
IPSJ SIG Technical Report

On the Multi-Service Center Problem

Takehiro Ito1,a) Naonori Kakimura2,b) Yusuke Kobayashi3,c)

Abstract: The multi-service center problem is a variant of facility location problems. In the problem, we consider
locating p facilities on a graph, each of which provides distinct service required by all vertices. Each vertex incurs the
cost determined by the sum of the weighted distances to the p facilities. The aim of the problem is to minimize the
maximum cost among all vertices. This problem is known to be NP-hard for general graphs, while it is solvable in
polynomial time when p is a fixed constant. In this paper, we give sharp analyses for the complexity of the problem
from the viewpoint of graph classes and weights on vertices.

Keywords: facility location problem, graph algorithm

1. Introduction
Facility location is one of the most well-studied topics in com-

binatorial optimization. There are various kinds of settings de-
pending on the situations. (See e.g., [4].) Generally, in facility
location problems, we are given a set of clients and a set of facil-
ities in a graph, and we aim to decide which facilities are open to
satisfy the demand of the clients. For example, the well-known
k-center problem is to place k facilities in a graph so that the max-
imum distance from each client to their closest facility is mini-
mized [6], [7]. Note that this standard situation assumes that all
k facilities can provide the same service so that each client meets
their demand by only accessing one facility.
Yu and Li [10] recently proposed a new framework of facility

location problems, called multi-service location problems, moti-
vated by the situation where each facility provides different ser-
vices and each client needs to access all facilities to meet their
demand. As the first problem of this kind, they proposed the p-
service center problem defined as follows. (The formal definition
will be given in Section 2.) In the problem, we assume that clients
are all vertices in a graph G, and facilities can be located on any
place in G even on an edge. When we locate p facilities, each
of which provides distinct service, the cost of each client v is de-
termined by the sum of the weighted distances to the p facilities,
where the weighted distance from v to a facility x is the shortest-
path distance from v to x multiplied by a positive weight (repre-
senting the demand) of v to the service provided by x. The aim of
the problem is to find a location of p facilities that minimizes the
maximum cost among the clients.
Yu and Li [10] studied the computational complexity of p-
service center for several cases. They designed a polynomial-

1 Graduate School of Information Sciences, Tohoku University
2 Department of Mathematics, Keio University
3 Research Institute for Mathematical Sciences, Kyoto University
a) takehiro@ecei.tohoku.ac.jp
b) kakimura@math.keio.ac.jp
c) yusuke@kurims.kyoto-u.ac.jp

time algorithm for general graphs when p is a fixed constant, and
an O(n log n)-time algorithm for trees having n vertices when re-
stricted to p = 2. On the negative side, they showed that the
problem is NP-hard for general graphs when p is a part of input.
Anzai et al. [1] showed that this case remains NP-hard even for
split graphs with identical edge-length.
In this paper, we consider a simple generalization of p-service
center, that is, each client can have zero or negative weights (de-
mands) to a facility; recall that the weight must be positive in the
original setting. This generalization is very simple, but enables
us to express several natural situations: a zero demand means that
the client does not need the service provided by the facility, while
a negative demand means that the client refuses the service pro-
vided by the facility; furthermore, any vertex can be a non-client
by setting all demands to be zero. In this paper, we sharply an-
alyze the computational complexity of this generalized problem
from the viewpoint of graph classes and weights of vertices. Our
main contributions are summarized as follows:
(1) The problem with nonnegative weights is solvable in poly-

nomial time for trees, even when the number p of facilities
is a part of input.

(2) The problem with nonnegative weights is strongly NP-hard
for cycles with identical edge-length. Thus, the problem
cannot be solved in pseudo-polynomial time even for a cy-
cle unless P = NP.

(3) When clients are allowed to have negative weights, the
problem becomes NP-hard even for paths of only three ver-
tices and strongly NP-hard for stars.

Thus, the problem is polynomially solvable only for trees with
nonnegative weights, and is computationally intractable even for
a bit larger graph class or negative weights. Let us remark that,
while both of the algorithms by Yu and Li [10] require that the
number p of facilities is a fixed constant, our algorithm in (1)
allows to have p as a part of input.
The rest of the paper is organized as follows. In Section 2, we

give a formal definition of the problem studied in this paper. In

1ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-169 No.2
2018/9/3

IPSJ SIG Technical Report

Section 3, we present a polynomial-time algorithm on a tree. Sec-
tion 4 is devoted to showing the hardness results. Some proofs are
omitted from this extended abstract.

