
A Software Implementation of Minimum Energy Point
Tracking Algorithm for Microprocessors

Shengyu Liu1,a) Jun Shiomi1 Tohru Ishihara1 Hidetoshi Onodera1

Abstract: A minimum energy point (MEP) is defined as a pair of supply voltage (VDD) and threshold voltage (VTH)
of a circuit, which minimizes the energy consumption of the circuit under a specific performance constraint. In this
paper, a software implementation of an existing MEP tracking algorithm which minimizes the energy consumption of
target devices at runtime under a wide process, voltage and temperature (PVT) condition is proposed. By exploiting
monitor circuits integrated into a target processor, the proposed power management software autonomously optimizes
VDD and VTH at runtime so that the processor can operate at MEPs even if MEPs dynamically shift due to a PVT
fluctuation and change in the performance constraint. A 32-bit RISC processor chip fabricated with a 65-nm process
technology demonstrates that the proposed MEP tracking system consisting of interface circuits mapped on an FPGA
and the power management software running on a host computer can accurately track the MEP of the processor chip
at runtime even if PVT conditions and performance constraint widely change.

1. Introduction
Electronic device has already been spread in every corner of

world. With the increasing number of these electronic devices
such as computing servers in data centers, the consumption of
the electric power has been increasing rapidly. At the same time,
the improvement of performance on a single device also causes
a rapid increase of the power consumption in electronic systems.
Due to the increasing trend of Internet of Things (IoT), computer
systems are embedded in different kinds of items and they are
connected to Internet, which causes an increase of entire power
consumption in the highly information-oriented society. Typi-
cally, services provided by computer systems are implemented by
software programs due to their flexibility and portability. Those
programs are monitored and controlled by an operating system
(OS), which coordinates the various requirements from applica-
tions, such as low power consumption, dependability and real-
time responsiveness. Therefore, the OS plays an important role
in achieving energy efficiency without sacrificing reliability and
responsiveness of the system. In this paper, we present a software
implementation of a minimum energy point (MEP) tracking algo-
rithm proposed in [1]. The MEP tracking algorithm finds a pair
of supply voltage (VDD) and body bias (VBB), which minimizes
the power consumption of a processor under a certain demand
of performance only by obtaining current status of the target de-
vice. The goal of this work is to implement the MEP tracking
algorithm as a sub-function of OS, which keeps underlaying mi-
croprocessors always running at MEP with coordinately consid-

1 Department of Communications and Computer Engineering, Graduate
School of Informatics, Kyoto University

a) liusy@vlsi.kuee.kyoto-u.ac.jp

ering other requirements such as system reliability and real-time
responsiveness. Since the algorithm is implemented by a soft-
ware sub-function, it is flexible and portable. For example, ag-
gressive voltage scaling by the MEP tracking algorithm some-
times increases sensitivity to noises and degrades the reliability
of the system, which can be a fatal disadvantage of a specific
type of applications such as a mission critical system. If the al-
gorithm is implemented by a software program, it is possible to
flexibly coordinate the requirements of energy efficiency and sys-
tem reliability appropriately. Moreover, the software implemen-
tation makes it very simple for porting the algorithm into not only
power managers for IoT devices but also OSs running on general
purpose processors used in data centers and cloud servers.

The rest of the paper is organized as follows. In section 2, the
history of low-power methods and related research are shortly re-
viewed. An architecture of MEP tracking software and hardware
supports required for the software implementation of the MEP
tracking algorithm are presented in section 3. Section 4 shows
test and evaluation results of the MEP tracking system. Section 5
concludes the paper.

