
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Further Analysis with Linear Programming on Blocking
Time Bounds for Partitioned Fixed Priority Multiprocessor

Scheduling

ZhongqiMa1,a) Ryo Kurachi1,b) Gang Zeng2,c) Hiroaki Takada1,d)

Received: November 17, 2017, Accepted: May 10, 2018

Abstract: The recently developed FMLP+ provides significant advantages for partitioned fixed priority scheduling,
since it ensures asymptotically optimal O(n) maximum priority-inversion blocking. The constraints under the FMLP+

can be exploited to determine bounds on the blocking time. However, these bounds may be pessimistic since shared
resources local to a processor do not incur priority-inversion blocking in some cases. Consequently, a schedulable task
set may be erroneously judged as unschedulable because of these pessimistic values. Based on our analysis, additional
constraints were added to compute the maximum blocking time bound of each task with linear programming and the
corresponding worst-case response time. The results of experiments show our proposed strategy is less pessimistic
than existing strategies. Meanwhile, we also demonstrate that local resource sharing should be used instead of global
resource sharing where possible.

Keywords: partitioned fixed priority, multiprocessor scheduling, FMLP+, blocking time bound, linear programming

1. Introduction

Since an increasing number of complex systems rely on com-
puter control, real-time computing is becoming essential in a vari-
ety of fields.There are countless examples of applications requir-
ing real-time embedded systems, including industrial automation,
automotive networks, robotics, military systems, and even smart
toys such as LEGO Mindstorms EV3 [1], [2], [3], [4].

Fixed priority preemptive partitioned scheduling algorithms
for multiprocessor systems have been shown to be predictable [5].
The main advantage of using a partitioning approach in mul-
tiprocessor scheduling is that a wealth of real-time scheduling
techniques and analyses for uniprocessor systems can be applied
once an allocation of tasks to processors has been achieved [1].
The following optimality results for uniprocessor scheduling have
a strong influence on research into partitioned multiprocessor
scheduling. Rate monotonic (RM) priority assignment is the op-
timal policy for periodic task sets with implicit deadlines, if pre-
emptive uniprocessor scheduling using fixed priority is consid-
ered [6]. On the other hand, since tasks are statically assigned to
processors under partitioned scheduling algorithms, there are no
job migrations and this serves to reduce overheads.

However, the task allocation problem is analogous to the bin

1 The Graduate School of Information Science, Nagoya University,
Nagoya, Aichi 464–8601, Japan

2 The Graduate School of Engineering, Nagoya University, Nagoya, Aichi
464–8603, Japan

a) marion@ertl.jp
b) kurachi@nces.is.nagoya-u.ac.jp
c) sogo@ertl.jp
d) hiro@ertl.jp

packing problem. It is known to be NP-hard [7], which is the main
disadvantage of applying a partitioning method to multiproces-
sor scheduling. Hence task allocation is a well-studied problem
in the field of real-time systems. A synchronization-aware task
allocation strategy has been proposed to reduce the scheduling
penalties associated with remote task synchronization [8]. That
is, tasks sharing a common mutex are bundled and then are co-
located, transforming the shared mutex into a local mutex. This
strategy is more efficient than the previous ones.

For the task synchronization, each task executes critical sec-
tions on its assigned processor in shared-memory systems.
The FIFO Multiprocessor Locking Protocol (FMLP+) [9], a
refinement of the Flexible Multiprocessor Locking Protocol
(FMLP) [10] for partitioned scheduling, is also a shared-memory
locking protocol. Similarly, FIFO queues are employed to order
requests for resources as well as blocked tasks. Although the
FMLP cannot ensure asymptotically optimal priority-inversion
blocking, the updated FMLP+ assigns priorities to tasks: the ef-
fective priority of a lock holder is the time at which it requested
the lock. It is this improved rule that ensures asymptotically op-
timal maximum priority-inversion blocking [9].

Concerning the calculation of blocking time bound, a linear-
programming-based analysis technique, which is significantly
less pessimistic than previous approaches, was developed in
Ref. [11]. The problem of obtaining bounds on the maximum
blocking can be transformed into a linear programming (LP) by
imposing a few constraints, whereas previous methods require
the analyst to explicitly consider each critical section. Thus, LP
solvers provide a straightforward approach for obtaining bounds,
such as the GNU Linear Programming Kit (GLPK) [12] or the

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

CPLEX Optimizer developed by IBM [13].

1.1 Contributions
Under the FMLP+, the bounds on maximum blocking time

may be less pessimistic if local critical sections are considered.
As is described in Ref. [8], local synchronization eliminates the
scheduling penalties associated with global synchronization. We
analyzed the solutions derived from the LP solver and determined
how the above technique can be enhanced with additional con-
straints. As a result, those task sets which were erroneously
judged as unschedulable are judged as schedulable with our pro-
posed approach. Otherwise expensive processors with higher
performance might be considered to improve the schedulability,
which leads to higher costs. The effectiveness and merits of our
strategies were demonstrated in the experiments. We also evalu-
ated how much the average blocking time bounds were improved.

