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Abstract: This paper presents the compiler-based automatic parallelization of an engine management system 

executed by an AUTOSAR OS on the Infineon AURIX embedded multicore processor. The execution performance 

improved up to 1.8 times on two cores with automatic parallelization. By careful memory optimization, the 

execution time on two cores is up to 8 times short compared to the original execution on one core. 
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1. Introduction     

  Due to the imminent end of Moore's law, processor 

manufacturers started developing general-purpose multicore 

architectures. However, in the domain of embedded systems, the 

shift to Multicore Control Units (MCUs) started a decade later: 

one reason that made the migration to embedded multi-core 

architectures necessary is the increase in software complexity. 

For example, by parallelizing applications, the surplus of 

computational power available to MCUs makes it possible to 

execute more complex algorithms or save energy by running the 

application on multiple cores with a reduced clock rate. 

  In the automotive industry, the migration of sequential 

applications to multi-core platforms is challenging [1, 2] as the 

software is designed and optimized for single-core execution. In 

this context, this article investigates the automatic parallelization 

of a sequential automotive application running on an 

AUTomotive Open System ARchitecture (AUTOSAR) [4] 

compliant OS.  

  Automotive control software is complex and contains several 

highly connected software components. The complicated data 

dependency in the software makes the manual migration to 

parallelized code complex and an error prone task. To simplify 

this process and generate reliable parallel software, the role of 

automatic parallelizing tools is crucial. In this research, we use 

an automatically parallelizing compiler based on technology of 

the Optimally Scheduled Advanced Multiprocessor (OSCAR) 

compiler [3], to automatically generate parallel code from a 

sequential Engine Management System (EMS) executed by an 

AUTOASR OS. The performance evaluation of the resulting 

software is conducted using an Infineon AURIX Tri-Core board. 

An AUTOSAR application is structured into Software 

Components (SW-C). Each SW-C is composed of a set of 

functions called Runnables, communicating with each other. 

These Runnables are executed periodically or triggered by an 

interrupt. Runnables with the same release period are grouped 

into tasks that will be scheduled by the OS.  
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  Maintaining the original application configuration while 

migrating an AUTOSAR application to multicore Electronic 

Control Unit (ECU) is challenging. Re-arranging Runnables or 

changing the task scheduling will impose testing and validating 

the functional correctness of the application. To avoid such a 

tedious manual effort, a parallelization approach that will not 

change the application scheduling is required. To this end, an 

automatic Runnable-level parallelization approach is used. The 

Runnables inside a task are distributed automatically to cores 

while the original tasks scheduling is maintained.  

  In this paper we evaluate an EMS using OSCAR compiler on 

an Infineon Tri-Core board. To reduce memory interference, an 

automatic data mapping approach is presented as well as other 

optimizations for a better exploitation of the MCU. The rest of 

the article is structured as follows. Section 2 presents related 

works. A description of the characteristics of the application and 

hardware used for evaluation is presented in section 3. Section 4 

describes additional optimizations to increase performance. In 

section 5, the approach used for mapping data is discussed. 

Extracting more parallelism using inline expansion is introduced 

in 6 and section 7 summarizes the evaluation results.  

2. Related work 

Using OSCAR, the automatic multigrain parallelizing 

compiler, Umeda et al. [5] parallelized a real automotive engine 

control software. Exploiting coarse-grain parallelism, the 

program is first decomposed into blocks, which are then analyzed 

for their data and control dependencies. A number of advanced 

restructuring techniques such as conditional branch duplication 

were introduced. Cordes et al. [6] presented a similar approach 

for the automatic parallelization of embedded software using an 

integer linear programming solver to parallelize the hierarchical 

task graph generated from sequential tasks. 

Another approach particular to AUTOSAR applications is 

presented in [7] to migrate to multi-core systems. The introduced 

algorithm, called RunPar, considers Runnables as the scheduling 

unit. Still tasks are used to implement the schedule. An evaluation 
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using an automotive EMS showed a 1.35 times shorter execution 

time on average for dual-core execution. As the inherent 

parallelism of functions used in today’s engine management 

systems is estimated to be in the range of 60 to 70 percent [8], 

new approaches to extract more parallelism are needed. One 

approach is the Supertask approach proposed by Kehr et al. [9] to 

increase Runnable-level parallelism.   

