
Workshop on Curling Informatics 2018

Deep Reinforcement Learning
for the Game of Simulated Curling

Kyowoon Lee1,2,a) Sol-A Kim1,2,b) Jaesik Choi2,c) Seong-Whan Lee3,d)

Abstract: Recently, deep reinforcement learning have achieved super-human performance in the determinis-
tic games with discrete action spaces, such as Atari games and Go. However, it is still not clear how to utilize
deep neural networks for discrete actions in complex games in which a minute change of an action could al-
ter the outcome of the games dramatically. To solve this issue, we incorporates a deep neural network for
learning game strategy with a kernel-based Monte Carlo tree search for finding actions from continuous space
especially for the game of curling. Without any hand-crafted feature, we train our network in supervised
learning manner and then reinforcement learning. Recently, our framework outperforms existing programs
equipped with several hand-crafted features for curling and won in the Game AI Tournaments (GAT-2018).

1. Background

1.1 Monte Carlo Tree Search

Monte Carlo Tree Search is a search algorithm to explore

game tree in finite-horizon sequential decision-making set-

tings. It iteratively simulate executions (edges) from the

current state to a terminal state, trying to approximate

the winning percentage or expected value of the simulated

states (nodes). For each simulation, it selects successive

child nodes based on a selection function. When a node is

visited whose immediate children are not in the tree, the

node is expanded by creating a new child node. Then, simu-

lation begins at expanded node and continues until the end

of the game, selecting actions based on the rollout policy.

The rollout statistics are updated in a backward pass.

One of the commonly used MCTS methods is Upper Con-

fidence Bounds Applied to Trees (UCT) [1], which uses Up-

per Confidence Bound (UCB) selection function. Each node

maintains the mean of the rewards received for each action

v̄a and the number of times each action has been used na.

Then, it decides what action with high mean of rewards and

few simulations based on the size of the one-sided confidence

interval on the reward computed based on the Chernoff-

Hoeffding bound; argmaxa v̄a + C
√

log
∑

b nb

na
.

1.2 Kernel Regression

Kernel regression is a non-parametric method for non-

1 Contributed equally to this work
2 Department of Computer Engineering, Ulsan National Insti-

tute of Science and Technology, Ulsan, Republic of Korea
3 Department of Brain and Cognitive Engineering, Korea Uni-

versity, Seoul, Republic of Korea
a) leekwoon@unist.ac.kr
b) sol-a@unist.ac.kr
c) jaesik@unist.ac.kr
d) sw.lee@korea.ac.kr

linear regression where the target value is estimated using a

weighted average of the values of all points in the data set.

A set of identical weighted function is called the kernel and

further denoted K. Given a choice of kernel K, and a data

set (xi, yi)
n
i=0, kernel regression is defined as follow:

E[y|x] =
∑n

i=0 K(x, xi)yi∑n
i=0 K(x, xi)

(1)

One typical kernel function is the Gaussian probability

density function which is defined as follows:

K(x,x′) =
exp(− 1

2 (x− x′)TΣ−1(x− x′)√
(2π)k|Σ|

(2)

2. Deep Reinforcement Learning in Con-

tinuous Action Spaces

2.1 The Policy-Value Network

Our policy and value networks are trained by a unified

network. By sharing the front layers, the network could be

trained faster than training two networks individually [4].

The input of the policy-value network is 32x32 discretized

image (the position of stones in the curling sheet) and 29

features planes; the colour of stones (3 planes), a constant

plane filled by 1s (1 plane), the turn number (8 planes), a

flag whether a grid inside of the house is occupied by any

stone or not (1 plane), and the orders to tee (16 planes).

The hidden layers which are shared have one convolutional

layer and eight residual blocks [3]. Each residual block has

two convolutional layers with batch normalization and the

result is added by the input of the block. For each convolu-

tion, 3x3 filter is used and ReLU is used for the activation

function.

After the shared layers, the network is divided by the

policy head and the value head. The policy head has two

convolutional layers and outputs 32x32x2 discretized image

which is the probability distribution of actions for the best

c⃝2018 Information Processing Society of Japan

5

Workshop on Curling Informatics 2018

1: Use Selection on the current state st to obtain a state st′ to

be used in expansion step.

2: From st′ , run Expansion to add a new action at′
′ and

generate initial actions At′+1.

3: Use Simulation to get the next state st+1′ generated by at′
′.

4: st+1′ is evaluated by value network vθ and updated in

backward pass.

5: Get back to step 1, until the number of iterations reaches to a

predefined playout numbers.

Algorithm 1: KR-DL-UCT

shot given the input state. The policy network pθ, including

the shared layers, have 21 convolutional layers.