1.2 Organization
We introduce the task model and related assumptions in Sec-

tion 2. We then review three kinds of delays, the blocking frac-
tion, and the objective function in Section 3. We also state how
to formalize blocking time bounds as a linear optimization prob-
lem, and how to compute the worst-case response time (WCRT)
of each task. In Section 4, we analyze the pessimism of existing
constraints through a numerical example. Additional constraints
are developed in Section 5, and evaluations of our approach are
provided in Section 6. Finally, we present our conclusions and
areas for future work in Section 7.

2. Definitions

2.1 Assumptions
Fixed priority scheduling, with tasks having conventional RM

scheduling priorities, is considered in this paper. Each task’s
worst-case execution time (WCET) and period are assumed to
be known in advance. For simplicity, implicit-deadline task sets
are also assumed. That is, each task’s deadline is equal to its
corresponding period.

All of the critical sections are assumed to be non-nested. Each
job for a task requests and holds at most one resource at any time.
Jobs release all resources before their completion. The FMLP+,
which ensures mutual exclusion, is utilized when two or more
jobs access the same resource. If a job requires a locked resource,
it must wait and incurs a delay until the requested resource is re-
leased. Semaphore protocols are used in this paper, under which
jobs wait by suspending instead of spinning.

2.2 Task Model
Consider a real-time workload consisting of n sporadic tasks

τ = {T1, T2, . . . , Ti, . . . , Tn} scheduled on m identical processors
{P1, P2, . . . , Pm}, whose cores have equal processing capabilities.
Each task has a unique and fixed base priority under partitioned
fixed priority scheduling. For brevity, tasks are ordered in strictly
decreasing order of base priorities. That is, i < j implies that Ti

has a higher priority than T j. Tasks are assigned to the m proces-
sors statically. The function P(Ti) returns Ti’s assigned processor.

Each task is considered to be an alternating sequence of normal

Table 1 An example of a task set.

Ti P(Ti) di Ni,1 Li,1 Ni,2 Li,2 Ni,3 Li,3

T1 : (1, 1, 1, 2, 1) P1 30 1 2 1 1 0 0
T2 : (1, 3, 1, 4, 1) P2 40 0 0 1 3 1 4
T3 : (1, 5, 1) P1 50 1 5 0 0 0 0
T4 : (1, 6, 1) P2 60 0 0 0 0 1 6
T5 : (1, 7, 1) P1 70 1 7 0 0 0 0
T6 : (1, 8, 1) P2 80 0 0 0 0 1 8

execution segments and critical section execution segments [8].
Ti is described as follows:

Ti : (Ei,1,Ci,1, Ei,2,Ci,2, . . . , Ei,s(i)−1,Ci,s(i)−1, Ei,s(i)),

where Ei, j is the WCET of Ti’s jth normal execution, Ci,k is the
WCET of Ti’s kth critical section, s(i) is the number of Ti’s nor-
mal execution segment, and thus, Ti’s critical section execution
segment must be s(i) − 1. Therefore, the WCET of Ti is denoted
by ei such that

ei =

s(i)∑
j=1

Ei, j +

s(i)−1∑
k=1

Ci,k.

In this paper, we mainly consider the following situation: ∀Ei, j :
Ei, j > 0.

The deadline (= period) of Ti is denoted as di, and the utiliza-
tion of Ti is defined as ui = ei/di. Let Ji denote a job of Ti, and
Ji’s response time is the difference between its finishing time and
arrival time. Ti’s WCRT ri denotes the maximum value of any Ji’s
response time. Ti’s bound on maximum blocking time is denoted
by bi.

2.3 Resources
The tasks share nr serially reusable resources l1, l2, . . . , lnr be-

sides the m processors. Here, Ni,q is the maximum number of
times that any Ji accesses lq, and Li,q denotes Ti’s maximum crit-
ical section length, which means the maximum duration that any
Ji uses lq in a single access. That is Li,q = 0 if Ni,q = 0.

A resource is called a local resource in this paper if all of the
tasks accessing the resource are assigned to the same processor.
Conversely, a resource which is accessed by tasks allocated to dif-
ferent processors is said to be a global resource [14]. We let P(lq)
denote the processor on which the local resource lq is located.
Consider Table 1. There are 6 tasks sharing 3 resources. Tasks
T1, T3, and T5 are assigned to processor P1 and T2, T4, and T6 are
assigned to P2. Resource l1 is accessed by T1, T3, and T5; l2 by
T1 and T2; and l3 by T2, T4, and T6. From the above definitions,
l1 and l3 are local resources, while l2 is a global resource.

Under the FMLP+, priority of a task is raised to expedite re-
quest completion after it requests a resource.

3. Blocking Time Formulation

A linear-programming-based blocking analysis technique has
been proposed which offers substantial improvements over prior
blocking time bounds [11]. It can be adapted under various pro-
tocols besides the FMLP+.

3.1 Delay
There are three kinds of delays common to all shared-memory

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 1 An example of blocking fractions. J1 arrives at t3, J3 at t0, and J2

at t4. R3,1,1
1 and R2,2,1

1 cause J1 to incur preemption delay and direct
request delay, respectively.

locking protocols [9].
(1) Direct Request Delay: This arises under any protocol when-

ever a job Ji requests an unavailable resource. Ji can po-
tentially incur blocking while waiting for the lock holder to
finish its critical section. Direct request delay occurs only
via resources which Ji requests.