2. Related Work
2.1 Dynamic Power Management

The MEP tracking system is based on a system design policy
called dynamic power management (DPM). The concept of DPM
is to provide a required performance with a minimum number
of active components or a minimum load on such components
[2]. DPM achieves energy efficient computation by selectively
turning off (or reducing the performance of) system components
when they are idle. Therefore, to achieve the energy savings by
DPM, it is necessary to predict the future idle periods of the sys-

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム
Design Automation Symposium

166

DAS2018
2018/8/31

tem components in a certain level of confidence. This is because
the energy savings can be achieved only if the energy overhead
for turning off and waking up the system components is smaller
than the energy consumed in the idle period of the system compo-
nents. If the idle period is too short, the energy cannot be saved
by DPM. At the same time, the trade-off between power con-
sumption and performance also needs to be considered carefully
[3]. In several DPM implementations, OSs play important roles
in predicting the future idle periods of system components and
switching the states of the components among running, idle and
sleeping so that the total energy consumption of the components
is minimized under a specific performance constraint.

To obtain further energy savings on a processor or any other
LSI circuits by DPM, a control method called dynamic voltage
and frequency scaling (DVFS in short) has been introduced in
[4]. DVFS tunes the operating voltage and thus corresponding
operating frequency dynamically so that the energy consumption
of the processor is minimized under a frequency constraint. This
method is based on a characteristic of CMOS circuits where the
energy consumption is quadratically proportional to the operating
voltage while the delay is approximately proportional to the op-
erating voltage if threshold voltage is fixed. Once the frequency
constraint of a processor is set, the energy consumption of the
processor is minimized when the maximum possible frequency
of the processor is just met the frequency constraint. At a system
level, it typically exploits task schedulers within OSs that assign
operating voltage and frequency to each task in addition to CPU
time which has been handled by conventional real-time OSs. In
this case, the scheduler implements a policy that sets the operat-
ing voltage and the clock frequency of the processor so that the
energy consumption of the processor is minimized under the real-
time constraints given to all tasks.

2.2 Minimum Energy Point Tracking
A method for tracking the minimum energy point (MEP) is pre-

sented in [5]. It tunes not only operating voltage and frequency
but also threshold voltage of transistors for minimizing the en-
ergy consumption of CMOS circuits using in-situ power moni-
tor. The threshold voltage is controlled by tuning body bias of
transistors. This method is based on relative power values be-
tween two measurement iterations. The in-situ power monitor
computes difference between power consumed in current and pre-
vious steps. Based on the sign of the difference (i.e., negative or
positive), power monitor decides whether the operating voltage
and threshold voltage should be increased or decreased. A sim-
pler method than the method presented in [5] is proposed in [6]
for quickly tracking the MEP. With a single sampling of temper-
ature, dynamic and static power consumption values separately,
the algorithm identifies whether the current operating point (i.e.
the pair of operating voltage and threshold voltage) is the MEP
or not. The methods largely reduce the energy consumption of
the processor compared to the DVFS methods which only handle
the operating voltage or frequency as a tuning knob. However, to
the best of our knowledge, there is no existing work that exploits

Processor chip

Dynamic power sensor

Static power sensor

Temperature sensor

Critical-path monitor

CPU

core

Register

Register

Register

V
DD

= V
DD

+ ∆V
DD

V
BB

= V
BB

+ ∆V
BB

Software function

MEP

Identification

Delay Tracking

Fig. 1 Overview of MEP Tracking System

task schedulers within OSs for tracking the MEP. This paper for
the first time presents a software implementation of the method
as a first step towards OS-based MEP tracking. This provides
flexibility and portability of the MEP tracking functionality.

3. Minimum Energy Tracking System
3.1 System Outline

In this section, we present a MEP tracking system which mini-
mizes the power consumption of the target processor dynamically
under a frequency constraint using the MEP tracking algorithm as
a core logic. The MEP tracking algorithm is based on the algo-
rithm proposed in [1]. The core logic is implemented as a soft-
ware function. It is composed of delay tracking and MEP identi-
fication which finds the optimal pair of supply voltage and body
bias at runtime. The overview of the system is depicted in Fig. 1.
To verify if the processor is running at a specified frequency, a
critical path monitor which is typically based on a critical path
replica (CPR) is introduced. Since the CPR is designed to repre-
sent the current critical-path delay of the processor, we can see the
critical-path delay of the processor by monitoring the CPR delay.
At the same time, in order to judge if the processor is running at
MEP, it is necessary to estimate temperature, dynamic power and
static power consumption values of the processor separately at
runtime. The details of the delay tracking function and the MEP
identification function are presented in subsection 3.3. Typically
the voltage setting of the processor is updated periodically to-
wards MEP. Since the processor and the sensors are running con-
currently, the sensor values required for the MEP identification
are stored in corresponding registers and ready to be collected at
the end of every period. Once the sensor values are obtained, the
MEP identification function makes the decision of voltage tuning
(i.e. stepping up, down or staying at the current voltage).

