
ECCを用いた耐マルチビットソフトエラー高位合成について

Inoue Keisuke1,a)

Abstract: This paperdiscusses the Multiple Bit Upset (MBU) problem on Application Specific Integrated Circuit
(ASIC). It focuses especially on the storage part (register) of ASIC since the transient error on registers can be quickly
propagated to the other part of the system. It proposes a novel high-level synthesis where a set of registers and error
correcting code modules against MBU are grouped to maximize the reliability of ASIC with low cost. It also proposes
a heuristic-based algorithm to find optimal data covering, and experimental results to show the effectiveness of the
proposed method.

1. Introduction

With the scaling of silicon process technologies into the
nanometer regime, the reliability of Application Specific Inte-
grated Circuits (ASICs) becomes a significantly important con-
cern for designers [1]. Nanoscale components such as functional
units, multiplexers, and registers themselves are likely to fail of-
ten. As ASIC designers integrate more of components onto the
processing die, the number and size of registers will increase. Un-
fortunately, a direct drawback is the increase in the device vulner-
ability to radiation, as charge particles which were once negligi-
ble, become more likely to produce upsets.

When charged particles strike the silicon die, they lose their
energy, resulting in a dense ionized region. The ionization gener-
ates a charge deposition, i.e., a transient current pulse. This effect
is called Single Event Upset (SEU). With the downscaling of de-
vices, the physically neighboring bits can sometimes be upset by
one particle known as Multiple Bit Upset (MBU). Although SEU
is the major concern in ASICs, MBU starts to be also a matter
of serious concern to be addressed nowadays with the nanometric
technologies [2].

Under the influence of MBU, conventional single-error-
correcting codes (ECCs) are not sufficient to cope with the ex-
pected soft errors. This deficiency motivates to use more stronger
ECC schemes, such as Bose-Chaudhuri-Hocquenghem (BCH)
code [3], Reed-Solomon code, and Punctured Difference Set.
With the advantages of simplifying the programming circuits and
maintaining the programming throughput, the use of strong ECC
is subject to two main drawbacks[5]: (i) strong ECC induces
higher coding redundancy (i.e., larger number of parity bits) that
will degrade the storage capacity of registers, and (ii) the ECC
decoder will induce area and power overhead. For example, TA-
BLE I shows the specification list of BCH code, wherem is a
positive integer,n is the code length (n = 2m−1), k is the number
of information bits (n−k is the number of parity bits), andt is the

1 International College ofTechnology, Kanazawa
a) k-inoue@neptune.kanazawa-it.ac.jp

Table 1 BCH code parameters

m n k t m n k t m n k t

3 7 4 1 6 63 57 1 10 13
4 15 11 1 51 2 7 15

7 2 45 3 7 127 120 1
5 3 39 4 113 2

5 31 26 1 36 5 106 3
21 2 30 6 99 4
16 3 24 7 92 5
11 5 18 10 85 6
6 7 16 11 78 7

error correcting capability (i.e.,at mostt errors can be fixed). We
can see that the higher the error-correcting capability becomes,
the larger the number of parity bits becomes.

In conventional soft error-aware ASIC design, error-correcting
has been considered for each register independently [4]. For ex-
ample, let us assume that 2-bit errors occur on a silicon die. If us-
ing BCH code, a 32-bit register (#information bits is 31) requires
10 parity bits against 2-bit errors. Therefore, two registers re-
quire 20 parity bits. Our main idea is to view a group of registers
as one register when considering error-correcting. If we can treat
two 32-bit registers as one 64-bit register, only 12 parity bits are
required against 2-bit errors (8 parity bits can be saved) without
loss of the error-correcting capability. We can expect the power
reduction because an ECC decoder executes for several registers
at a time.

In this paper, we propose a novel ECC-based high-level syn-
thesis (HLS) that can be continue to operate in the presence of
multi-bit transient errors. This paper makes the following contri-
butions:
• It proposes a new register system with an ECC mod-

ule against MBU, where some registers are grouped,
and ECC computing/error-checking/error-correcting are per-
formed for these registers.