(2) Indirect Request Delay: This arises if Ji waits for another
job Ja to release a resource but Ja has been preempted by a
third job Jb, thus increasing Ji’s total acquisition delay. In-
direct request delay can arise due to shared resources which
Ji never accesses.

(3) Preemption Delay: This arises when Ji is preempted by a
priority-boosted, lower-priority job. Thus, preemption delay
affects even tasks which do not access shared resources.

3.2 Blocking Fraction
The concept of the blocking fraction was proposed in Ref. [11]

to express partial blocking. For each Tx, Rx,q,v
i denotes the vth re-

quest for lq by jobs of Tx from Ji’s release until its completion.
Here, bx,q,v

i denotes the blocking incurred by Ji due to the execu-
tion of Rx,q,v

i . The corresponding blocking fraction is as follows:

Xx,q,v
i =

bx,q,v
i

Lx,q
, (1)

where Xx,q,v
i ∈ [0, 1]. Xx,q,v

i indicates the fraction of blocking time
which was observed during Ji, out of the total blocking time that
could arise from Rx,q,v

i . Here, Xx,q,v
i,D , Xx,q,v

i,I , and Xx,q,v
i,P are the frac-

tions of blocking due to direct request delay, indirect request de-
lay, and preemption delay, respectively.

We refer to blocking fractions by means of an illustration. Con-
sider Fig. 1. J1 suffers blocking twice. Preemption delay is in-
curred by J3 during [3, 6) and direct request delay by J2 during
[7, 8). We can see b3,1,1

1 = 3, b2,2,1
1 = 1 from Fig. 1 and L3,1 = 5,

L2,2 = 3 from Table 1. Then,

X3,1,1
1,P =

b3,1,1
1

L3,1
=

3
5

and X2,2,1
1,D =

b2,2,1
1

L2,2
=

1
3
.

3.3 Objective Function
A task set is schedulable if each task’s WCRT, which depends

on its maximum blocking time bound, is less than or equal to its
deadline (i.e., ri � di for each Ti). Therefore, we consider each
task’s bound on maximum blocking time to be the objective func-
tion.

Blocking depends on the access of both the local and global re-
sources. Let bl

i and br
i denote bounds on the maximum local and

remote blocking time, respectively. Similarly, τl and τr denote
the sets of the local and remote tasks. Ni

x,q denotes the number of
requests by Tx for lq from Ji’s release until its completion. Ni

x,q

can be bounded for a sporadic task Tx [9]. The objective function
is described as follows [11]:

maximize bi, i = 1, 2, . . . , n (2)

where

bi = bl
i + br

i , (3)

bl
i =
∑
Tx∈τl

nr∑
q=1

Ni
x,q∑
v=1

(Xx,q,v
i,D + Xx,q,v

i,I + Xx,q,v
i,P) · Lx,q,

br
i =
∑

Tx∈τr

nr∑
q=1

Ni
x,q∑
v=1

(Xx,q,v
i,D + Xx,q,v

i,I + Xx,q,v
i,P) · Lx,q,

τl = {Tx|P(Tx) = P(Ti) ∧ x � i},
τr = {Tx|P(Tx) � P(Ti)},

Ni
x,q =

⌈
ri + rx

dx

⌉
· Nx,q. (4)

The objective function is used to obtain each Ti’s theo-
retical maximum blocking time caused by other tasks
(T1,T2, . . . , Ti−1,Ti+1, . . . , Tn) in the same task set, i.e., Ti’s
bound on maximum blocking time. In other words, each task has
its own maximum blocking time bound. When we compute Ti’s
maximum bound, we consider how Ti is delayed by other tasks
and neglect other tasks’ blocking time. We have to compute all
task bounds one by one so as to do the analysis of schedulability.

3.4 Linear Optimization
Figure 1 outlines the computation of the blocking fraction

based on its theoretical definition. The worst-case scenarios in
hard real-time issues are the main concern. However, Fig. 1 does
not represent the worst-case scenario, and b3,1,1

1 = 3 or b2,2,1
1 = 1

is not the maximum blocking time bound, either. Only when a
task’s maximum blocking time bound is obtained shall we be able
to make the corresponding scenario.

For the FMLP+, the bound on maximum blocking time can be
formalized as a linear optimization problem in terms of the block-
ing fractions (variables), Eq. (2) (objective function) mentioned
above, and Constraint 1, 9–14 in Ref. [11].

3.5 Response Time Analysis
We use response time analysis to determine each Ti’s ri [8],

[15]. Under blocking conditions, the response time of a task with
a fixed priority can be calculated by the following recurrent rela-
tion.
(1) Initial Condition: Iteration starts with Eqs. (5a) and (5b),

which are the first points in time that Ti and Tx could possi-
bly complete.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(0)
i = ei (5a)

r(0)
x = ex (5b)

Ni,(0)
x,q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
r(0)

i + r(0)
x

dx

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥ · Nx,q. (5c)

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

After each Ni,(0)
x,q is substituted into the constraints, we can

solve the LP and obtain bl,(0)
i and br,(0)

i , the initial bounds on
the maximum local and remote blocking time respectively.