3.2 Required Hardware Supports
In addition to the hardware supports required for the DVFS

systems, the MEPT systems require temperature sensor, dynamic
and static power sensors. Notice that the MEPT requires sens-
ing the dynamic and static power values separately. This function
can be incorporated by dedicated online sensors for measuring
dynamic and static power consumption separately. This also can
be implemented by a total power sensor and a static power sen-
sor. The dynamic power value can be obtained by subtracting the
static power value from the total power consumption. A power ef-
ficient temperature sensor can be implemented based on [7]. The

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム
Design Automation Symposium

167

DAS2018
2018/8/31

Algorithm 1 MEP Tracking
while (Current Operating Point !=MEP) do

Delay Tracking
MEP Identification

end while

sensor values should be easily accessible from the software pro-
gram running on the processor. Therefore, it is preferable that the
sensor values are stored in dedicated registers as shown in Fig. 1.

Another important component for the MEP tracking system is
a body bias generator. Although DC-DC converters and PLLs
for dynamically changing the operating voltage and frequency
for DVFS systems are intensively studied over the last several
decades, body bias generators for dynamically tuning the body
bias of transistors are not sufficiently studied. An energy and area
efficient body bias generator is proposed in [8]. In principle, our
MEPT system does not limit the type of body bias generator. One
could select any type of body bias generator providing wide range
of body bias from reverse bias to forward bias in an energy and
area efficient way that covers MEPs under wide range of perfor-
mance constraint.

3.3 Software Implementation
We assume that the MEP Tracking function shown in

Algorithm 1 is invoked periodically by timer interruption or ex-
ternal interruption for example. Once the MEP tracking func-
tion is invoked, the first task is to find an operating point (i.e. a
pair of operating voltage (VDD in the following) and body bias
(VBB in the following)) which satisfies a given frequency con-
straint. This is done by the Delay Tracking function shown in
Algorithm 2. Although the frequency constraint is satisfied by
using the operating point found by the Delay Tracking function,
the energy consumption of the processor is not necessarily min-
imized under the frequency constraint. Therefore, the next task
of the MEP Tracking function is to update the operating point
towards the MEP under the frequency constraint. This is done
by the MEP Identification function shown in Algorithm 3. The
mode is a variable to specify a direction of stepping voltage in
the Delay Tracking function. When VDD had been changed in

Algorithm 2 Delay Tracking
Require: Current Delay (D), Delay Constraint (Ds), Supply Voltage (VDD),

Body Bias (VBB), Margin (∆D), mode
Ensure: Supply Voltage (VDD), Body Bias (VBB)

Measuring Current Delay
while (|D − Ds | > ∆D) do

if (D < Ds) then
if (mode = 1) then

VBB go one step down
else

VDD go one step down
end if

else
VDD go one step up

end if
end while
Go to MEP Identification

Algorithm 3 MEP Identification
Require: Dynamic Power (Pd), Static Power(Ps), Supply Voltage (VDD),

Body Bias (VBB), margin of slope (∆S)
Ensure: Supply Voltage (VDD), Body Bias (VBB), mode

Calculate slope of Energy Contour (S e) and Frequecy Contour (S f)
if (|S e − S f | > ∆S) then

if (S e > S f) then
VDD go one step up
mode =1
Go to Delay Tracking

else
VBB go one step up
mode =0
Go to Delay Tracking

end if
else

END
end if

the MEP Identification function, we change VBB prior to VDD in
the Delay Tracking function. On the other hand, we change VDD

prior to VBB in the Delay Tracking function when VBB had been
changed in the MEP Identification function. If we do not have the
variable mode, VDD may oscillate in such a way that VDD steps up
in the MEP Identification function and then steps down in the
Delay Tracking function. These two tasks are repeatedly invoked
until the MEP is found under the frequency constraint.

