

ⓒ2018 Information Processing Society of Japan 1

Automatic Parallelization of a Diesel Engine Control software on an

Infineon Multicore Processor

ISMAIL NAIT ABDELLAH OUALI†1 CHRISTOPH SCHUMACHER†2

HIROKI MIKAMI†3 SEBASTIAN KEHR†6 BERT BÖDDEKER†7

KEIJI KIMURA†4 HIRONORI KASAHARA†5

Abstract: This paper presents the compiler-based automatic parallelization of an engine management system

executed by an AUTOSAR OS on the Infineon AURIX embedded multicore processor. The execution performance

improved up to 1.8 times on two cores with automatic parallelization. By careful memory optimization, the

execution time on two cores is up to 8 times short compared to the original execution on one core.

Keywords: MCU, Automatic Parallelizing Compiler, AUTOSAR, Infineon

1. Introduction

 Due to the imminent end of Moore's law, processor

manufacturers started developing general-purpose multicore

architectures. However, in the domain of embedded systems, the

shift to Multicore Control Units (MCUs) started a decade later:

one reason that made the migration to embedded multi-core

architectures necessary is the increase in software complexity.

For example, by parallelizing applications, the surplus of

computational power available to MCUs makes it possible to

execute more complex algorithms or save energy by running the

application on multiple cores with a reduced clock rate.

 In the automotive industry, the migration of sequential

applications to multi-core platforms is challenging [1, 2] as the

software is designed and optimized for single-core execution. In

this context, this article investigates the automatic parallelization

of a sequential automotive application running on an

AUTomotive Open System ARchitecture (AUTOSAR) [4]

compliant OS.

 Automotive control software is complex and contains several

highly connected software components. The complicated data

dependency in the software makes the manual migration to

parallelized code complex and an error prone task. To simplify

this process and generate reliable parallel software, the role of

automatic parallelizing tools is crucial. In this research, we use

an automatically parallelizing compiler based on technology of

the Optimally Scheduled Advanced Multiprocessor (OSCAR)

compiler [3], to automatically generate parallel code from a

sequential Engine Management System (EMS) executed by an

AUTOASR OS. The performance evaluation of the resulting

software is conducted using an Infineon AURIX Tri-Core board.

An AUTOSAR application is structured into Software

Components (SW-C). Each SW-C is composed of a set of

functions called Runnables, communicating with each other.

These Runnables are executed periodically or triggered by an

interrupt. Runnables with the same release period are grouped

into tasks that will be scheduled by the OS.

 †1, †2, †3, †4, †5 Waseda University.

†6, †7 DENSO AUTOMOTIVE Deutschland GmbH.

 Maintaining the original application configuration while

migrating an AUTOSAR application to multicore Electronic

Control Unit (ECU) is challenging. Re-arranging Runnables or

changing the task scheduling will impose testing and validating

the functional correctness of the application. To avoid such a

tedious manual effort, a parallelization approach that will not

change the application scheduling is required. To this end, an

automatic Runnable-level parallelization approach is used. The

Runnables inside a task are distributed automatically to cores

while the original tasks scheduling is maintained.

 In this paper we evaluate an EMS using OSCAR compiler on

an Infineon Tri-Core board. To reduce memory interference, an

automatic data mapping approach is presented as well as other

optimizations for a better exploitation of the MCU. The rest of

the article is structured as follows. Section 2 presents related

works. A description of the characteristics of the application and

hardware used for evaluation is presented in section 3. Section 4

describes additional optimizations to increase performance. In

section 5, the approach used for mapping data is discussed.

Extracting more parallelism using inline expansion is introduced

in 6 and section 7 summarizes the evaluation results.

2. Related work

Using OSCAR, the automatic multigrain parallelizing

compiler, Umeda et al. [5] parallelized a real automotive engine

control software. Exploiting coarse-grain parallelism, the

program is first decomposed into blocks, which are then analyzed

for their data and control dependencies. A number of advanced

restructuring techniques such as conditional branch duplication

were introduced. Cordes et al. [6] presented a similar approach

for the automatic parallelization of embedded software using an

integer linear programming solver to parallelize the hierarchical

task graph generated from sequential tasks.