3. Evaluation Environment 

This section describes the characteristics of the EMS 

application used to evaluate the effect of the automatic 

parallelization technology.  

3.1 Diesel EMS Application 

We selected a diesel EMS realized using AUTOSAR as use 

case. The large amount of communication makes the EMS an 

ideal use case for parallelization. The application contains 12 

independent tasks with different release periods, eleven are 

periodic tasks with periods ranging from one millisecond to one 

second, plus one sporadic task (crank-angle). The examined 

EMS comprises approximately 700 Runnables that implement 

the behavior of numerous SW-C. The Runnables exchange data 

via send-receive (SR) and Inter Runnable Variable (IRV) 

communication. The internal state of the SW-C is updated at 

different rates, e.g. sensor values are polled with a greater or 

equal frequency than they are processed. Therefore, Runnables 

with the same released period are mapped to the same task. 

 

Figure 1: Communication in a diesel EMS. 

 

The tasks communicate frequently with each other; Figure 1 

provides a simplified description of the communication between 

the tasks of the examined diesel EMS. 𝜏1 executes after an 

interrupt from the camshaft sensor (crank-angle task). The tasks 

𝜏2 to 𝜏12 execute with the period denoted by the label close to 

the node, e.g. task 𝜏5 has a period of 1ms. An arrow represents 

communication between the attached tasks, which is imposed by 

the Runnables mapped to this task. Thus, communication takes 

place with different frequencies, but with a repetitive pattern.  

3.2 Hardwar Platform 

We employ the Infineon AURIX TC277 [10] with three cores 

as platform for our evaluation; this is a typical representative for 

an automotive embedded multicore processor. This 

microcontroller is fabricated in a 65nm technology and the 

maximum clock rate is 200MHz. 

The AURIX microcontroller runs the EMS application, which 

is parallelized to run on two of its three cores. An AUTOSAR 

stack hosts the application. Additionally, one of the cores runs 

an Ethernet stack, which is used to exchange data with a host 

PC. The data exchange is carried out to monitor the behavior of 

the application, e.g. to check if all parameters are calculated 

correctly. 

 

Figure 2: Infineon TC277 memory architecture [10] 

 

The AURIX TC277 has three cores: one power efficient scalar 

Tri-Core CPU (TC1.66E) and two 32-bit super-scalar Tri-Core 

CPUs (TC1.6P) with a fully pipelined Floating point unit (FPU). 

Each core has closely coupled memory areas: Program Scratch-

Pad RAM (PSPR) up to 32 KB, and up to 120KB of Data Scratch-

Pad RAM (DSPR). Besides, a shared Local Memory Unit (LMU) 

of 32KB is available. The Program Memory Unit contains 4 

Mbyte Program Flash Memory (PFLASH) distributed over two 

2MB banks. Data read and write accesses to own DSPR/PSPR 

introduce zero clock cycles latency. But data read to remote 

DSPR/PSPR produces 5 clock cycles latency. PMU accesses 

produces larger latencies [10]. 

3.3 OSCAR compiler 

OSCAR Compiler is an automatically parallelizing compiler 

technology that converts a sequential program written in 

parallelizable C-code [11] into a parallel program. To exploit 

parallelism, the compiler firstly segments a sequential source 

program into macro-tasks (MTs): basic blocks (BB), loops (RB), 

and function calls or subroutine calls (SB). 

After that, the compiler analyzes the parallelism between MTs 

and generates a Macro Task Graph (MTG), which expresses the 

dependencies between MTs. Finally, the MTs are scheduled to 

the available processors according to this graph. 

To acquire accurate estimations of the MT execution costs, 

OSCAR offers functionality to generate profiling 

instrumentation measuring the processor cycles consumed by 

each MT. This data can then be fed back to the compiler to 

generate a further optimized schedule for the target architecture. 
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4. Employed Improvement  echniques 

Several improvements beyond parallelization were required to 

enable speed-ups close to the timing predictions by the OSCAR 

scheduler. 