2. Problem Definition
In this section, we formally define the problem studied in this

paper.
Let G = (V, E) be an undirected connected graph. For a sub-

graph H ofG, we sometimes denote by V(H) and E(H) the vertex
set and edge set of H, respectively. Assume that each edge e ∈ E
has a length �e ∈ R≥0, where R≥0 is the set of all nonnegative real
numbers. We may assume that all vertices in G are clients, and
each facility can be located on any place in G, even on an edge.
We will refer to interior locations on an edge e ∈ E by their dis-
tances along e from its two endpoints. Throughout the paper, a
point onG indicates either a vertex in V or an interior location on
an edge in E. For notational convenience, we sometimes denote
simply by G the set of all points on the graph. For two points
x, y ∈ G, let dist(x, y) denote the shortest-path length between x
and y.
Let I be the set of facilities. Then, a location of I on a graph

G = (V, E) is a tuple X of |I| points on G (which are not necessar-
ily distinct). We denote by GI the family of all the locations of I
on G. Suppose that each vertex v ∈ V has a weight wv,i ∈ R for
a facility i ∈ I, where R is the set of all real numbers; the weight
wv,i represents the demand of v to the service provided by i ∈ I.
For each vertex v ∈ V and a location X ∈ GI , the cost cost(v, X)
of v to receive the service from X is defined as follows:

cost(v, X) :=
∑

i∈I
wv,i · dist(v, xi),

where xi denotes the point on G at which the facility i ∈ I is
placed by X. In this paper, we study the following problem:

The multi-service center problem
Instance. A graph G = (V, E), an edge length �e ∈ R≥0

for e ∈ E, a set I of facilities, and a weight
wv,i ∈ R for v ∈ V and i ∈ I.

Question. Find a location X of I on G that minimizes
maxv∈V cost(v, X).

We call the problem p-service center if the number p of fa-
cilities is a fixed constant. In addition, we sometimes write the
name of the problem with its restriction: For example, the prob-
lem is called multi-service center with nonnegative weights if all
weights wv,i are nonnegative for v ∈ V and i ∈ I.
3. Polynomial-Time Algorithm for Trees with

Nonnegative Weights
Recall that Yu and Li [10] showed that p-service center

with positive weights is solvable in polynomial time for general
graphs, and 2-service center with positive weights is solvable in
O(n log n) time for trees having n vertices. Both of the algorithms
require that the number p of facilities is fixed. In this section,
we prove that multi-service center with nonnegative weights is
solvable in polynomial time for trees even when the number p of
facilities is taken as a part of input, as in the following theorem.

Theorem 1 Multi-service centerwith nonnegative weights can
be solved in polynomial time for trees.

In the remainder of this section, we prove Theorem 1. For no-
tational convenience, we may assume that each edge of a given
tree has a positive length; this assumption does not lose the gener-
ality because we simply regard each edge e with �e = 0 as having
a sufficiently small positive length.

3.1 Technical highlights
We first explain our main ideas and proof techniques briefly.
To describe a polynomial-time algorithm for trees, let us first

consider the case when a graph is a path. In this case, it is not
difficult to see that the problem can be reduced to a linear pro-
gramming problem. In fact, we can identify a point on the path
with a 1-dimensional coordinate x by taking one of the end of
the path as the origin. Then, the distance from each client to x
can be expressed by an absolute value function with respect to x.
Therefore, multi-service center for a path is equivalent to mini-
mizing the maximum of the sum of absolute value functions with
nonnegative coefficients, which can be formulated as a linear pro-
gramming problem.
In order to extend the above observation to the tree case, we

identify a point on a tree with a path from a specified vertex (a
root). Then, we can represent a point on the tree by a vector in
the m-dimensional space, where m is the number of edges in the
tree. This representation gives us a linear programming problem
to find p vectors in the m-dimensional space, as formulated in
Problem (3) later. However, since not all m-dimensional vectors
correspond to a (feasible) point on the tree, the linear program-
ming problem is a relaxation of multi-service center. The key
ingredient of our algorithm is to prove that the linear program-
ming problem has in fact an optimal solution corresponding to an
optimal facility location (Lemma 2). Since our proof is construc-
tive, we can find an optimal facility location in polynomial time
by solving the linear programming problem.