(2) Recurrence: If r(u)
i = r(u−1)

i , then r(u)
i is the actual WCRT for

Ti; that is, ri = r(u)
i . Otherwise, we have to compute each ri

iteratively with Eq. (6) until ri converges for each task.

r(u)
i = ei + b(u−1)

i +
∑

Th∈P(Ti)
h<i

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
r(u−1)

i + br,(u−1)
h

dh

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥ · eh, (6)

Here, b(u−1)
i = bl,(u−1)

i +br,(u−1)
i . Once ri is calculated, the fea-

sibility of Ti is guaranteed if and only if ri � di. Conversely,
a task set is judged as unschedulable if ri > di for at least
one Ti.

4. Analysis on Pessimism

A numerical example is presented to demonstrate the pes-
simistic results derived under the existing constraints. Recall Ta-
ble 1. We made use of GLPK to solve the generated LPs of each
task. Concerning T1, the solution can be seen in the first row of
Table 2. Other variables equal to 0, such as X2,2,1

1,I , X4,3,1
1,D , and

X6,3,1
1,P , are not listed in the table, because they do not alter the

value of the objective function.
First, we consider the blocking incurred by J1 due to direct

request delays. Since X3,1,1
1,D = 1 and X5,1,1

1,D = 1, J1 must incur
blocking twice when requesting l1. However, there is no way for
J3 or J5 to execute if J1 arrives or resumes earlier than (or at
the same time as) J3 or J5 (see Fig. 2 (a)). Conversely, J1 cannot
request l1 if J3 or J5 is the lock holder of l1, because of priority-
boosted J3 or J5 and J1’s unfinished normal execution segment
(see Fig. 2 (b)). Thus, it is impossible that R3,1,1

1 or R5,1,1
1 causes

J1 to incur a direct request delay.
Similarly, R4,3,1

1 and R6,3,1
1 also cause J1 to incur an indirect re-

quest delay twice in spite of l2 which J1 never accesses. However,
only when J1 waits for J2 to release l2 but J2 has been preempted
by J4 or J6 does b4,3,1

1 or b6,3,1
1 occur. Since J2 in a critical section

has the highest priority on P2, b4,3,1
1 or b6,3,1

1 cannot occur.
It is possible for b2,2,1

1 to occur because T1 and T2 are assigned
to two different processors. J2 can affect J1 directly as long as J2

has locked l2 when J1 issues a request for l2.
On the other hand, there are other feasible solutions due to the

symmetry of Constraint 1 in Ref. [11]. Now that J1 is never di-
rectly delayed by J3 or J5, the priority-boosted J3 and J5 are likely
to preempt J1. X2,2,1

1,D = X3,1,1
1,P = X4,3,1

1,I = X5,1,1
1,P = X6,3,1

1,I = 1 is an-
other optimal solution. Here, X3,1,1

1,P = 1 and X5,1,1
1,P = 1 cannot

change b1 (or ri) but they provide a better result than X3,1,1
1,D = 1

and X5,1,1
1,D = 1. Of course, the values of X4,3,1

1,I and X6,3,1
1,I are still

pessimistic.
Overall, the actual execution time for J1 is much lower than the

theoretical upper bounds. It is impossible to make a correspond-
ing figure for the worst-case scenario for J1. We computed b1

(b1 = 29 in Table 2) by Eq. (3) and obtained r1 = 40 and r2 = 51,
as listed in the second row of Table 3 after iteratively calculating
ri. Both T1 and T2 miss their deadlines, and so the task set is re-
garded as unschedulable. It is therefore necessary for us to derive
more realistic and less pessimistic values.

Table 2 Comparison of the blocking fractions and the maximum blocking
time bounds.

method X2,2,1
1,D X3,1,1

1,D X3,1,1
1,P X4,3,1

1,I X5,1,1
1,D X5,1,1

1,P X6,3,1
1,I b1

existing method 1 1 0 1 1 0 1 29

proposed method 1 0 1 0 0 1 0 15

Fig. 2 As is depicted in Fig. 2 (a), higher-priority jobs arrive earlier than
lower-priority ones, whereas Fig. 2 (b) depicts the situation in which
lower-priority jobs arrive earlier than higher-priority ones. No mat-
ter which job arrives earlier, local resources will never incur direct
request delay under the FMLP+.

Table 3 Comparison of the WCRT.

Ti T1 T2 T3 T4 T5 T6

di 30 40 50 60 70 80
ri (existing method) 40 51 26 26 28 38

ri (proposed method) 21 25 20 26 22 28
improvement (%) 47.50 50.98 23.08 0 21.43 26.32

5. Improvements

Since the above example showed us that the bounds on the
maximum blocking time obtained by the original constraints were
pessimistic, we tried to reduce pessimism through additional con-
straints.

5.1 Preliminaries
To simplify the necessary lemma and theorems, we define J̃i

as a job starting with a normal execution segment (i.e., E1,1 � 0).
The lemma is then expressed as follows.

Lemma 1 Under the FMLP+, if J̃i in a critical section is pre-
empted by another job Ja, then Ja must be in an earlier-initiated
global critical section.