• It introduces a new concept ofcover that consists of (a set
of data, time-interval). The set of data in a cover are error-
checked and corrected together during the time-interval. A

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム 
Design Automation Symposium

75

DAS2018
2018/8/30



cover isan intersection of data-lifetimes.
• In general, more than one covers would be required. Differ-

ent covers produce different reliability capabilities. There-
fore, this paper introduces a new HLS task, namelycover

assignmentwhich chooses a cover pattern, and formulates a
problem to find an optimal cover assignment.

• It proposes a heuristic-based cover assignment algorithm to
maximize the coverage ratio, and shows experimental re-
sults.

This paper is organized as follows: The next section presents
the discussion of prior works. Section III presents our design
framework, a motivational example of our optimization problem,
and a heuristic-based algorithm to solve it. Experimental results
are shown in Section IV. Finally, Section V concludes the paper.

2. Related Works

Various techniques have been developed over the past few
years to make the ASIC reliable [6], [9]. In physical level, stan-
dard CMOS technology typically fails due to radiation-induced
leakage currents in the field oxide region. Recent work suggests
that spatial multi-bit errors are increasingly likely at future tech-
nology nodes. As other techniques for memory, bit interleaving
is the promising approach used to protect memory arrays from
spatial multi-bit errors [7]. Modern microprocessors and ASICs
already use various protection techniques such as ECC, and hard-
ware redundancy to safeguard their register system. A common
technique to protect memory arrays against errors is to use error
detecting codes and ECC. ECC is typically applied to the data
on a per-word basis and allows error detection/correction at the
cost of extra bits of code storage per word and shared calcula-
tion/checking/correction logic. The extra area and energy over-
head to implement multi-bit error detection and correction codes
grows quickly as the code strength is increased [8]. Furthermore,
scaling up conventional techniques to cover multi-bit errors will
incur large performance, area, and power overheads in part due
to the tight coupling between the error detection and correction
mechanisms.

3. MBU Hardening Design

High-level synthesis (HLS) is the process of translating a be-
havioral description into a register-transfer-level structure de-
scription. In this paper, we focus on HLS, and discuss MBU-
aware register system to avoid transient error-induced malfunc-
tion.

3.1 ECC-Based Register System against MBU
Figure 1 shows the block diagram of our register system with

an ECC module and four registers (The proposed architecture al-
lows any ECC system). In this system, the output terminals of
the registers are connected to the input of ECC module. Nor-
mally, a register operates in the same manner as an ordinal reg-
ister. When computing parity bits, ECC module collects all the
outputs, and distributes the resultant parity values to the registers.
Error checking and correcting are performed periodically (e.g.,
once every 2steps). Note that register grouping can be changed
using multiplexers and wires during ASIC operation.

Fig. 1 Block diagramof the proposed register system

Fig. 2 (a) Anexample scheduled DFG, and (b) a set of data-lifetimes.

3.2 Mathematical Model
Basis of HLS: A data flowgraph (DFG), behavioral descrip-

tion of HLS, is given as a directed graphG(O,A), where the ver-
tex setO = {i | i = 1,2, . . . , } represents the operations in the
DFG and the arc setA represents the data dependencies between
operations. The time axis is divided by the rising-edge of the
clock signal, and each divided timing is referred to asstep. Op-
eration scheduling is an HLS task to assign each operation to a
step. Figure 2(a) shows an example DFG and a scheduling result
where, for example, operation 1 is scheduled at step 1. The data-
lifetime of dataa is defined as the open interval on the time axis
from the step at which a is generated, and to the last step where
a is consumed by other operations. Figure 2(b) shows a set of
data-lifetimes represented as bold vertical lines. For example, the
data-lifetime of datab is the open interval from step 2 to step 5
sinceb is generated at step 2, and lastly referred by operation 5 at
step 5. Two data with no data-lifetime overlapping can share the
same register.

Cover: Given aset of data, we introduce a new concept of
coverwhich is an intersection of the data-lifetimes of the data.
The meaning of cover is that the data in a cover are protected by
one ECC code (ECC code must be re-computed if the stored data
are changed). For example, a shaded region with respect to dataa

andb in Fig. 3(a) is a cover. At the beginning of step 2, two reg-
isters storinga andb are grouped and connected to ECC module
in a same way with Fig. 1, and ECC is computed. By the end of
step 5, error checking and correcting are periodically performed
for a andb.