  The following subsections introduce selected representative 

optimizations that turned out to be crucial to achieve viable 

performance: Inevitably, parallelization introduces overhead due 

to synchronization code and resource contention. 

4.1 Enabling instruction caching 

It is possible to run the code with and without cache. In the 

case of the Infineon board, program cache was not active 

despite of activation using software instructions. 

The Infineon board offers different memory areas regulating 

accesses to the same memory locations. In the above case, the 

program flash memory was mapped to segment 10 which is a 

non-cached segment [10]. Accordingly, the issue was remedied 

by using a cacheable segment to access the program flash 

memory. 

4.2 Context Save Areas mapping 

The AURIX does not have hardware registers to store the 

stack. It uses context save areas (CSAs) to save context [10]. 

Context switching occurs when an event or an instruction causes 

a break in program execution. The CPU then needs to resolve 

this event before continuing with the program. For example, 

events and instructions which may cause a break in program 

execution could be interrupts or service requests, traps, or 

function calls. 

Maximum performance is achieved when CSAs are placed 

into the data scratch-pad memories of their respective cores. 

In the default configuration, CSA regions for all 3 cores were 

mapped to the scratch area of core 0, which caused a severe 

congestion in memory, leading to a significant performance loss 

during the parallel execution of the application. 

Mapping the CSA of each core to its local memory reduced 

cross-core interference. This resulted in a performance increase 

of 1.84x. 

4.3 Reducing Flash Memory interference 

The TC277 has 4 Mbyte of PFlash memory divided into two 

2 MB banks. By default, program code (.text section) and read-

only data (.rodata section) are mapped to the same PF bank. 

Even with PCache activated, concurrent access to PF memory 

can cause a noticeable performance loss.  

One way to improve performance is to separate code from 

read-only data, by placing each one into different banks. Since 

the parallelizing compiler can generate separate code for each 

core, mapping the generated code separately to different PF 

banks improves the performance during parallel execution.  

4.4 Compile unit optimization 

OSCAR compiler generates new code for the parallelized 

task, including new definitions to all Runnables used in the 

tasks subjected to parallelization. 

By having all the code in one source file, it is likely that the 

target compiler is enabled to apply more aggressive 

interprocedural optimizations, resulting in further optimized 

machine code. On the other hand, the compilation time increases 

because the generated files are large. 

5. Data locality 

  In most of embedded system architectures, individual cores are 

attached to local memories. Local memories can be accessed by 

the CPU with low latency. Thus, correct data placement in 

memory is crucial to improve performance of the application. 

In the sequential setup of the application, all global data (.bss 

section) are mapped to the local RAM of core 1 (DSPR1). 

Mapping all data to the same DSPR will lead to memory 

contention during the parallel execution, since both cores will 

access the same memory. Additionally, latency overhead due to 

remote accesses of the second core degrades the performance of 

the parallel execution. To counter this problem, we use an 

automated mapping of data to adequate DSPR based on data 

usage statistics, which is described in the following subsections. 

5.1 Data analysis 

To be able to map data correctly to DSPR, data access 

statistics are required. The most straight-forward way is to 

dynamically trace data accesses to memory during the execution 

of the application.  

The Infineon Multi-Core Debug Solution (MCDS) trace 

viewer tool [12] is employed for this purpose. The software 

allows acquiring various traces including data accesses. 

Although this dynamic approach gives accurate results, it does 

require an initial execution of the application and taking several 

traces to get data accesses for all tasks. To simplify this process, 

a static approach based on OSCAR built-in memory access 

statistics can be used as alternative. 

OSCAR analysis can provide data usage estimates by each 

core during parallel execution. The generated statistics include 

information about the variable name, size and read/write count 

for each core. 

5.2 Data mapping 

To generate a data mapping, data access statistics by each 

core are required. The mapping approach is straightforward: 

Data needs to be placed close to the core accessing it the most. 

For each variable, a score based on remote data access latencies 

for each core is calculated. Finally, data is mapped to the core 

that minimizes the remote access’ overhead. 