4. Case Study Using a 32-bit RISC Processor
with On-Chip Sensors

As a case study, the proposed MEP tracking system consisting
of an FPGA and a host PC is verified through silicon measure-
ment of a 32-bit RISC processor with on-chip sensors.

4.1 Implementation Example of MEP Tracking System
4.1.1 Target Circuit

A target circuit is a 32-bit, 5-stage pipelined RISC processor
fabricated in a 65-nm SOTB process technology. Its photograph
is shown in Fig. 2. The processor employs 4-kB I-Cache, 8-kB
I-SPM (Scratch Pad Memory), and 16-kB D-SPM. A Voltage-
Controlled Oscillator (VCO) implemented to the chip is utilized
to generate a clock signal. As described in section 3, on-chip sen-
sors of dynamic/static power dissipation, chip temperature, and
critical path delay play an important role in the proposed MEP
tracking system. The target circuit employs fully digital on-chip

8
-kB

 I-S
P
M

1
6

-kB
 D

-S
P
M

4
-kB

 I-ca
ch

e

TAG

VCO

CPR

LM

Fig. 2 Photograph of the target processor. LM: Leakage Monitor. CPR:
Critical Path Replica.

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム
Design Automation Symposium

168

DAS2018
2018/8/31

sensors proposed in [9], [7], [10]. An overview of the on-chip
sensors is briefly presented in section 4.1.2.
4.1.2 On-Chip Sensors

Dynamic power sensor: Reference [9] proposed a modeling
method of dynamic power dissipated in embedded processors.
It pointed out that dynamic power dissipated in embedded pro-
cessors does not considerably fluctuate even if they execute dif-
ferent instructions. It also pointed out that access frequency of
on-chip memories is a key parameter to accurately model the dy-
namic power consumption of the processor. The facts imply that
we can accurately estimate the dynamic power consumption by
just monitoring the number of executed instructions and access
frequency of on-chip memories. Based on the fact,[6] presented
the dynamic-power estimation method by counting the number
of the following hardware events in the embedded processor: (i)
instruction execution, (ii) cache access, and (iii) SPM access. Its
approach is summarized as follows:

Pd = (A × [The number of instructions executed per second]

+B × [The number of cache accesses per second]

+C × [The number of I-SPM accesses per second]

+D × [The number of D-SPM accesses per second]

+E × f)VDD
2, (1)

where VDD and f are a supply voltage and a clock frequency of
the target processor. The parameters A, B, C, D and E are fit-
ting parameters determined by process technologies and proces-
sor architectures. In this paper, the fitting parameters are derived
through several training programs. Exploiting the dedicated per-
formance counters of the four hardware events, this paper esti-
mates the dynamic power consumption of the target processor.

Static power and temperature sensor: Leakage-driven inverter
cells proposed in [7] are utilized to estimate the static power con-
sumption of the target processor. The overview of the leakage-
driven ring oscillator is shown in Fig. 3. According to [7], the
oscillation frequency of the ring oscillator (fleak) is proportional
to the subthreshold leakage current of the transistor “C0” if the
transistors “C0” and “C1” in the cells are OFF and ON, respec-
tively. Based on the fact, [6] estimated the static power of the
embedded processor (Ps) by monitoring fleak. The key equation
is summarized as follows:

C1

C0

in out

Enable Ring out

31 stages

C1
C0

Fig. 3 Ring oscillator consisting of leakage-driven inverter cells [7].

Ileak = ks fleakVDD, (2)

Ps = IleakVDD = ks fleakV2
DD, (3)

where Ileak and ks are the leakage current introduced by the target
processor and a fitting parameter, respectively. (2) and (3) indi-
cate that we can estimate the static power consumption by just
measuring fleak if we derive the exact value of ks in advance. A
dedicated frequency counter for the leakage-driven ring oscillator
is implemented into the proposed MEP tracking system so that
the MEP tracking software can obtain the oscillation frequency
value.