Cover assignment:The register systemis constructed for each
cover. The relevant registers are grouped at the beginning of a
cover, and released after the end of the cover. We can realize

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム 
Design Automation Symposium

76

DAS2018
2018/8/30



Fig. 3 Two different cover results. (a) is obtained by a greedy method, and
the coverage ratio is 0.86. (b) is the optimal result with the coverage
ratio 1.00. Note that datae is ignored due to the minimum interval
constraint.

such a variable system using multiplexers, wires, and control sig-
nals. Since a cover is an intersection of data-lifetimes, all the data
cannot be included to one cover in general. As shown later, dif-
ferent covers produce different results due to the various design
constraints (described in the next section). We introduce a new
HLS task namelythe cover assignmentthat decides the covers on
data.

3.3 Design Constraints
The following basic constraints can be considered in the pro-

posed design.
The minimum interval constraint:We assume thatthe error-

checking interval is given as a design input. We can exclude
the data whose data-lifetime lengths are smaller than the error-
checking interval since they are never checked. For example
in Fig. 2(b), if the error-checking interval is 2, datae can be
ignored when considering cover assignment because the data-
lifetime length ofe is smaller than 2.

The maximum cover width constraint:We call thenumber of
data in a cover ascover width. The maximum cover width is lim-
ited by a hardware constraint which is given as a design input.
Note that each cover width can take any value no larger than the
maximum cover widthα. If the cover width is less thanα, dummy
data are padded so as to make the cover width equal toα.

The minimum cover length constraint:The time length ofa
cover must be larger than or equal to the error-checking interval
due to the same reason with the minimum interval constraint.

3.4 Design Objectives
The following basic objectives can be considered in the pro-

posed design:
(1) The number of covers:It is known that computing ECC

code for MBU induces large power cost [5]. For each cover, ECC
is computed at the beginning of the cover. Therefore, the number
of covers is the same with the number of computing ECC codes.
To reduce power overhead, it is better to reduce the number of
covers.

(2) The maximum number of temporal cover overlaps:

The maximum number oftemporal cover overlaps is propor-

tionate to the number of required registers. Therefore, it is better
to reduce the maximum number of temporal cover overlaps.

(3) The coverage ratio:To protect dataagainst MBU, every
data should be included in a cover. However, as shown in the
next section, it could be not always achieved in general. There-
fore, we define a design measurethe coverage ratiowhich is the
total number of covered data-lifetime length, divided by the to-
tal number of data-lifetime length. It is better to maximize the
coverage ratio to enhance the MBU tolerance

3.5 Motivational Example
As the first objective targeted in the proposed design, we

choose objective (3), the coverage ratio, because the most im-
portant aim of the design is to protect data against soft-errors. We
treat the other objectives (1) and (2) as design constraints in the
paper.

Let us take Fig. 2(b) as an example. We assume the follow-
ing design constraints: the minimum interval is 2, the maximum
cover width is 2, the minimum cover length is 2, the maximum
number of covers is 3, and the maximum number of temporal
cover overlaps is 2. Datae is ignored due to the minimum in-
terval constraint. First, let us consider a simple greedy algorithm
such that a set of data are greedily covered in order of the start
time of data-lifetimes. As a first step, we choose dataa andb,
and cover them as long as possible. So the first cover is a set of
a andb with the time interval from step 2 to step 5. Note that
step 6 is not included in the cover since a cover is an intersec-
tion of data, and the data-lifetime ofb ends at step 5. Next, we
choose datac andd, and cover them as long as possible. So the
second cover is a set ofc andd with the time interval from step 4
to step 5. The resultant cover solution is shown in Fig. 3(a) (Note
that dataa andc in step 6 cannot be covered due to the minimum
cover length constraint). The coverage ratio is computed as 0.86
(=12/14) since the total number of covered data-lifetime length is
12, and the total number of data-lifetime length is 14. However
it is not optimal. The optimal solution is shown in Fig. 3(b). In
this solution, all the data are covered, and then the coverage ra-
tio is 1.00. This observation motivates us to develop a covering
algorithm to maximize the coverage ratio.