Another approach particular to AUTOSAR applications is

presented in [7] to migrate to multi-core systems. The introduced

algorithm, called RunPar, considers Runnables as the scheduling

unit. Still tasks are used to implement the schedule. An evaluation

IPSJ SIG Technical Report Vol.2018-ARC-232 No.8
2018/7/30

ⓒ2018 Information Processing Society of Japan 2

using an automotive EMS showed a 1.35 times shorter execution

time on average for dual-core execution. As the inherent

parallelism of functions used in today’s engine management

systems is estimated to be in the range of 60 to 70 percent [8],

new approaches to extract more parallelism are needed. One

approach is the Supertask approach proposed by Kehr et al. [9] to

increase Runnable-level parallelism.

3. Evaluation Environment

This section describes the characteristics of the EMS

application used to evaluate the effect of the automatic

parallelization technology.

3.1 Diesel EMS Application

We selected a diesel EMS realized using AUTOSAR as use

case. The large amount of communication makes the EMS an

ideal use case for parallelization. The application contains 12

independent tasks with different release periods, eleven are

periodic tasks with periods ranging from one millisecond to one

second, plus one sporadic task (crank-angle). The examined

EMS comprises approximately 700 Runnables that implement

the behavior of numerous SW-C. The Runnables exchange data

via send-receive (SR) and Inter Runnable Variable (IRV)

communication. The internal state of the SW-C is updated at

different rates, e.g. sensor values are polled with a greater or

equal frequency than they are processed. Therefore, Runnables

with the same released period are mapped to the same task.

Figure 1: Communication in a diesel EMS.

The tasks communicate frequently with each other; Figure 1

provides a simplified description of the communication between

the tasks of the examined diesel EMS. 𝜏1 executes after an

interrupt from the camshaft sensor (crank-angle task). The tasks

𝜏2 to 𝜏12 execute with the period denoted by the label close to

the node, e.g. task 𝜏5 has a period of 1ms. An arrow represents

communication between the attached tasks, which is imposed by

the Runnables mapped to this task. Thus, communication takes

place with different frequencies, but with a repetitive pattern.

3.2 Hardwar Platform

We employ the Infineon AURIX TC277 [10] with three cores

as platform for our evaluation; this is a typical representative for

an automotive embedded multicore processor. This

microcontroller is fabricated in a 65nm technology and the

maximum clock rate is 200MHz.

The AURIX microcontroller runs the EMS application, which

is parallelized to run on two of its three cores. An AUTOSAR

stack hosts the application. Additionally, one of the cores runs

an Ethernet stack, which is used to exchange data with a host

PC. The data exchange is carried out to monitor the behavior of

the application, e.g. to check if all parameters are calculated

correctly.

Figure 2: Infineon TC277 memory architecture [10]

The AURIX TC277 has three cores: one power efficient scalar

Tri-Core CPU (TC1.66E) and two 32-bit super-scalar Tri-Core

CPUs (TC1.6P) with a fully pipelined Floating point unit (FPU).

Each core has closely coupled memory areas: Program Scratch-

Pad RAM (PSPR) up to 32 KB, and up to 120KB of Data Scratch-

Pad RAM (DSPR). Besides, a shared Local Memory Unit (LMU)

of 32KB is available. The Program Memory Unit contains 4

Mbyte Program Flash Memory (PFLASH) distributed over two

2MB banks. Data read and write accesses to own DSPR/PSPR

introduce zero clock cycles latency. But data read to remote

DSPR/PSPR produces 5 clock cycles latency. PMU accesses

produces larger latencies [10].

3.3 OSCAR compiler

OSCAR Compiler is an automatically parallelizing compiler

technology that converts a sequential program written in

parallelizable C-code [11] into a parallel program. To exploit

parallelism, the compiler firstly segments a sequential source

program into macro-tasks (MTs): basic blocks (BB), loops (RB),

and function calls or subroutine calls (SB).

After that, the compiler analyzes the parallelism between MTs

and generates a Macro Task Graph (MTG), which expresses the

dependencies between MTs. Finally, the MTs are scheduled to

the available processors according to this graph.

To acquire accurate estimations of the MT execution costs,

OSCAR offers functionality to generate profiling

instrumentation measuring the processor cycles consumed by

each MT. This data can then be fed back to the compiler to

generate a further optimized schedule for the target architecture.