5.3 Implementation 

The mapping of data to the appropriate DSPR is done via 

adding section attribute directives directly to source code. This 

process is scriptable, and the mapping can be applied 

automatically. Furthermore, synchronization variables generated 

by the compiler for the parallel execution are mapped to the 

core waiting for variable changes. 

5.4 Data mapping results 

To test the effectiveness of the mapping and confirm the 

correctness of the static analysis, mapping results for three 

scenarios are presented (2 cores parallel execution): mapping all 

data to DSPR1, mapping data based on OSCAR static analysis 
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and mapping data based on accurate execution-time trace data. 

 The graph below illustrates the results of the mapping of 

mutable global variables (.bss) in task 16ms: 

Table 1: Task 16ms – mutable data mapping (2 cores) 

 

The table summarizes the data access details and the 

effectiveness of the resulting mapping. Local memory access 

column represents the number of data accesses [write/read] by 

cores to their own local DSPR. The hit-rate is the ratio of local 

accesses by remote accesses. The mapping of data based on 

execution trace is considered as the reference to compute the 

mapping correctness (% of data placed to the closest DSPR).    

Putting all data in the same location causes many remote 

accesses degrading the performance of the parallel code. E.g., 

for the task with a period of 16ms, (wrongly) mapping all 

accessed mutable data (non-constant global variables) into 

DSPR1 produces many remote data accesses, leading to more 

than 35% performance loss during parallel execution. 

Based on run-time data access traces (MCDS), the resulting 

mapping is able to reduce the remote accesses rate to 8%, and 

the predicted speed-up of 1.81 times is almost achieved (1.82 

times is predicted). The mapping based on the OSCAR static 

memory access analysis produces a mapping leading to 

performance similar to the mapping based on real execution 

traces. Even with two independent data sources, still, virtually 

the same results are produced. 

This mapping approach can be applied to read-only data as 

well. Due to the difference of access latencies between ROM 

and RAM, mapping read-only data to DSPR improves the 

performance.  

The resulting mapping of data for individual tasks is usually 

effective since OSCAR tends to generate a schedule that reduces 

remote accesses to memory. An overall mapping for all tasks is 

needed and could be generated by combining the accesses data 

of all tasks together, reducing the remote accesses for the whole 

application. Since most tasks are periodic and have different 

periods, coefficients could be introduced to prioritize the 

reduction of remote accesses for tasks. 

6.  Inline expansion 

Due to the high number of data dependencies, the extracted 

coarse grain parallelism may lead to moderate parallelism for 

tasks. Therefore, inline expansion of Runnables might be useful. 

The goal is to extract more fine-grained parallelism by splitting 

Runnables into smaller parts. Inline expansion is an improvement 

technique that replaces a function call with the body of the 

function called. 

OSCAR compiler can apply inline expansion to desired 

function calls, allowing it to exploit near-fine-grain-parallelism 

among statements in the body of the subroutine. As AUTOSAR 

tasks are a set of function (Runnable) calls, exploiting the 

parallelism inside these functions can increase the overall 

parallelism of the task. 

Using directives, the parallelizing compiler can inline 

function calls, replacing calls with function bodies. It is also 

possible to recursively inline all or a specified level of function 

calls inside a subroutine. Considering analysis time and code 

size, selecting target subroutines for inline expansion is 

essential; A Selective Inline Expansion approach [13] might be 

beneficial to simplify the process. Typically, candidate functions 

for inline expansion are functions that cause bottleneck for 

parallelization (idle time). The Gantt-chart can be useful to spot 

such functions. 

7. Evaluation results 

This section presents the result summary of the parallel 

execution of the EMS on the Infineon TC277. 

7.1 Coarse-grain Parallelism 

Figure 3 summarizes the parallelization results of all periodic 

tasks. The horizontal axis defines periodic tasks, and the vertical 

axis describes the speed-up values. The speed-up values are 

computed as follows: 
𝑆𝑒𝑞𝜏

𝑃𝑎𝑟𝜏
⁄  , where 𝑆𝑒𝑞𝜏  is the execution 

time average of task τ executing Runnables sequentially, and 

𝑃𝑎𝑟𝜏 is the parallel execution time average. The expected speed-

up is predicted by the complier assuming no memory interference 

overhead. The achieved speed-up represents the real performance 

gain due to parallelization. The impact of individual task 

parallelization depends on its period and cost. Hence, the 

measured weighted average speed-up achieved for the whole 

application is 1.46x.  