Proof: Suppose not. Then Ja is in a local critical section, which
was initiated earlier than J̃i but has not yet finished. Since Ja’s
critical section is local, Ja cannot be affected by jobs on other
processors. Thus, there must exist a job Jb which is local to Ja

and is executing its critical section. Ja will continue executing its
local critical section as soon as Jb finishes its critical section. J̃i

cannot execute its critical section because Ja’s effective priority
is higher than J̃i’s at that time. It is impossible that Ja preempts
J̃i in a critical section. Contradiction. �

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

5.2 Theorems
We were able to deduce the following theorem for the direct

request delay after obtaining X3,1,1
1,D = 0 and X5,1,1

1,D = 0 in the ex-
ample above.

Theorem 1 J̃i never incurs direct request delays due to other
jobs in local critical sections under the FMLP+.

Proof: Suppose not. Then there exists a lower-priority job Jx

local to J̃i, which delays J̃i directly. According to the FMLP+,
lock holders are scheduled in order of increasing lock-request
time [11]. Jx must request a local lock earlier than J̃i. J̃i has also
requested the same lock before Jx releases the lock. But the ef-
fective priority of a lock holder is higher than any other local jobs
in normal execution segments under the FMLP+. Thus, J̃i cannot
execute its normal execution segment before its critical section
when Jx is in the critical section. J̃i cannot issue the request if J̃i

does not finish its normal execution segment first. Contradiction.
�

Similarly, the second theorem about indirect request delays can
be derived from the fact that X4,3,1

1,I = 0 and X6,3,1
1,I = 0.

Theorem 2 Under the FMLP+, J̃i never incurs indirect re-
quest delays caused by Jb’s local critical sections if J̃i waits for
J̃a to release a resource.

Proof: Suppose not. From the definition of an indirect request
delay, J̃a must be preempted by a third job Jb. From the Lemma,
it is impossible for J̃a to be preempted by Jb in a local critical
section. Contradiction. �

By analysis, we also surmised that the preemption delay is re-
lated to the global critical sections. Let s̃(i) denote the number of
global resources accessed by Ti.

Theorem 3 The number of times that priority-boosted,
lower-priority jobs J̃x in critical sections can preempt J̃i is at most
1 + s̃(i) under the FMLP+.

Proof: From the Lemma, J̃i must be in a normal execution seg-
ment. Other lower-priority jobs local to J̃x can delay J̃i with at
most one critical section whenever J̃i resumes. According to The-
orem 1, J̃i cannot be suspended due to other jobs in local critical
sections if J̃i does not have global critical sections. That is, the
number of times that J̃i may be preempted by J̃x depends on the
number of global resources accessed by J̃i. In addition to the first
normal execution segment of J̃i, J̃x has at most 1 + s̃(i) opportu-
nities to affect Ji. �

5.3 Additional Constraints
We now consider an additional constraint arising from Theo-

rem 1.
Additional Constraint 1 In any schedule of τ under the

FMLP+:

∑
Tx∈τi

∑
lq∈liq̄

Ni
x,q∑
v=1

Xx,q,v
i,D = 0,

where τi = τ \ {Ti} is the set of all tasks except Ti. liq̄ = {lq|P(lq) =
P(Ti)} denotes the local resources on the processor which Ti is as-
signed to. Likewise, the following additional constraint is based
on Theorem 2.

Additional Constraint 2 In any schedule of τ under the

Table 4 List of Notations.

Ti Task i

τi the set of all tasks except Ti

τl the set of local tasks

τr the set of remote tasks

τll the set of local, lower-priority tasks

Ji a job of Ti

J̃i a job starting with a normal execution segment

lq resource q

liq̄ local resources on the Ti’s assigned processor

P(lq) the processor on which local resources lq are

m the number of processors

n the number of tasks

nr the number of resources

s̃(i) the number of global resources accessed by Ti

Ni
x,q the number of requests by Tx for lq from Ji’s release

until its completion

Li,q Ti’s maximum critical section length

Ni,q the maximum number of times that any Ji accesses lq

Rx,q,v
i the vth request for lq by jobs of Tx

bx,q,v
i actual blocking due to the execution of Rx,q,v

i

Xx,q,v
i the proportion of blocking time actually incurred by Ji

FMLP+:

∑
Tx∈τi

∑
lq∈liq̄

Ni
x,q∑
v=1

Xx,q,v
i,I = 0.

In practice, local resource sharing is adopted as much as possible
to avoid the penalties associated with remote task synchroniza-
tion. The benefits of Additional Constraint 1 and 2 are that block-
ing incurred by local synchronization can be eliminated. The
third constraint can then be derived from Theorem 3.

Additional Constraint 3 In any schedule of τ under the
FMLP+:

∑
Tx∈τll

nr∑
q=1

Ni
x,q∑
v=1

Xx,q,v
i,P � 1 + s̃(i).

where τll = {Tx|P(Tx) = P(Ti) ∧ x > i} is the set of local, lower-
priority tasks. The number of global resources will shrink if the
task allocation algorithm of transforming global resource sharing
into local sharing is used. s̃(i) will also grow smaller so that the
pessimism of Xx,q,v

i,P can be limited.
The three additional constraints above cannot be used indepen-

dently but only in combination with Constraint 1 and 9–14 in
Ref. [11].