 1 CrBas

 2

1024ms

 3

128ms 4

16ms

 5

1ms

 6

20ms

 732ms

 8

4ms

 9

5ms 10

64ms

 11

8ms

 12

96ms

To/ from periodic task To/ from sporadic task

 C E

CP

PMI

24KB PSPR

8KB PCACHE

DMI

112KB DSPR

128B DCACHE

 C P

CP

PMI

32KB PSPR

16KB PCACHE

DMI

120KB DSPR

8KB DCACHE

 C P

CP

PMI

32KB PSPR

16KB PCACHE

DMI

120KB DSPR

8KB DCACHE

 M PM

32 KB

RAM

DFlash
(EEEPROM)

384 KB

PFlash0

2 MB

PFlash1

2 MB

SRI Cross Bar Interconnect

System Peripheral Bus (SPB)

IPSJ SIG Technical Report Vol.2018-ARC-232 No.8
2018/7/30

ⓒ2018 Information Processing Society of Japan 3

4. Employed Improvement echniques

Several improvements beyond parallelization were required to

enable speed-ups close to the timing predictions by the OSCAR

scheduler.

 The following subsections introduce selected representative

optimizations that turned out to be crucial to achieve viable

performance: Inevitably, parallelization introduces overhead due

to synchronization code and resource contention.

4.1 Enabling instruction caching

It is possible to run the code with and without cache. In the

case of the Infineon board, program cache was not active

despite of activation using software instructions.

The Infineon board offers different memory areas regulating

accesses to the same memory locations. In the above case, the

program flash memory was mapped to segment 10 which is a

non-cached segment [10]. Accordingly, the issue was remedied

by using a cacheable segment to access the program flash

memory.

4.2 Context Save Areas mapping

The AURIX does not have hardware registers to store the

stack. It uses context save areas (CSAs) to save context [10].

Context switching occurs when an event or an instruction causes

a break in program execution. The CPU then needs to resolve

this event before continuing with the program. For example,

events and instructions which may cause a break in program

execution could be interrupts or service requests, traps, or

function calls.

Maximum performance is achieved when CSAs are placed

into the data scratch-pad memories of their respective cores.

In the default configuration, CSA regions for all 3 cores were

mapped to the scratch area of core 0, which caused a severe

congestion in memory, leading to a significant performance loss

during the parallel execution of the application.

Mapping the CSA of each core to its local memory reduced

cross-core interference. This resulted in a performance increase

of 1.84x.

4.3 Reducing Flash Memory interference

The TC277 has 4 Mbyte of PFlash memory divided into two

2 MB banks. By default, program code (.text section) and read-

only data (.rodata section) are mapped to the same PF bank.

Even with PCache activated, concurrent access to PF memory

can cause a noticeable performance loss.

One way to improve performance is to separate code from

read-only data, by placing each one into different banks. Since

the parallelizing compiler can generate separate code for each

core, mapping the generated code separately to different PF

banks improves the performance during parallel execution.

4.4 Compile unit optimization

OSCAR compiler generates new code for the parallelized

task, including new definitions to all Runnables used in the

tasks subjected to parallelization.

By having all the code in one source file, it is likely that the

target compiler is enabled to apply more aggressive

interprocedural optimizations, resulting in further optimized

machine code. On the other hand, the compilation time increases

because the generated files are large.

5. Data locality

 In most of embedded system architectures, individual cores are

attached to local memories. Local memories can be accessed by

the CPU with low latency. Thus, correct data placement in

memory is crucial to improve performance of the application.

In the sequential setup of the application, all global data (.bss

section) are mapped to the local RAM of core 1 (DSPR1).

Mapping all data to the same DSPR will lead to memory

contention during the parallel execution, since both cores will

access the same memory. Additionally, latency overhead due to

remote accesses of the second core degrades the performance of

the parallel execution. To counter this problem, we use an

automated mapping of data to adequate DSPR based on data

usage statistics, which is described in the following subsections.

5.1 Data analysis

To be able to map data correctly to DSPR, data access

statistics are required. The most straight-forward way is to

dynamically trace data accesses to memory during the execution

of the application.

The Infineon Multi-Core Debug Solution (MCDS) trace

viewer tool [12] is employed for this purpose. The software

allows acquiring various traces including data accesses.

Although this dynamic approach gives accurate results, it does

require an initial execution of the application and taking several

traces to get data accesses for all tasks. To simplify this process,

a static approach based on OSCAR built-in memory access

statistics can be used as alternative.