The value head has one convolutional layer and two more

fully connected layers. The last layer outputs the probabil-

ity distribution of the expected score in the range of [-8,8]

after the activation with the softmax function. The value

network vθ have 20 convolutional layers and two fully con-

nected layers including the shared layers.

2.2 Continuous Action Search

Algorithm 1 shows the our algorithm Kernel Re-

gression Deep Learning Upper Confidence bound applied

to Trees (KR-DL-UCT) written with general subroutines

Selection,Expansion and Simulation. First, subroutine

Selection selects action based on UCT selection function

with kernel regression E(v̄a|a) and kernel density estimation

W (a) [2].

at = arg max
a∈At

E[v̄a|a] + C

√
log Σb∈At

W (b)

W (a)
(3)

As long as child node exists, it iteratively selects child node

while
√∑

a∈At
na < |At| which is called as progressive

widening, adding additional actions only after the quality of

the best available action is estimated sufficiently well. This

procedure enables the algorithm to use a kind of information

sharing among visited nodes.

Second, subroutine expansion adds a new node by explor-

ing the uncertain area. That is, among the sampled actions

a from the selected action at′ within the similarity γ, an ac-

tion a′t′ which has the lowest estimated visit number W (a)

is selected to expand a node; a′t′ ← argminK(at′ ,a)>γW (a).

The policy network is used to initialize actions with the pol-

icy πa|st+1
for the new expanded nodes including the root.

At′+1←∪ki=1 {a
(i)
init} s.t a

(i)
init∼πa|st′+1

(4)

πa|st′+1
=

pθ(a|st′+1)
1/τ

Σbpθ(b|st′+1)1/τ
(5)

To prevent the biased sampling, the temperature param-

eter τ is applied. Using the unbiased estimator πa|st+1
, the

k number of actions are initialized.

Third, subroutine simulation requests the curling simu-

lator to generate the next state (st+1) by delivering a stone

(at) given the current state (st).

Program Winning Percentage

GCCSGAT’17 74.0 ± 6.22%
AyumuGAT’16 66.5 ± 6.69%
AyumuGAT’17 62.3 ± 6.87%
JiritsukunGAT’16 86.3 ± 4.88%
JiritsukunGAT’17 55.5 ± 7.04%

Table 1 The 8-end game results of KR-DL-UCT against other
programs with exchanging the opening player per game.
The matches are held by following the rules of the lastest
GAT competition.

3. Results

3.1 Dataset

Our dataset is divided into two parts. One is from the

play data of the first grade program AyumuGAT’16 on the

2016 Game AI Tournament (GAT) digital curling field. The

other is the self-play data within our program to improve

the performance of our policy-value network.

3.2 Settings

We validate our proposed model with the high performing

programs in 2016 and 2017 GAT. All the games follows the

rules of 2017 GAT. Each match is scored by 200 games; 100

games as a first player and 100 games as a second player.

To consider the multi ends strategy, we constructs a win-

ning rate table by analyzing the statistical result of our

dataset 3.1. When evaluating actions at the selection stage

of our algorithm, the expected score distribution from the

value network vθ and the number of remaining ends are

converted to the the expected winning rate.

3.3 Results

Our experimental results competing the existing programs

are in Table 1. GCCSGAT’17 is the program based on the

implementation of a strategy book, and both AyumuGAT’16

and ’17 are MCTS based algorithms with hard coded default

policy. Our proposed algorithm KR-DL-UCT significantly

outperforms them. Both Jiritsukun’16 and ’17 are game tree

based search algorithms, and Jirisukun’17 uses the deep neu-

ral networks as evaluation functions. It shows the striking

performance along with other programs, but KR-DL-UCT

still outperforms it.

Acknowledgements

A full version of this paper is available at [5]. This work

was supported by Institute for Information and communi-

cations Technology Promotion (IITP) grant funded by the

Korea government (MSIT) (No.2017-0-01779 and No.2017-

0-00521).

References

[1] Kocsis, L. and Szepesvári, C. Bandit Based Monte-Carlo
Planning. 2006

[2] Yee, T., Lisý, V. and Bowling, M. Monte Carlo Tree Search in
Continuous Action Spaces with Execution Uncertainty. 2016

[3] He, K., Zhang, X., Ren, S., and Sun, J. Deep Residual Learn-
ing for Image Recognition. 2016

c⃝2018 Information Processing Society of Japan

6

Workshop on Curling Informatics 2018

[4] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I.,
Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton,
A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driess-
che, G., Graepel, T., and Hassabis, D. Mastering the game
of go without human knowledge. 2017

[5] Lee, K., Kim, S., Choi, J. and Lee, S. Deep Reinforcement
Learning in Continuous Action Spaces; a Case Study in the
Game of Simulated Curling. 2018

c⃝2018 Information Processing Society of Japan

7