5.4 Review of the Example
We now return to the numerical example in Table 1. We add

the three additional constraints and compute each task’s bound
on maximum blocking time. As the last column of Table 2 lists,
bi has been greatly reduced from 29 to 15. The new value ob-
tained by our proposed method is closer to the actual maximum
blocking time than by the existing one.

The second row of Table 2 shows that R2,2,1
1 might cause J1 to

incur direct request delay as before. Yet X3,1,1
1,D = X5,1,1

1,D = 1 is
now X3,1,1

1,P = X5,1,1
1,P = 1. Although J1 may still be affected by J3

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 3 A worst-case scenario for J1 under the FMLP+. From the second row of Table 2, b1 = 15. On P1,
J1, J3, and J5 arrive at t2, t1, and t10, respectively; J2 arrives at t1; and both J4 and J6 arrive at t0
on P2. J1 is successively affected by J3 with the direct request delay, by J2 with preemption delay
and by J5 with the direct request delay.

and J5’s critical sections, this is because Additional Constraint 1
works that the rate of occurrence of both kinds of delays is now
more reasonable. On the other hand, X4,3,1

1,I = X6,3,1
1,I = 1 becomes

X4,3,1
1,I = X6,3,1

1,I = 0, leading to less pessimism that J1 cannot be
indirectly delayed by J4 or J6 due to Additional Constraint 2.

We can now estimate b3,1,1
1 = 5, b2,2,1

1 = 3, and b5,1,1
1 = 7 from

Eq. (1). As Fig. 3 depicts, the schedule results in a worst-case
scenario for J1. Next, we explain in detail how J1 is delayed by
J3, J2, and then by J5.
(1) b3,1,1

1 = 5: J3’s critical section begins and its priority is
boosted at t2. J3’s effective priority is higher than J1’s until
t7, though J1 has the highest base priority among all tasks.
Therefore, J1 is blocked by J3 as soon as it arrives.

(2) b2,2,1
1 = 3: From the figure, both J1 and J2 request l2 at t8.

Then J1 should have acquired the lock due to its higher base
priority. In theory, we have to consider the maximum block-
ing. That is, J1 requests l2 after J2 does. We suppose that
J1 issues a request for l2 at t8+ε instead of t8, where ε is a
sufficiently small positive number (i.e., ε > 0, ε → 0). As a
result, J2 acquires the lock and J1 remains suspended until
t11. Thus,

b2,2,1
1 = lim

ε→0
[11 − (8 + ε)] = 3.

(3) b5,1,1
1 = 7: In the same way as b3,1,1

1 , J1 is preempted by the
priority-boosted J5 at t12. Also, J5 is preempted by J1 at t11

because the lock holders are scheduled in order of increasing
lock-request time.

On the other hand, J5 could not cause J1 to incur a preemp-
tion delay at t12 if J1 did not access the global resource l2, or if l2
was a local resource instead of a global one. Without accessing
a global resource, J1 could not be delayed by J2 on the remote
processor. That is, J5 could not be executed immediately as soon
as it released at t10. As is described in Additional Constraint 3,
preemption delay is related to the number of task’s global criti-
cal sections. This example also illustrates that a global critical
section may incur additional penalties.

Based on the new blocking time bounds, we repeated the ex-
periment in Section 3.5. The new WCRT of each task is listed
in the third row of Table 3. All of the tasks are completed be-
fore their deadlines. Unlike the result presented in Section 4, the
whole task set is now schedulable. By comparison, a task set
might be judged as unschedulable without additional constraints.

6. Experiments

The main purpose of our experiments was to verify whether
results could become less pessimistic if there are local resources
available after task allocation.

6.1 Task Generation
The following parameter settings were used in the experiments:

(1) Critical sections
• nr = 8
• Nmax ∈ {1, 3}
• Ni,q ∈ [0,Nmax]
• Li,q: 2 kinds of uniform distributions

(2) Task sets
• m = 8
• n ∈ [m, 10 · m]
• di ∈ [10 ms, 100 ms]
• ui ∈ [0.1, 0.2]
In order to generate critical sections, we considered three pa-

rameters: Ni,q, Li,q, and the number of resources nr. Ni,q was
related to the maximum request times Nmax and randomly chosen
from {0, 1, . . . ,Nmax}. Ti did not access lq if Ni,q = 0. Otherwise
the corresponding Li,q was uniformly distributed over the range
[50 μs, 100 μs) (short) and [100 μs, 500 μs] (long).

For simplicity, we considered only one multiprocessor plat-
form with 8 processors. The number of tasks n ranged from n = m

to n = 10 · m. di was chosen from a uniform distribution rang-
ing over [10 ms, 100 ms]; ui was also uniformly distributed over
[0.1, 0.2].

6.2 Allocation
Our priority was to determine whether our additional con-

straints could eliminate pessimism. The more local resources
available after allocation, the more effective additional constraints
for local resources might be. Therefore, we considered the
synchronization-aware task allocation algorithm in Ref. [8]. First,
tasks which share the same resource were bundled together, and
then the bundles which could not be assigned as a single task to
a processor were split into bundles or tasks that would fit any ex-
isting processor.