OSCAR analysis can provide data usage estimates by each

core during parallel execution. The generated statistics include

information about the variable name, size and read/write count

for each core.

5.2 Data mapping

To generate a data mapping, data access statistics by each

core are required. The mapping approach is straightforward:

Data needs to be placed close to the core accessing it the most.

For each variable, a score based on remote data access latencies

for each core is calculated. Finally, data is mapped to the core

that minimizes the remote access’ overhead.

5.3 Implementation

The mapping of data to the appropriate DSPR is done via

adding section attribute directives directly to source code. This

process is scriptable, and the mapping can be applied

automatically. Furthermore, synchronization variables generated

by the compiler for the parallel execution are mapped to the

core waiting for variable changes.

5.4 Data mapping results

To test the effectiveness of the mapping and confirm the

correctness of the static analysis, mapping results for three

scenarios are presented (2 cores parallel execution): mapping all

data to DSPR1, mapping data based on OSCAR static analysis

IPSJ SIG Technical Report Vol.2018-ARC-232 No.8
2018/7/30

ⓒ2018 Information Processing Society of Japan 4

and mapping data based on accurate execution-time trace data.

 The graph below illustrates the results of the mapping of

mutable global variables (.bss) in task 16ms:

Table 1: Task 16ms – mutable data mapping (2 cores)

The table summarizes the data access details and the

effectiveness of the resulting mapping. Local memory access

column represents the number of data accesses [write/read] by

cores to their own local DSPR. The hit-rate is the ratio of local

accesses by remote accesses. The mapping of data based on

execution trace is considered as the reference to compute the

mapping correctness (% of data placed to the closest DSPR).

Putting all data in the same location causes many remote

accesses degrading the performance of the parallel code. E.g.,

for the task with a period of 16ms, (wrongly) mapping all

accessed mutable data (non-constant global variables) into

DSPR1 produces many remote data accesses, leading to more

than 35% performance loss during parallel execution.

Based on run-time data access traces (MCDS), the resulting

mapping is able to reduce the remote accesses rate to 8%, and

the predicted speed-up of 1.81 times is almost achieved (1.82

times is predicted). The mapping based on the OSCAR static

memory access analysis produces a mapping leading to

performance similar to the mapping based on real execution

traces. Even with two independent data sources, still, virtually

the same results are produced.

This mapping approach can be applied to read-only data as

well. Due to the difference of access latencies between ROM

and RAM, mapping read-only data to DSPR improves the

performance.

The resulting mapping of data for individual tasks is usually

effective since OSCAR tends to generate a schedule that reduces

remote accesses to memory. An overall mapping for all tasks is

needed and could be generated by combining the accesses data

of all tasks together, reducing the remote accesses for the whole

application. Since most tasks are periodic and have different

periods, coefficients could be introduced to prioritize the

reduction of remote accesses for tasks.

6. Inline expansion

Due to the high number of data dependencies, the extracted

coarse grain parallelism may lead to moderate parallelism for

tasks. Therefore, inline expansion of Runnables might be useful.

The goal is to extract more fine-grained parallelism by splitting

Runnables into smaller parts. Inline expansion is an improvement

technique that replaces a function call with the body of the

function called.

OSCAR compiler can apply inline expansion to desired

function calls, allowing it to exploit near-fine-grain-parallelism

among statements in the body of the subroutine. As AUTOSAR

tasks are a set of function (Runnable) calls, exploiting the

parallelism inside these functions can increase the overall

parallelism of the task.

Using directives, the parallelizing compiler can inline

function calls, replacing calls with function bodies. It is also

possible to recursively inline all or a specified level of function

calls inside a subroutine. Considering analysis time and code

size, selecting target subroutines for inline expansion is

essential; A Selective Inline Expansion approach [13] might be

beneficial to simplify the process. Typically, candidate functions

for inline expansion are functions that cause bottleneck for

parallelization (idle time). The Gantt-chart can be useful to spot

such functions.

7. Evaluation results

This section presents the result summary of the parallel

execution of the EMS on the Infineon TC277.