We explain hardware operations based on the cover result in
Fig. 3(b). At the beginning of step 2, a register system with two
registers storinga and b, and an ECC module, is constructed.
ECC is computed (the resultant parity bit values are distributed to
the registers), error checking and correcting are periodically per-
formed in the register system. This register system is released at
the end of step 3. At the beginning of step 4, register systems for
two registers storingc anda (b andd) are constructed in a same
way. ECC is computed, error checking and correcting are peri-
odically performed in the register systems by the end of step 6.
Note that these hardware operations do not depend on register as-
signment (an HLS task assigning data to registers). So we focus
on the cover assignment in the paper.

3.6 Problem Formulation
The objective of our design is to find a set of covers that max-

imizes the coverage ratio under the design constraints described

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム 
Design Automation Symposium

77

DAS2018
2018/8/30



in Sects. 2-C andD. The constrained HLS problem we want to
solve in the paper can be formulated as:

Problem: Under a given resource set and an operation schedul-
ing result, find a set of covers such that (i) the minimum interval
constraint, the maximum cover width constraint, and the mini-
mum cover length constraint are satisfied, (ii) the number of cov-
ers, and the maximum number of temporal cover overlaps is no
larger than the designated values, and (iii) the coverage ratio is
maximum.

The computational complexity of our problem is unknown at
this point. However we expect that it is a difficult problem be-
cause a similar problem, the graph vertex cover problem is NP-
hard. In this paper, we propose a heuristic algorithm to efficiently
find sub-optimal solutions in the next section.

3.7 A Heuristic-based Covering Algorithm
The objective of our cover assignment is to find a set of covers

that maximizes the coverage ratio under design constraints. First,
we show a cover assignment algorithm in case that the maximum
cover width is 2 which will be extended for general cases later.
To choose a pair of data that will be assigned to a cover, we focus
on a similarity of data.

One possible reason to result in uncovered parts of data-
lifeitmes is the temporal difference of paired data. For example in
Fig. 3(a), the temporal difference between dataa andb is 1 which
is less than the minimum cover length 2. After making a cover
for these data, a small part of data-lifetime (the data-lifetime ofa

in step 6) remains not to be covered. Therefore, it is unpreferable
to choose such a data pair. To all the pair of data, we add−∞
point if they have no lifetime overlapping. We add−1 point if
they satisfy the following conditions (We add−2 points if they
satisfy both of the constraints):
• The difference of the start time of the data-lifetime is less

than the error-checking interval.
• The difference of the end time of the data-lifetime is less than

the error-checking interval.
If the start and/or end time of data-lifetimes are same, it is

preferable to make them a pair. To all the pair of data, we add
1 point if they satisfy the following conditions (We add 2 points
if they satisfy both of the constraints):
• The start time of the data-lifetime is the same.
• The end time of the data-lifetime is the same.
TABLE 2 shows similarity values for the data in Fig. 2(b) under

the condition that the minimum cover length is 2. For example,a

andb have the same start time, so this pair takes 1 point. How-
ever, the difference of their end times is less than the minimum
cover length. So this pair takes−1 point, and the total point is 0.
a andc have the same end time, so this pair takes 1 point. The
difference of their end times is no less than the minimum cover
length (no point down). So the total point is 1. Fora and d,
the difference of their end times is less than the minimum cover
length. So this pair takes−1 point. The difference of their start
times is no less than the minimum cover length (no point down).
So the total point is−1.

The following summarizes our algorithm.
Step 1Compute the similarity table like TABLE 2

Table 2 Similarity Table for Fig. 2

a b c d

a 0 1 −1

b −1 1

c 0

d

Step 2Choose a pairwith the highest similarity value. If two
pairs have the highest value, choose one pair arbitrarily.

Step 3Assign them to a cover as long as possible unless violat-
ing the maximum cover width constraint and the minimum cover
length constraint.

Step 4Remove the covered parts of data-lifetimes when com-
puting similarity.

Step 5If there is no possible pair to be covered, output all the
covers, and finish algorithm. Otherwise, return back to Step 1.