6.3 Comparison
We used the same settings of parameters as Ref. [11]. To show

the merits of our proposed method more clearly, we added a new

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 4 Average blocking time bounds under three combinations of parame-
ters.

type of critical section length (long). Under the same settings, we
tested 100 task sets for each n, calculated all task blocking time
bounds for each task set, and counted the number of schedulable
tasks (i.e., ri � di) separately. Then we averaged the blocking
time bounds of all tasks in 100 task sets as well as the propor-
tion of schedulable tasks. The number of schedulable tasks was
in particular set to zero unless the corresponding task set could be
partitioned.

On the other hand, those tasks whose blocking time bounds
were significantly improved had a large effect on schedulability
directly or indirectly. Some tasks became schedulable directly
under our proposed method, whereas they were regarded as un-
schedulable under the existing one. Although the schedulability
of other tasks did not change, they affected several remote lower-
priority tasks. In addition to the average blocking time bound,
we collected the maximum percentage decrease in blocking time

Fig. 5 Maximum percentage decrease in blocking time bounds under three
combinations of parameters. We draw purple curves to show the
maximum decrease between two methods. Yet red or green ones
only represent the blocking time bounds in the case of maximum dif-
ference under the improved or existing method, respectively. They
are not discussed independently.

bound among 100 task sets for each n.
Firstly, we consider the parameter for the short critical section.

As is depicted in Fig. 4 (a), we used the following parameter set-
tings: Nmax = 1. Since task sets were found to be unschedulable
if n > 55, the blocking time bounds were not computed. The
average blocking time bound of each task set slightly decreases
under the conditions of short critical sections. From Fig. 6 (a) no
clear difference can be seen between the improved method and
the existing method. This is due to the slight reduction in block-
ing time bounds that our proposed approach brings, giving only
a small improvement in the schedulability. Therefore, a curve
was added to show the difference in percentage of schedulable
tasks (the same as Fig. 6 (b) and Fig. 6 (c)). However, Fig. 5 (a)

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 6 Percentage of schedulable tasks under three combinations of param-
eters.

evidently shows the maximum difference in blocking time bound
for each n between two methods. For n < 13: the maximum per-
centage decrease is up to about 90%. The percentage decrease in
Fig. 4 (a) also illustrates that the bounds on maximum blocking
time are effectively reduced with our strategy.

Next, we consider Fig. 4 (b) for the experiment with a long crit-
ical section and Nmax = 1. Compared with the existing method,
our strategy lowers the average blocking time bound by more than
27%. Most significantly, for n = 9, the blocking time bound de-
creases by as much as 65.7%. In Fig. 5 (b), the maximum de-
crease in blocking time bound can be seen obviously under the
circumstance of long critical sections. Figure 6 (b) also shows a
clearer advantage for our proposed method than Fig. 6 (a). The
schedulability also rises because the bounds on maximum block-
ing time are less pessimistic. Especially at n = 9, the percentage
of schedulable tasks improves 1%. Although the request times are

unchanged, the additional constraints perform better if the critical
sections are longer.

Finally, we consider the case when Nmax = 3. More request
times also increase the total length of the critical section. The
result depicted in Fig. 4 (c) shows a larger advantage for the im-
proved method than in Fig. 4 (b): about a 30% decrease in the
average blocking time bound and 73% decrease in the maximum
blocking time bound at n = 10. On the other hand, Fig. 5 (c) illus-
trates the greatest improvement in the maximum decrease among
Fig. 5. Significantly at n = 8, 9, 11, 12 or 15, the percentage drops
more than 90%. Figure 6 (c) shows a higher schedulability for
the improved method when the number of supported tasks is be-
tween 11 and 45. For n = 26, schedulability increases by nearly
2 percentage points (maximal value). The results of experiments
reveal that the additional constraints work better for more request
times.

Overall, since the schedulability is relevant to the task’s WCRT
and deadline, our proposed method sometimes brings a small im-
provement in the schedulability if task sets are randomly gen-
erated. On the contrary, shorter deadlines may lead to a bigger
improvement. Nevertheless, the additional constraints make the
blocking time bounds less pessimistic under the different combi-
nations of parameters.

7. Conclusion

Using a numerical example, the existing approach is shown
to result in pessimistic values. From a theoretical perspective,
we succeed in solving the problem through the introduction of
three additional constraints on the local critical section. As long
as there exist local resources after task allocation, the additional
constraints can function. The results of experiments indicate
that it is more efficient to utilize both the original and additional
constraints together, especially under the condition that the crit-
ical sections are relatively long. They also illustrate that the
pessimism of maximum blocking time bound is reduced signif-
icantly. Although the schedulability rises slightly, our results still
represent an improvement over the existing method.

In our future work, we intend to include further constraints un-
der different protocols besides the distributed locking protocols.
We shall also try to apply our strategy to the spin execution con-
trol policy as well as the global scheduling algorithm.

References

[1] Davis, R.I. and Burns, A.: A Survey of Hard Real-Time Scheduling
for Multiprocessor Systems, ACM Computing Surveys, Vol.43, No.4,
p.35 (2011).