7.1 Coarse-grain Parallelism

Figure 3 summarizes the parallelization results of all periodic

tasks. The horizontal axis defines periodic tasks, and the vertical

axis describes the speed-up values. The speed-up values are

computed as follows:
𝑆𝑒𝑞𝜏

𝑃𝑎𝑟𝜏
⁄ , where 𝑆𝑒𝑞𝜏 is the execution

time average of task τ executing Runnables sequentially, and

𝑃𝑎𝑟𝜏 is the parallel execution time average. The expected speed-

up is predicted by the complier assuming no memory interference

overhead. The achieved speed-up represents the real performance

gain due to parallelization. The impact of individual task

parallelization depends on its period and cost. Hence, the

measured weighted average speed-up achieved for the whole

application is 1.46x.

Figure 3: Coarse grain parallelization results on 2 cores

The results reveal that some functions do not have enough

inherent coarse-grain parallelism due to data dependency or

code size (task 5ms is not parallelized since it contains one

Runnable). Reducing memory interference made it possible to

achieve expected speed-ups for most of the tasks (overhead

impact is large over small tasks).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1ms 4ms 5ms 8ms 16ms 20ms 32ms 64ms 96ms 128ms 1024ms

Tasks

Speed-ups on 2 cores

 Local mem.

access

Remote

mem.

access

Local

mem.

hit-

rate

Mapping

correctness

Vars in

DSPR1|vars. In

DSPR2

DSPR1 1122

[434/688]

2197

[723/1474]

33% 62% 757|0

OSCAR

(static)

2974

[1066/1908]

345

[91/254]

89% 97% 464|293

MCDS

(dynamic)

3081

[1086/1995]

238

[71/167]

92% 100% 473|284

IPSJ SIG Technical Report Vol.2018-ARC-232 No.8
2018/7/30

ⓒ2018 Information Processing Society of Japan 5

To illustrate the effect of the improvements described in

section 4 and 5, the figure below shows execution costs of the

task with 16ms periodicity with different optimization

configurations.

Figure 4: Task 16ms - optimization results

By using the cached PFlash segment and placing CSA to

core-local DSPR, the sequential execution become 2.42 times

shorter. Placing read-only data to DSPR reduces the read latency

overhead improves performance as well. Finally, by mapping all

data to adequate DSPR, the parallel execution is shorter and the

predicted 1.81 times speed-up is achieved (1.32 at first).

7.2 Inline expansion

Inline expansion results are presented for task 32ms that has

scarce parallelism (1.22 times). The poor parallelism of this task

is due to high data dependency caused by aggressive usage of

the diagnostic subroutine. The recursive inline expansion of all

subroutines in the task increased the parallelism of the task to

1.72 times.

Figure 5: Task 32ms - Gantt-chart (coarse grain)

Figure 6: Task 32ms - Gantt-chart (inline expansion)

 Figure 5 illustrates to predicted execution Gantt-chart of the

two cores coarse grain parallel execution of task 32ms. Due to

data dependencies, the second core is idle for most of the time.

The new schedule of Task 32ms after the inline expansion is

shown in Figure 6. The fine grain MTs are distributed effectively

on both cores.

To note, the fine-grain nature of the inlined program allows the

compiler to generate a scheduling that reduces remote accesses of

data leading to a near perfect mapping of data.

8. Conclusions

 This paper describes the automatic parallelization of an

automotive Engine Management System using OSCAR Compiler

on the Infineon AURIX Tri-Core board. The periodic tasks in the

application are parallelized to run on two cores. The data

dependency between Runnables limited the extracted parallelism

in tasks and the achieved speed-ups ranged from 1.10 times to

1.81 times shorter execution time. Executing the parallel tasks on

hardware showed that the overhead due to memory interferences

needs to be considered. To avoid memory contention during

parallel execution, automatic data mapping of data to local

memories is introduced, placing data closer to the core using it

the most. Reducing contention in the program flash memory is

important as well: The contention is reduced by the separation

(duplication) of code used by each of the two cores to different

physical PF banks. More improvements related to the Infineon

board configuration are explained, including: the usage of cached

memory segments of program flash memory and the mapping of

Context Save Areas (CSAs) of each core to its own DSPR.