3.2 Algorithm
Let T = (V, E) be a tree. We choose an arbitrary vertex r in

V as the root of T , and regard T as a rooted tree. For notational
convenience, when we denote an edge e by e = uv, we may as-
sume that u is the parent of v. For each vertex v on T , we denote
by Pv the path in T from r to v. For each interior point x of an
edge ex = uxvx, we denote by Px the path in T from r to vx, that
is, Px = Pvx . For each edge e = uv, let T − e be the subgraph of
T obtained by deleting e from T . Then, T − e consists of exactly
two trees that have u and v, respectively; we denote the two trees
by Tu and Tv where u ∈ V(Tu) and v ∈ V(Tv), respectively.
Let x be any point on T , and assume that x is located on an

edge ex = uxvx; note that x = ux or x = vx may hold. Then, we
can express the point x using a vector x̃ in RE≥0, defined as follows:

x̃(e) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�e if e ∈ E(Pux) = E(Px) \ {ex},
dist(ux, x) if e = ex,

0 otherwise.

(1)

Conversely, we say that a vector x̃ ∈ RE≥0 is admissible if there

2ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-169 No.2
2018/9/3

IPSJ SIG Technical Report

exist an edge ex = uxvx and dx in [0, �ex] such that x̃ has the form
of (1) in which dist(ux, x) is replaced with dx. Then, there exists a
one-to-one correspondence between a point x ∈ T and an admis-
sible vector x̃, and hence any point on T can be represented as an
admissible vector. When a vertex v ∈ V and a point x on T are
expressed by ṽ ∈ RE≥0 and x̃ ∈ RE≥0, respectively, it holds that

dist(v, x) =
∑

e∈E
|ṽ(e) − x̃(e)| (2)

because we have

|ṽ(e) − x̃(e)| =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�e if e ∈ (E(Px) � E(Pv)) \ {ex},
dist(ux, x) if e = ex � E(Pv),

dist(vx, x) if e = ex ∈ E(Pv),
0 otherwise.

For a vertex v ∈ V and any vector x̃ ∈ RE≥0 (which is not neces-
sarily admissible), we define

de(v, x̃) = |ṽ(e) − x̃(e)|,

where ṽ is a vector expressing v by (1). Consider the problem of
finding |I| vectors x̃i ∈ RE≥0 (i ∈ I) that minimizes

max
v∈V

∑

i∈I

⎛⎜⎜⎜⎜⎜⎝wv,i
∑

e∈E
de(v, x̃i)

⎞⎟⎟⎟⎟⎟⎠ = max
v∈V

∑

i∈I

⎛⎜⎜⎜⎜⎜⎝wv,i
∑

e∈E
|ṽ(e) − x̃i(e)|

⎞⎟⎟⎟⎟⎟⎠
(3)

subject to x̃i(e) ∈ [0, �e] for i ∈ I and e ∈ E. Note that, by (2),
we have

∑
e∈E de(v, x̃) = dist(v, x) for any point x on T and its cor-

responding admissible vector x̃. Hence, if we have an additional
constraint that each x̃i is admissible on the problem (3), then it is
equivalent to multi-service center. Thus the problem (3) can be
seen as a relaxation of multi-service center.

Lemma 1 The optimal value of the problem (3) is smaller than
or equal to that of multi-service centerwith nonnegative weights.

We say that a feasible solution of the problem (3) is admissi-
ble if each vector x̃i (i ∈ I) of the solution is admissible. Then,
an admissible solution of the problem (3) gives a location of I
on T . Lemma 1 and the following lemma ensure that solving the
problem (3) is equivalent to solving multi-service center with
nonnegative weights.

Lemma 2 The problem (3) has an admissible optimal solution.
Furthermore, given an optimal solution x̃i (i ∈ I) to the prob-
lem (3), we can construct an admissible optimal solution in poly-
nomial time.

We are now ready to prove Theorem 1.

Proof of Theorem 1. It follows from Lemmas 1 and
2 that it suffices to solve the problem (3). Note that∑
i∈I
(
wv,i
∑
e∈E |ṽ(e) − x̃i(e)|) is a separable-convex function.