[2] Yamaguchi, A., Nakamoto, Y., Sato, K., Watanabe, Y. and Takada,
H.: EDF-PStream: Earliest Deadline First Scheduling of Preemptable
Data Streams–Issues Related to Automotive Applications, Embedded
and Real-Time Computing Systems and Applications, Proc. 21st Inter-
national Conference, pp.257–267, IEEE (2015).

[3] Buttazzo, G.: Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, Springer Science & Busi-
ness Media (2011).

[4] Li, Y., Ishikawa, T., Matsubara, Y. and Takada, H.: A Platform for
LEGO Mindstorms EV3 Based on an RTOS with MMU Support,
OSPERT , pp.51–59 (2014).

[5] Ha, R. and Liu, J.W.S.: Validating Timing Constraints in Multiproces-
sor and Distributed Real-Time Systems, Distributed Computing Sys-
tems, Proc. 14th International Conference, pp.162–171, IEEE (1994).

[6] Liu, C.L. and Layland, J.W.: Scheduling Algorithms for Multipro-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

gramming in a Hard-Real-Time Environment, Journal of the ACM,
Vol.20, No.1, pp.46–61 (1973).

[7] Garey, M.R. and Johnson, D.S.: Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman & Co., New
York, USA (1979).

[8] Lakshmanan, K., de Niz, D. and Rajkumar, R.: Coordinated Task
Scheduling, Allocation and Synchronization on Multiprocessors,
Proc. 30th Real-Time Systems Symposium, pp.469–478, IEEE (2009).

[9] Brandenburg, B.B.: Scheduling and Locking in Multiprocessor Real-
Time Operating Systems, PhD Thesis, University of North Carolina at
Chapel Hill (2011).

[10] Block, A., Leontyev, H., Brandenburg, B.B. and Anderson, J.H.: A
Flexible Real-Time Locking Protocol for Multiprocessors, Embedded
and Real-Time Computing Systems and Applications, Proc. 13th In-
ternational Conference, pp.47–56, IEEE (2007).

[11] Brandenburg, B.B.: Improved Analysis and Evaluation of Real-Time
Semaphore Protocols for P-FP Scheduling, Proc. 19th Real-Time
and Embedded Technology and Applications Symposium, pp.141–152,
IEEE (2013).

[12] GNU Project: GLPK, Free Software Foundation (online), available
from 〈https://www.gnu.org/software/glpk/〉 (accessed 2017-05-01).

[13] IBM: CPLEX Optimizer, United States (online), available from
〈http://www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/〉 (accessed 2017-05-01).

[14] Roux, O.H.: Deadlock Prevention in a Distributed Real-Time System,
Distributed Computer Control Systems 1995, pp.123–128 (2014).

[15] Audsley, N., Burns, A., Richardson, M., Tindell, K. and Wellings,
A.J.: Applying New Scheduling Theory to Static Priority Preemptive
Scheduling, Software Engineering Journal, Vol.8, No.5, pp.284–292
(1993).

Zhongqi Ma was a Ph.D. student at the
Graduate School of Information Science,
Nagoya University. He graduated from
East China University of Science and
Technology with a bachelor’s degree, and
further a master’s degree at Donghua Uni-
versity (China). He won the Japanese
Government Scholarship and came to

Japan to pursue a doctor’s degree after having worked as a soft-
ware engineer in Shanghai for a few years. His research interests
include real-time operating systems and multi-processor schedul-
ing theory.

Ryo Kurachi is a Designated Associate
Professor of Center for Embedded Com-
puting Systems at Nagoya University. He
graduated from Tokyo University of Sci-
ence with undergraduate majors in applied
electronics. After a few years working at
AISIN AW CO., LTD. as a software en-
gineer, he received his master’s degree in

Management of Technology from Tokyo University of Science
in 2007, followed by his Ph.D. in information science from the
Nagoya University in 2012. His research interests includes em-
bedded systems and real-time systems. Within that domain, he
has investigated topics such as in-vehicle networks and real-time
scheduling theory and embedded systems security.

Gang Zeng is an associate professor at
the Graduate School of Engineering,
Nagoya University. He received his Ph.D.
degree in Information Science from Chiba
University in 2006. From 2006 to 2010,
he was a researcher, and then assistant
professor at the Center for Embedded
Computing Systems (NCES), the Gradu-

ate School of Information Science, Nagoya University. His re-
search interests mainly include power-aware computing, real-
time embedded system design. He is a member of IEEE and IPSJ.

Hiroaki Takada is a professor at Insti-
tutes of Innovation for Future Society,
Nagoya University. He is also a pro-
fessor and the Executive Director of the
Center for Embedded Computing Systems
(NCES), the Graduate School of Infor-
mation Science, Nagoya University. He
received his Ph.D. degree in Information

Science from University of Tokyo in 1996. He was a Research
Associate at University of Tokyo from 1989 to 1997, and was a
Lecturer and then an Associate Professor at Toyohashi Univer-
sity of Technology from 1997 to 2003. His research interests
include real-time operating systems, real-time scheduling theory,
and embedded system design. He is a member of ACM, IEEE,
IPSJ, IEICE, JSSST, and JSAE.

c© 2018 Information Processing Society of Japan