 
Figure 3: Coarse grain parallelization results on 2 cores 

 

The results reveal that some functions do not have enough 

inherent coarse-grain parallelism due to data dependency or 

code size (task 5ms is not parallelized since it contains one 

Runnable). Reducing memory interference made it possible to 

achieve expected speed-ups for most of the tasks (overhead 

impact is large over small tasks).   
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To illustrate the effect of the improvements described in 

section 4 and 5, the figure below shows execution costs of the 

task with 16ms periodicity with different optimization 

configurations. 

 

Figure 4: Task 16ms - optimization results 

 

By using the cached PFlash segment and placing CSA to 

core-local DSPR, the sequential execution become 2.42 times 

shorter. Placing read-only data to DSPR reduces the read latency 

overhead improves performance as well. Finally, by mapping all 

data to adequate DSPR, the parallel execution is shorter and the 

predicted 1.81 times speed-up is achieved (1.32 at first). 

7.2 Inline expansion 

Inline expansion results are presented for task 32ms that has 

scarce parallelism (1.22 times). The poor parallelism of this task 

is due to high data dependency caused by aggressive usage of 

the diagnostic subroutine. The recursive inline expansion of all 

subroutines in the task increased the parallelism of the task to 

1.72 times.  

 

Figure 5: Task 32ms - Gantt-chart (coarse grain) 

 

Figure 6: Task 32ms - Gantt-chart (inline expansion) 

 

  Figure 5 illustrates to predicted execution Gantt-chart of the 

two cores coarse grain parallel execution of task 32ms. Due to 

data dependencies, the second core is idle for most of the time. 

The new schedule of Task 32ms after the inline expansion is 

shown in Figure 6. The fine grain MTs are distributed effectively 

on both cores. 

To note, the fine-grain nature of the inlined program allows the 

compiler to generate a scheduling that reduces remote accesses of 

data leading to a near perfect mapping of data. 

8. Conclusions 

  This paper describes the automatic parallelization of an 

automotive Engine Management System using OSCAR Compiler 

on the Infineon AURIX Tri-Core board. The periodic tasks in the 

application are parallelized to run on two cores. The data 

dependency between Runnables limited the extracted parallelism 

in tasks and the achieved speed-ups ranged from 1.10 times to 

1.81 times shorter execution time. Executing the parallel tasks on 

hardware showed that the overhead due to memory interferences 

needs to be considered. To avoid memory contention during 

parallel execution, automatic data mapping of data to local 

memories is introduced, placing data closer to the core using it 

the most. Reducing contention in the program flash memory is 

important as well: The contention is reduced by the separation 

(duplication) of code used by each of the two cores to different 

physical PF banks. More improvements related to the Infineon 

board configuration are explained, including: the usage of cached 

memory segments of program flash memory and the mapping of 

Context Save Areas (CSAs) of each core to its own DSPR. 

The usage of OSCAR generated code and applying these 

optimizations resulted in a significant performance gain. In total, 

the parallel execution of tasks together with memory 

optimizations (compared to the execution of the original 

sequential application without optimization) yielded a speed-up 

up to 8.7 times. These are the results of the memory usage 

optimization and coarse grain parallelization of tasks (without 

splitting the Runnables). By the memory optimization, the 

sequential execution speed was shortened up to 4.9 time and the 

coarse grain task parallelization gave us up to 1.81 times speed-

up using two cores. More parallelism can be extracted by the 

inline expansion of Runnables. For example, initial experiments 

show that the inherent parallelism of task 32ms can be improved 

from 1.22 times to 1.72 times by full inline expansion of 

Runnables. Further parallelism could be achieved by manual 

restructuring of the diagnostic routines causing most of the data 

dependencies within the application.  
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