Since the maximum of convex functions is also convex, so is the
objective function of (3). Therefore, the problem (3) is a convex
programming problem, which can be solved in polynomial
time (see e.g., [3]).
In fact, we can reduce the problem (3) to the following linear

programming problem:

minimize c

subject to
∑

i∈I

⎛⎜⎜⎜⎜⎜⎝wv,i
∑

e∈E
|ṽ(e) − x̃i(e)|

⎞⎟⎟⎟⎟⎟⎠ ≤ c (v ∈ V),

x̃i(e) ≤ �e (i ∈ I, e ∈ E),
x̃i ∈ RE≥0 (i ∈ I),
c ∈ R≥0,

where x̃i(e) (i ∈ I, e ∈ E) and c are variables. Note that the
first constraint can be described by linear inequalities, since the
left-hand side is

∑

i∈I

⎛⎜⎜⎜⎜⎜⎝wv,i
∑

e∈E
|ṽ(e) − x̃i(e)|

⎞⎟⎟⎟⎟⎟⎠

=
∑

i∈I
wv,i

⎛⎜⎜⎜⎜⎜⎜⎝
∑

e∈E(Pv)
(�e − x̃i(e)) +

∑

e∈E\E(Pv)
x̃i(e)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Therefore, it is a linear programming problem with polynomial
size, which can be solved in polynomial time (see e.g., [9]). ��
4. Hardness Results
In this section, we show that multi-service center is computa-

tionally intractable even for very restricted instances. We empha-
size again that our analyses are sharp in contrast to Theorem 1.

4.1 Technical Highlights
Recall that, in multi-service center, we are allowed to place

each facility at any point on a graph (even on an edge), which
makes a solution flexible. We design reductions so that reduced
instances force all facilities to be placed at only vertices in any
optimal solution. To ensure this condition, we need to analyze
the structure of optimal solutions carefully. Interestingly, we will
verify this condition for cycles (Theorem 3) by using the nonsin-
gularity of a “distance matrix” [2], which has been studied in the
area of algebraic graph theory.

4.2 NP-hardness for paths and stars with negative weights
In this subsection, we show that multi-service center is in-

tractable even for paths and stars if weights of vertices take nega-
tive integers. More specifically, the problem is NP-hard for paths
of only three vertices, and is strongly NP-hard for stars. Indeed,
a path of three vertices is a star, and hence we will construct a
common reduction from the following problem:

The equally partition problem
Instance. A set A of elements, a bound b ∈ Z≥0, and

a size si ∈ Z≥0 for each i ∈ A such that∑
i∈A si = mb for some positive integer m.

Question. Can A be partitioned into m disjoint sets
A1, A2, . . . , Am such that

∑
i∈Aj si = b for all

j ∈ {1, 2, . . . ,m}?
Here, Z≥0 is the set of all nonnegative integers. We summarize
our reduction from equally partition to multi-service center as
in the following theorem.

Theorem 2 There is a polynomial-time reduction from equally
partition to multi-service center for instances such that

3ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-169 No.2
2018/9/3

IPSJ SIG Technical Report

(a) G = (V, E) is a star K1,m with the center vertex r having m
leaves;

(b) �e := 1 for every e ∈ E;
(c) I := A; and
(d) for v ∈ V and i ∈ I (= A),

wv,i :=

⎧⎪⎪⎨⎪⎪⎩
−si if v ∈ V \ {r};
−si · 2(m−1)m if v = r.

Notice that equally partition corresponds to an NP-hard prob-
lem partition [5] if m = 2. In addition, for general m, equally
partition contains all instances of a strongly NP-hard problem 3-
partition [5]. Thus, the following corollary can be obtained from
Theorem 2.

Corollary 1 The following (i) and (ii) hold.
(i) Multi-service center is NP-hard even when G = (V, E)

is a path of three vertices, �e = 1 for every e ∈ E, and
wv,i = wv′ ,i for any v, v′ ∈ V and i ∈ I.

(ii) Multi-service center is NP-hard in the strong sense even
when G = (V, E) is a star, and �e = 1 for every e ∈ E.

As described in Theorem 2, our reduction from equally parti-
tion to multi-service center is as follows. Suppose that we are
given an instance of equally partition, that is, a set A of ele-
ments, a bound b ∈ Z≥0, and a size si ∈ Z≥0 for each i ∈ A such
that
∑
i∈A si = mb. Then, we construct a corresponding instance

of multi-service center as follows. Let G = (V, E) be a star K1,m
with the center vertex r and having m leaves v1, v2, . . . , vm. Set
�e := 1 for every e ∈ E, and define I := A. For v ∈ V and i ∈ I
(= A), set

wv,i :=

⎧⎪⎪⎨⎪⎪⎩
−si if v ∈ V \ {r};
−si · 2(m−1)m if v = r.

This reduction can be done in polynomial time.
To show the correctness of our reduction above, it suffices to

prove the following lemma.

Lemma 3 The original instance of equally partition has a de-
sired partition if and only if there is a location X of I for
the corresponding instance of multi-service center such that
maxv∈V cost(v, X) ≤ −2(m − 1)b.