The usage of OSCAR generated code and applying these

optimizations resulted in a significant performance gain. In total,

the parallel execution of tasks together with memory

optimizations (compared to the execution of the original

sequential application without optimization) yielded a speed-up

up to 8.7 times. These are the results of the memory usage

optimization and coarse grain parallelization of tasks (without

splitting the Runnables). By the memory optimization, the

sequential execution speed was shortened up to 4.9 time and the

coarse grain task parallelization gave us up to 1.81 times speed-

up using two cores. More parallelism can be extracted by the

inline expansion of Runnables. For example, initial experiments

show that the inherent parallelism of task 32ms can be improved

from 1.22 times to 1.72 times by full inline expansion of

Runnables. Further parallelism could be achieved by manual

restructuring of the diagnostic routines causing most of the data

dependencies within the application.

References
[1] G. Macher, A. Höller, E. Armengaud and C. Kreiner, "Automotive

embedded software: Migration challenges to multi-core computing

platforms," 2015 IEEE 13th International Conference on Industrial

Informatics (INDIN), Cambridge, 2015, pp. 1386-1393.

[2] P. Gai and M. Violante, "Automotive embedded software

architecture in the multi-core age," 2016 21th IEEE European Test

Symposium (ETS), Amsterdam, 2016, pp. 1-8.

[3] K. Kimura, M. Mase, H. Mikami, T. Miyamoto, J. Shirako, and H.

Kasahara, “Oscar api for real-time low-power multicores and its

performance on multicores and smp servers,” 2010.

[4] AUTOSAR GbR. AUTomotive Open System Architecture

(AUTOSAR) Operating System. http://www.autosar.org, February

2013.

[5] Dan Umeda, Yohei Kanehagi, Hiroki Mikami, Akihiro Hayashi,

Keiji Kimura, Hironori Kasahara,"Automatic Parallelization of

Hand Written Automotive Engine Control Codes Using OSCAR

Compiler", CPC2013

[6] D. Cordes, P. Marwedel and A. Mallik, "Automatic parallelization

of embedded software using hierarchical task graphs and integer

linear programming," 2010 IEEE/ACM/IFIP International

Conference on Hardware/Software Codesign and System Synthesis

(CODES+ISSS), Scottsdale, AZ, 2010, pp. 267-276.

[7] M. Panić, S. Kehr, E. Quiñones, B. Boddecker, J. Abella and F. J.

Cazorla, "RunPar: An allocation algorithm for automotive

applications exploiting runnable parallelism in multicores," 2014

International Conference on Hardware/Software Codesign and

System Synthesis (CODES+ISSS), New Delhi, 2014, pp. 1-10.

[8] Mader, R., Graf, A., and Winkler, G., "AUTOSAR Based

Multicore Software Implementation for Powertrain Applications,"

0

1

2

3

4

5

6

7

8

9

10

0

20000

40000

60000

80000

100000

120000

140000

160000

Reference sequential Parallel (2c) Speedup

IPSJ SIG Technical Report Vol.2018-ARC-232 No.8
2018/7/30

ⓒ2018 Information Processing Society of Japan 6

SAE Int. J. Passeng. Cars – Electron. Electr. Syst. 8(2):264-269,

2015, https://doi.org/10.4271/2015-01-0179.

[9] S. Kehr et al., "Supertask: Maximizing runnable-level parallelism

in AUTOSAR applications," 2016 Design, Automation & Test in

Europe Conference & Exhibition (DATE), Dresden, 2016, pp. 25-

30.

[10] Infineon. AURIX - TC27x D-Step, 32-Bit Single-Chip

Microcontroller, User's Manual V2.2 2014-12,

https://www.infineon.com/dgdl/Infineon-tc27xD_um_v2.2-UM-

v02_02-EN.pdf?fileId=5546d46259d9a4bf015a846b363874d1

[11] M. Mase, Y. Onozaki, K. Kimura and H. Kasahara, Parallelizable

C and its performance on low power high performance multicore

processors In Proc. of 15th Workshop on Compilers for Parallel

Computing, 2010

[12] Multi-Core Debug Solution (MCDS) Trace Viewer. https://

https://www.infineon.com/DAS, (accessed 2018-06-20).

[13] Shirako, J., Nagasawa, K., Ishizaka, K., Obata, M., & Kasahara, H.

(2004). Selective inline expansion for improvement of multi grain

parallelism. Parallel and Distributed Computing and Networks.

[14] "System and method for selectively enabling load-on-write of

dynamic ROM data to RAM", 1999.

IPSJ SIG Technical Report Vol.2018-ARC-232 No.8
2018/7/30