Reference [7] also pointed out that chip temperature can be
estimated by monitoring the oscillation frequency of the leakage-
driven ring oscillator. Since Ileak in (2) is exponentially propor-
tional to chip temperature, (2) can be converted into the following
simple equation [6]:

ln (fleak) = aT ·
1
T
+ bT, (4)

where aT and bT are fitting parameters. (4) indicate that chip tem-
perature can be estimated by measuring fleak if we know the exact
values of aT and bT in advance.

Critical Path Replica: A critical path replica proposed in [10]
is implemented into the target circuit. Reference [10] proposed a
simple method to synthesize a path so that its propagation de-
lay is close to the critical path delay of the target processor.
The technique proposed in [Park2011] enables to design a path
whose propagation delay is always slower than the critical path
delay. The target processor employs a ring oscillator where the
input/output signals of the critical path replica are mutually con-
nected. Since its oscillation frequency is slower than the maxi-
mum operating speed of the target processor, we can guarantee
that the processor operates without timing violations (i) by mon-
itoring the its oscillation frequency, and (ii) by checking whether
or not the frequency is slower than the target frequency. In this
paper, the critical path monitor circuit and a frequency counter
for it are implemented into the proposed MEP tracking system.
4.1.3 Implementation Example of the Entire System

The proposed MEP tracking system is implemented utilizing
a commercial Field-Programmable Gate Array (FPGA), a host
computer, and voltage regulators. The overview of the imple-
mentation example is shown in Fig. 4. The on-chip sensors de-
scribed in section 4.1.2 are implemented into the target proces-
sor. “HW event detectors” in Fig. 4 flip their output signals when
their corresponding hardware events are observed. Since the
target processor and an FPGA are mutually interconnected, the
FPGA can measure the number of hardware events per second,
and oscillation frequencies of the leakage-driven ring oscillator
and the critical path replica. The host computer can obtain these
counters’ output signals through an Universal Asynchronous Re-
ceiver/Transmitter (UART) module. The MEP tracking algorithm
proposed in section 3 is performed by the host PC. Based on the
MEP tracking algorithm, the host PC tunes VDD and VBB of the
processor through commercial voltage regulators.

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム
Design Automation Symposium

169

DAS2018
2018/8/31

HWRevent
detectors

Leakage-driven
ringRoscillator

CriticalRpath
replica

Target processor
Pr

oc
es

so
rR

co
re

HWRevent
→ SignalRflip

HWRevent
counters

FPGA

Frequency
counter

Frequency
counter

Co
nt

ro
lle

r

UART

Host PC

�d,R�s,R�,R�

MEPRtracking
software

Voltage
regulators

�DD,R�BB

VCO

VCORvoltage

Fig. 4 An implementation example of the proposed MEP tracking system.

Table 1 Average hardware events performed per second for a 63 MHz clock
frequency. VDD and VBB are 0.75 V and −0.5 V. Pr.: Program.

Pr. Pd Inst. execution Cache I-SPM D-SPM
1 3.99 mW 12.8 MHz 10.0 MHz 1.68 MHz 1.59 MHz
2 1.89 mW 3.02 MHz 0 0 0
3 1.92 mW 3.11 MHz 0 0.125 MHz 0.113 MHz
4 2.90 mW 7.14 MHz 4.56 MHz 6.97 MHz 0
5 3.61 mW 12.7 MHz 476 Hz 87.2 MHz 3.12 MHz

Table 2 Average hardware events performed per second for a 3 MHz clock
frequency. VDD and VBB are 0.75 V and −0.5 V. Pr.: Program.