We illustrate the algorithm by applying it to Fig. 2(b). In TA-
BLE 2, there are two pairs that have the highest similarity value
({a,c}, {b,d}). We choose{a,c}, and assign a cover to them as
long as possible. Figure 4-left shows this cover, and Fig. 4-right
shows the updated similarity value table after the covered parts
are removed. Since whole data-lifetime ofc is covered,c is re-
moved from the table. The uncovered part ofa andb have the
same start time, so this pair takes 1 point. The difference of their
end times is no less than the minimum cover length (no point
down). So the total point is 1. The uncovered part ofa andd

have no data-lifetime overlap. So the similarity value of them is
−∞. The similarity value ofb andd is the same with TABLE 2.
We choose{a,b}, and assign a cover to them as long as possible.
Figure 5-left shows this cover, and Fig. 5-right shows the updated
similarity value table after the covered parts are removed. Since
whole data-lifetime ofa is covered,a is removed from the table.
The uncovered part ofb andb have the same start time and end
time, so the total point of this pair is 2 points. We choose{b,d},
and assign a cover to them as long as possible. After that, since
there is no possible candidate data, the algorithm is finished. The
final covering result is the same with Fig. 3(b). In this case, the
proposed algorithm achieves the optimal result with the coverage
ratio 1.00. It is clear that our algorithm works in a polynomial
time.

3.8 Extending the Proposed Algorithm to General Cases
We can easily extend this algorithm to treat the case that the

maximum cover width is larger than 2. For example, the maxi-
mum cover width is 3, the similarity of three data is computed by
the average of the similarity of every pair chosen from them. The
algorithm computes the similarity to every combination of three
data in Step 1.

4. Experimental Results

4.1 Setting
We applied the proposed algorithm to an HLS benchmark cir-

cuit. Only two types of operations, addition and multiplication

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム 
Design Automation Symposium

78

DAS2018
2018/8/30



a b d

a 1 −∞

b 1

d

Fig. 4 After thefirst iteration of the algorithm,a andc are covered during
the time between step 4 and step 6.

b d

b 2

d

Fig. 5 After thesecond iteration of the algorithm,a andb are covered dur-
ing the time between step 2 and step 3.

(ADD and MUL, for short), are considered in this experiment.
We assume that every operation has one step delay. We used a
benchmark the fifth-order elliptic wave digital filter (EWF) with
34 operations to evaluate the proposed algorithm (it is a middle-
size benchmark circuit). We used list-scheduling to compute the
operation scheduling result.

We evaluated the following two designs for comparison:
• Greedy: Greedy algorithm-based design, wherecover as-

signment is performed such that a pair of data is greed-
ily chosen in order of the start time of the data-lifetime
(Sect. III-E).

• Prop.: The proposed design wherethe cover assignment re-
sult computed by the proposed algorithm (Sect. III-G).

4.2 Results
TABLE III shows the experimental results, where LEN. is the

minimum cover length, WIDTH is the maximum cover width,
#cover is the number of covers, and Ave. is the average of the cov-
erage ratio. For example, for the proposed design with LEN.=2,
the total number of data-lifetime length is 119, and the total num-
ber of covered data-lifetime length is 118. Therefore, the cov-
erage ratio is computed as 118/119=0.99. We performed exper-
iments if WIDTH=2 and=3. Note that although the maximum
cover width is 2x if using BCH, the proposed design accepts any
ECC system. For all the cases, the proposed design achieved bet-
ter solutions compared with the greedy-based design (6% on aver-
age). The computational time is almost zero for all the instances.

Table 3 Coverage Ratio Comparison

Design LEN. WIDTH =2 (#cover) WIDTH =3 (#cover)

Greedy 2 109/119=0.92(15) 108/119=0.91(13)

3 97/111=0.87(8) 94/111=0.85(9)

4 88/99=0.89(8) 79/99=0.80(7)

5 82/91=0.90(6) 73/91=0.80(4)

Ave. 0.90 0.84

Prop. 2 118/119=0.99(16) 113/119=0.95(13)

3 105/111=0.95(11) 104/111=0.94(10)

4 94/99=0.95(8) 87/99=0.88(7)

5 87/91=0.96(6) 74/91=0.81(5)

Ave. 0.96(+0.06) 0.90(+0.06)

4.3 Discussion
For all the cases, the coverage ratio for WIDTH=3 was lower

than the case of WIDTH=2. The main reason is that the larger the
data group size (cover width) becomes, the smaller the number of
similar data becomes. In this experiments, we do not constrain
the number of covers. For all the cases, the number of covers
used in the proposed design is slightly greater than or equal to
greedy-based design. It might be reasonable power penalty to
achieve the better coverage ratio. Further investigation is left as
an future work.