4.3 Strong NP-hardness for cycles with nonnegative weights
We show that the problem is strongly NP-hard even when re-

stricted to cycles with identical edge-length and nonnegative in-
teger weights.

Theorem 3 Multi-service center with nonnegative weights is
NP-hard in the strong sense even when G = (V, E) is a cycle,
�e = 1 for every e ∈ E, and wv,i = wv′ ,i ∈ Z≥0 for any v, v′ ∈ V and
i ∈ I.
Thus, multi-service center cannot be solved in pseudo-
polynomial time even for such restricted instances unless
P = NP.
In the remainder of this subsection, we prove the theorem

by giving a polynomial-time reduction from a strongly NP-hard

problem 3-partition to multi-service center for such restricted
instances. The 3-partition problem is defined as follows [5]:

The 3-partition problem
Instance. A set A of 3m elements, a bound b ∈ Z≥0, and

a size si ∈ Z≥0 with b
4 < si <

b
2 for each i ∈ A

such that
∑
i∈A si = mb.

Question. Can A be partitioned into m disjoint sets
A1, A2, . . . , Am such that

∑
i∈Aj si = b for all

j ∈ {1, 2, . . . ,m}?
Note that since b4 < si <

b
2 for each i ∈ A, we have |Aj| = 3 for all

j ∈ {1, 2, . . . ,m}. It is known that 3-partition remains NP-hard in
the strong sense even if m is restricted to be odd [8].
Suppose that we are given a set A of 3m elements, a bound

b ∈ Z≥0, and a size si ∈ Z≥0 for each i ∈ A as an instance of
3-partition, where m is an odd number. We construct a corre-
sponding instance of multi-service center as follows. Let G =
(V, E) be a cycle with m vertices such that V = {v1, v2, . . . , vm},
E = {v1v2, v2v3, . . . , vm−1vm, vmv1}, and �e := 1 for every e ∈ E.
Define I := A, and set wv,i := si for v ∈ V and i ∈ I (= A). This
reduction can be done in polynomial time.
To show the correctness of our reduction above, it suffices to

prove the following lemma.

Lemma 4 The original instance of 3-partition has a desired
partition if and only if there is a location X of I for the corre-
sponding instance of multi-service center such that

max
v∈V

cost(v, X) ≤ (m2 − 1)b
4

.

Acknowledgments This work is partially supported by
JST ERATO Grant Number JPMJER1201, JST CREST Grant
Number JPMJCR1402, and JSPS KAKENHI Grant Num-
bers JP16H03118, JP16K00004, JP16K16010, JP17K00028 and
JP18H04091, Japan.

References
[1] Anzai, T., Ito, T., Suzuki, A. and Zhou, X.: The multi-service cen-

ter decision problem is NP-complete for split graphs, the 6th World
Congress on Engineering and Technology (CET 2016) (2016).

[2] Bapat, R. B., Kirkland, S. J. and Neumann, M.: On distance matri-
ces and Laplacians, Linear Algebra and Its Applications, Vol. 401, pp.
193–209 (2005).

[3] Boyd, S. and Vandenberghe, L.: Convex Optimization, Cambridge
University Press, New York, NY, USA (2004).

[4] Drezner, Z. and Hamacher, H. W.(eds.): Facility Location: Applica-
tions and Theory, Springer-Verlag, Berlin Heidelberg (2002).

[5] Garey, M. R. and Johnson, D. S.: Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman & Co., New
York, NY, USA (1990).

[6] Gonzalez, T. F.: Clustering to minimize the maximum intercluster dis-
tance, Theoretical Computer Science, Vol. 38, pp. 293–306 (1985).

[7] Hochbaum, D. S. and Shmoys, D. B.: A best possible heuristic for the
k-center problem, Mathematics of Operations Research, Vol. 10, pp.
180–184 (1985).

[8] Sadasivam, S. and Zhang, H.: NP-Completeness of st-orientations for
plane graphs, Theoretical Computer Science, Vol. 411, pp. 995–1003
(2010).

[9] Schrijver, A.: Theory of Linear and Integer Programming, John Wiley
& Sons, Inc., New York, NY, USA (1986).

[10] Yu, H. and Li, C.: The multi-service center problem, the 23rd Inter-
national Symposium on Algorithms and Computation (ISAAC 2012),
Lecture Notes in Computer Science, Vol. 7676, pp. 578–587 (2012).

4ⓒ 2018 Information Processing Society of Japan

Vol.2018-AL-169 No.2
2018/9/3