Pr. Pd Inst. execution Cache I-SPM D-SPM
1 0.47 mW 574 kHz 467 kHz 9.78 kHz 85.3 kHz
2 0.13 mW 34.8 kHz 0 0 0
3 0.21 mW 40.5 kHz 0 735 Hz 5.95 kHz
4 0.24 mW 263 kHz 214 kHz 4.56 kHz 0
5 0.40 mW 573 kHz 22.0 Hz 473 kHz 85.1 kHz

4.2 Experimental Results
4.2.1 Measurement Setup for Dynamic/Static Power Sen-

sors
Dynamic power estimation: In order to estimate dynamic

power dissipation of the processor, the fitting parameters A, B,
C, D and E in (1) need to be derived through training programs
in advance. In this paper, five Discrete Cosine Transform (DCT)
loop programs are utilized as training programs for the dynamic
power estimation. Although the five programs perform the same
program, memory configurations for the programs are different
from each other. For example, the first program (Program 1 in
the following) utilizes all the on-chip memories (i.e., I-cache, I-
SPM and D-SPM) to execute the DCT loop program while the
second program (Program 2 in the following) program utilizes
no on-chip memories. The measurement results of the hardware
events for a 0.75 V supply voltage and a 0.5 V reverse body bias
are summarized in Tabs. 1 and 2. Different clock frequencies
(63 MHz and 3 MHz) are utilized in the evaluations. Based on
the measurement results, the parameter fitting for A, B, C, D and
E in (1) is performed through the least-square method. The fitting
result is summarized in Table 3.

Static power estimation: In the similar way to the dynamic
power estimation, the parameter ks in (3) need to be determined
in advance for estimating the static power dissipated by the target

Table 3 Fitting result of the A, B, C, D and E in (1) [nW/(Hz·V2)].

A B C D E
−0.77 0.763 0.966 0.229 0.272

Fig. 5 Evalutation result of ks under various voltage conditions.

processor. The parameter fitting for ks is thus performed. Figure 5
shows the evaluation results of ks for various voltage conditions.
The ks values are derived (i) by directly measuring Ps and fleak for
each voltage condition, and (ii) by calculating the ks value based
on (3). As can be seen from Fig. 5, the ks value does not consid-
erably vary over a wide range of voltage conditions. Therefore,
this paper utilizes the ks value for a 0.75 V supply voltage and a
0.5 reverse body bias as a representative of ks.
4.2.2 MEP Tracking Results

In order to verify the proposed MEP tracking system, the fol-
lowing three performance constraints are given: (i) a 63 MHz
clock frequency, (ii) a 63 MHz clock frequency, and (iii) a
80 MHz clock frequency. The target program is Program 1. In
the experiments, this paper assumes that the target processor op-
erates at room temperature and that no temperature monitoring
is required for simplicity. 10 mV voltage steps are used as ∆VDD

and ∆VBB. This paper regards the propagation delay of the critical
path replica as the critical path delay of the target processor.

Figure 6 shows the MEP tracking results for a 63 MHz perfor-
mance constraint. Vertical axis and horizontal axis are the supply
voltage and the body bias of the target processor. Note that the
threshold voltage of the target processor increases as we move
leftward in Fig. 6. A solid zigzag line is the locus of the proposed
MEP tracking system. “True MEP” in Fig. 6 is the actual MEP
obtained through exhaustive search. Note that the propagation
delay of the critical path replica is regarded as the critical path
delay of the target processor in the exhaustive search. The result
shows that the energy consumption of the processor can be re-
duced to 59.28 fJ/cycle by the proposed MEP tracking while the
actual minimum energy consumption is 59.21 fJ/cycle. There-
fore, the proposed MEP tracking system can minimize the energy
consumption with an 0.11% estimation error. The time consump-
tion that is required to find the MEP is 2.86 s.

Figures 7 and 8 are the MEP tracking results when the perfor-
mance constraint is set as 80 MHz and 30 MHz, respectively. In

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム
Design Automation Symposium

170

DAS2018
2018/8/31

Fig. 6 MEP tracking result for a 63 MHz performance constraint.

Fig. 7 MEP tracking result for a 80 MHz performance constraint.

Fig. 8 MEP tracking result for a 32 MHz performance constraint.

the two scenarios, the maximum energy overhead introduced by
the proposed system is 4.4% at the worst case, which implies that
the proposed MEP tracking system can track the MEPs with ac-
ceptable energy overheads. The time consumptions required to
find the MEPs in Figs. 7 and 8 are 1.35 s and 1.23 s, respectively.
Therefore the proposed MEP tracking system can find the MEPs
in the order of seconds.