4.4 Power Overhead Comparison with Conventional Design
Using the proposed design, power overhead with respect to

ECC computing is expected to be reduced. In conventional de-
sign, the number of ECC computing equals to the number of
data. TABLE IV shows the number of data in the conventional
design (denoted by Conv.). Note that the larger LEN becomes,
the smaller the number of data due to the minimum interval con-
straint. In the proposed design, the number of ECC computing
equals to the number of covers. In TABLE IV,x(y, z, w) repre-
sents the power overhead of the proposed design wherex is the
number of covers,y = 1.3 ∗ x, z = 1.4 ∗ x, andw = 1.5 ∗ x

(x, y, z, w represents the power overhead normalized by the con-
ventional design). We can see that if the required power of ECC
computing for WIDTH=3 is less than 1.5 times of ECC com-
puting for WIDTH=2, the proposed design can reduce the power
overhead for most of the cases. Further investigation is also left
as a future work.

5. Conclusion

This paper presented a high-level design to protect registers
against MBU based on a new concept of cover. The main idea
is to view a group of registers as one register when considering
error-correcting. As a result, the parity bits for ECC can be re-
duced with out loss of error correcting capability. We formulated
a novel cover assignment problem of optimizing the coverage ra-
tio. We proposed a heuristic-based cover assignment algorithm
which was evaluated by experiment supporting the effectiveness
of our approach. Experiments compared the proposed design
with the greedy-based design. It is important to apply the pro-

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム 
Design Automation Symposium

79

DAS2018
2018/8/30



Table 4 PowerOverhead Comparison

Design LEN. WIDTH=2 WIDTH=3

Conv. 2 20 20

3 16 16

4 12 12

5 10 10

Prop. 2 16 (20.8, 22.4, 24.0) 13 (16.9, 18.2, 19.5)

3 11 (14.3, 15.4, 16.5) 10 (13.0, 14.0, 15.0)

4 8 (10.4, 11.2, 12.0) 7 (9.1, 9.8, 10.5)

5 6 (7.8, 8.4, 9.0) 5 (6.5, 7.0, 7.5)

posed design to various types of benchmark circuits.

References

[1] K. Agarwal, ”Characterizing process variation in nanometer CMOS,”
Proc. ACM/IEEE DAC, pp. 396–399, Jun. 2007.

[2] M.Maniatakos, M.K.Michael, and Y.Makris, ”Vulnerability-Based In-
terleaving for Multi-Bit Upset (MBU) Protection in Modern Micro-
processors,” Proc. ITC, paper. 19.2, May 2012.

[3] S. Lin and D. Costello,Error Control Coding: Fundamentals and Ap-
plications, Prentice-Hall, Englewood Cliffs, NJ, 2004.

[4] A. Hossein and M.B. Tahoori, ”Soft error modeling and remediation
techniques in ASIC designs,” Volume 41, Issue 8, pp. 506–522, Au-
gust 2010.

[5] W.Wu, ”MBU-Calc: A compact model for Multi-Bit Upset (MBU)
SER estimation,” Proc. IRPS, 2015.

[6] J. Maiz, S. Hareland,K.Zhang, and P.Armstrong, ”Characterization of
multi-bit soft error events in advanced SRAMs,” Proc. EDM, 2004.

[7] S. Baeg, S. Wen, and R. Wong, ”SRAM Interleaving Distance Selec-
tion With a Soft Error Failure Model,”IEEE Transactions on Nuclear
Science, Volume: 56, Issue: 4, Aug. 2009.

[8] R. Naseer and J. Draper, ”DEC ECC design to improve memory relia-
bility in Sub-100nm technologies,” Inter national Conference on Elec-
tronics, Circuits and Systems, 2008.

[9] R.C. Baumann, ”Radiation-induced soft errors in advanced semicon-
ductor technologies”, IEEE Transactions on Device and Materials Re-
liability, vol. 5, no. 3, pp. 305-316, 2005.

[10] G.Neuberger, ”A Multiple Bit Upset Tolerant SRAM Memory,” ACM
TODAES, pp. 577–590, 2003.

ⓒ 2018 Information Processing Society of Japan

DAシンポジウム 
Design Automation Symposium

80

DAS2018
2018/8/30


