score on CIFAR10 86.4 86.7 86.8 86.2 85.7

AC-GAN and AC-GAN+F.
Third, we show sampled images from original training images

and ActiveGAN, as depicted in Figure 5. The generated images
in ActiveGAN are the ones that satisfy the margin constraint.
For MNIST and Fashion-MNIST, ActiveGAN is able to gener-
ate reasonably good quality of images. Due to more complex
images in CIFAR10, the image generation for this dataset is more
difficult than MNIST and Fashion-MNIST. The first columns of
Figure 5(a) and Figure 5(d) represent images of class label ‘air-
plane’. We can see that some images in Figure 5(d) look like
‘bird’, which might serve as informative images to discriminate
the classes of ‘airplane’ and ‘bird’.

Forth, to show our smallest margin and label entropy reward
both helpful on generating informative samples. We choose CI-
FAR10 as an example, the performance of which is shown in Ta-
ble 3 when the value of α in Equation (8) changes. When α = 0.0,
only label entropy was used as our reward, that outperforms about

3.2% compared with AC-GAN+F. When we only use smallest
margin as our reward (α = 1.0), the performance is boosted by
2.5%. When α = 0.5, that we both use two kinds of rewards,
we achieved the best performance, which is higher than α = 0.0
and α = 1.0 about 0.4% and 1.1%. It implies that both factors of
smallest margin and label entropy are helpful.

6. Conclusion
In this paper, we investigate the problem of lack of labeled

data, in which labels of data can be obtained without using any
additional unlabeled data nor querying the human oracle. This is
achieved in a cheaper manner than traditional active learning. In
our proposed model, we use class-conditional generative adver-
sarial networks (GANs) to generate images, and devise a novel
reward related to the degree of uncertainty for generated samples.
This reward is used to guide the class-conditional GAN to gener-
ate informative samples with a higher probability. Our empirical
results on CIFAR10, MNIST and Fashion-MNIST demonstrate
that our proposed model is able to generate informative labeled
images that are confirmed to be effective in improving classifica-
tion performance.
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