5. Conclusion and Future work
In this paper, a minimum energy point (MEP) tracking system

based on a minimum energy tracking algorithm presented in [1]
has been designed. The core part of the system is implemented
by software programs. It can minimize the power consumption of
target processor while satisfying a given performance demand at
runtime. The software implementation of the tracking system has
good portability and flexibility which make it simple for porting
the tracking system into existing operating systems. Through a
case study using a RISC processor chip, we confirmed that the
MEP tracking system has a sufficient accuracy where the energy
loss introduced by our MEP tracking system is 4.4% at the worst
case compared with the energy consumption at the actual MEP.
Our future work will be first focused on extending the current
tracking system to take the impact of temperature on MEP into
account. Our future work also includes porting the MEP tracking
system into existing operating systems.

Acknowledgement

This work is partly supported by Grant-in-Aid for Scientific
Research 17H01712. This work is supported by VLSI Design
and Education Center (VDEC), the University of Tokyo in col-
laboration with Cadence Design Systems, Inc., Synopsys, Inc.
and Mentor Graphics, Inc.

References
[1] S. Hokimoto, T. Ishihara and H. Onodera, “Minimum Energy Point

Tracking Using Combined Dynamic Voltage Scaling and Adaptive
Body Biasing,” 29th IEEE International System-on-Chip Conference
(SOCC), Seattle, WA, 2016, pp. 1-6.

[2] L. Benini, A. Bogliolo and G. De Micheli, “A Survey of Design Tech-
niques for System-Level Dynamic Power Management,” in IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 8, no. 3,
pp. 299-316, June 2000.

[3] L. Benini and G. de Micheli, “System-Level Power Optimization: Tech-
niques and Tools,” in ACM Transactions on Design Automation of
Electronic Systems (TODAES) , vol. 5, no. 2, pp.115–192, April 2000.

[4] M. Weiser, B. Welch, A. Demers and S. Shenker, “Scheduling for Re-
duced CPU Energy,” in Proceedings of the 1st USENIX Conference on
Operating Systems Design and Implementation, pp. 13-23, November
1994.

[5] N. Mehta and B. Amrutur, “Dynamic Supply and Threshold Voltage
Scaling for CMOS Digital Circuits Using In-Situ Power Monitor,” in
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, no. 5, pp. 892-901, May 2012.

[6] S. Hokimoto, J. Shiomi, T. Ishihara and H. Onodera, “All-Digital On-
Chip Heterogeneous Sensors for Tracking the Minimum Energy Point
of Processors,” IEEE International Conference on Microelectronic Test
Structures (ICMTS), Austin, TX, 2018, pp. 128-133.

[7] A. K. M. M. Islam, J. Shiomi, T. Ishihara and H. Onodera, “Wide-
Supply-Range All-Digital Leakage Variation Sensor for On-Chip Pro-
cess and Temperature Monitoring,” in IEEE Journal of Solid-State Cir-
cuits, vol. 50, no. 11, pp. 2475-2490, Nov. 2015.

[8] N. Kamae, A. Tsuchiya and H. Onodera, “A Forward/Reverse Body
Bias Generator with Wide Supply-Range down to Threshold Voltage,”
in IEICE, vol. E98-C, no. 6, pp. 504-511, June 2015.

[9] A. Sinha, N. Ickes and A. P. Chandrakasan, “Instruction Level and Op-
erating System Profiling for Energy Exposed Software,” in IEEE Trans-
actions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6,
pp. 1044-1057, Dec. 2003.

[10] J. Park and J. A. Abraham, “A Fast, Accurate and Simple Critical
Path Monitor for Improving Energy-Delay Product in DVS Systems,”
IEEE/ACM International Symposium on Low Power Electronics and
Design, Fukuoka, 2011, pp. 391-396.

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム
Design Automation Symposium

171

DAS2018
2018/8/31

