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Overcoming Generalization Gap in Large Mini-Batch
Training of Deep Neural Networks
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Abstract: Large mini-batch training is inevitable for speeding up the training of deep neural networks. However, it
has been empirically found that neural networks trained with large mini-batch generalize poorly. Recent observations
suggest that the minima for large mini-batch training tend to be in sharper regions, which are known to have poor
generalization ability. In this research, we propose a method to close this generalization gap by introducing Gaussian
noise in the gradient during the parameter update of Stochastic Gradient Descent (SGD).

1. Introduction
The neural network models are becoming complex and the

datasets are growing bigger. For instance, the number of lay-
ers increased from 8 (AlexNet [1]) to 152 (Residual Nets [2]) just
over a period of 4 years. ResNet50, which has just 50 layers,
has approximately 25 million parameters. Moreover, the size of
the dataset has also increased dramatically. ImageNet [3] has 1.28
million training images and 150, 000 test images, all classified un-
der 1000 classes. Training such complex networks with massive
dataset takes days or weeks. For example, training GoogleNet by
ImageNet dataset on one NVIDIA K20 GPU takes 21 days [4].

One of the most commonly used technique to speed up the
training of the deep neural network (DNN) is large mini-batch
training. Table 1 summarizes the speed-up reported by various
teams for training ResNet50 on ImageNet dataset. Akita et al. [5]
were able able to train in 15 minutes by using an extremely large
mini-batch of size 32, 768. However, this is not even 3% of the
total dataset size which is 1.28 million in case of ImageNet. On
further increasing the mini-batch size, they found degradation in
the performance of the model. In general, a model trained with
large mini-batch has been found to lose its generalization ability
even if trained ”without any budget or limits, until the loss func-
tion ceased to improve [6]”. This phenomenon of decrease in the
performance is known as generalization gap.

Having an insight into the origin of generalization gap, and
moreover, discovering ways to close the gap will have significant
practical importance. Particularly, it will help to improve the par-
allelism of deep neural network which demands the usage of very
large mini-batch.

The empirical findings of Keskar et al. [6] suggests that the ori-
gin of generalization gap can be attributed to sharp minima. They
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found that models trained with large mini-batch had sharp min-
ima and generalized poorly while the models trained with small
mini-batch had flat minima and generalized well.

The reason why models trained using large mini-batch end up
in sharp minima is still unknown. However, much research has
been done in order to prevent a model from falling into sharp min-
ima [7], [8]. Hoffer et al. [7] suggests that generalization gap can
be closed by adopting square-root learning rate scaling, Ghost
Batch-Normalization and sufficient number of iterations. On the
other hand, Jastrzebsk et al. [8] suggests that with larger value of
η
B , where η and B are learning rate and mini-batch size respec-
tively, we can steer a large mini-batch training into flat minima.

The increased number of iterations in the method proposed by
Hoffer et al. [7] is a concern because it will lead to poor speed-
up. Similarly, to obtain a higher value of η

B ratio as proposed by
Jastrzebsk et al. [8], we have to use a relatively large learning rate
which might lead to divergence.

We propose a method to close the generalization gap by adding
white noise to the gradients of the loss function. The idea is in-
spired from the fact that the covariance of the gradients decrease
with increasing mini-batch size. We hypothesize that the addition
of white noise will compensate the decrement in the covariance.
We conducted preliminary experiments and found that the addi-
tion of noise helped to close the gap.

2. Background and Related Work
2.1 Training a DNN

The training of a DNN is an optimization problem in which we
try to find an empirical optimal parameter θ? such that an empiri-
cal loss L(θ) [13] over the entire dataset is minimized as expressed
in Equation 1.

Minimize
θ∈Θ

L(θ) =
1
N

N∑
i=1

l(θ, xi, yi), (1)

where l(θ, xi, yi) is the loss incurred or discrepancy in predicting
a single sample (xi, yi) for a given parameter θ and N is the total
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Table 1 90 epoch training time and accuracy for ResNet50 on ImageNet reported by various teams

Team Hardware Software Mini-batch size Time Accuracy
He et al. [9] Tesla P100 x 8 Caffe 256 29 hr 75.3%

Goyal et al. [10] Tesla P100 x 256 Caffe2 8,192 1 hr 76.3%
Codreanu et al. [11] KNL 7250 x 720 Intel Caffe 11,520 62 min 75.0%

You et al. [12] Xeon 8160 x 1600 Intel Caffe 16,000 31 min 75.3%
Akiba et al. [5] Tesla P100 x 1024 Chainer 32,768 15 min 74.9%

number of samples in the dataset.
The stochastic gradient descent (SGD) is commonly used to

optimize the problem in Equation 1. The parameter update in
Stochastic Gradient Descent (SGD) is done according to Equa-
tion 2.

θt+1 = θt −
η

B

N∑
i=1

∇l(θt, xi, yi), (2)

where B is the mini-batch size.

2.2 Large Mini-Batch Training
During the optimization of the DNN according to SGD, the

size of the mini-batch B is usually very small as compared to the
whole dataset. While the use of appropriately small mini-batch
size gives better generalization ability, it leads to significantly
slow training. In order to speed up the training, various teams,
as tabulated in Table 1, have used large mini-batch.

One of the most significant important work in the field of large
mini-batch training is from Goyal et al. [10] who were able to de-
crease the training time from 29 hours to 1 hour by increasing the
mini-batch size from 256 to 8, 192. They suggested two impor-
tant techniques for the large mini-batch training which have been
adopted by various other following works. These two techniques
are as follows:
( 1 ) Linear Scaling of Learning Rate: This rule states that if we

increase the mini-batch size k times, we should increase the
learning rate by k times as well. The k times scaling of the
learning rate compensates for k different parameter updates
that would have been made with k smaller mini-batches.

( 2 ) Gradual Warm-up: This rule states that we have to linearly
increase the learning rate from a lower value to its scaled
value over the first few epochs. The smaller value of the
learning rate in the beginning of the training ensures stabil-
ity.

The recent state-of-the-art large mini-batch training by Akiba
et al. [5] were able to increase the mini-batch size to 32, 768
which is merely 3% of the whole dataset. On further increasing,
the mini-batch size they reported a decrement in the generaliza-
tion ability of the model.

2.3 Minima and Generalization Gap
2.3.1 Flat Minima and Sharp Minima

Figure 1 depicts a conceptual sketch of flat and sharp minima.
A minima is said to be flat if the rate of change of the function in
its neighbourhood is small, otherwise it is a sharp minima. More
precisely, the eigenvalue of the Hessian of the function at a flat
minima is smaller than that of a sharp minima.

In Figure 1, the solid line is the training function while the dot-
ted line is the testing function. At sharp minima, the gap between
the training function and testing function is bigger than that at the

Fig. 1 A conceptual sketch of sharp and flat minima. The vertical axis is
loss and horizontal axis is parameters. [6]

Fig. 2 A parametric plot to identify the nature of minima. α = 0 corre-
sponds to minima found by small mini-batch training while α = 1
corresponds to minima found by large mini-batch training. [6]

flat minima. This gap is the generalization gap.
2.3.2 Parameter Plot to Identify the Nature of Minima

A parametric plot as shown in Figure 2 can be used to analyze
the nature of the minima in its neighbourhood. The parameter (θ)
of the model which is used to obtain the cross entropy loss and ac-
curacy in Figure 2 is calculated as θ = (1−α)θS +αθL, α ∈ [−1, 2]
where θS and θL represent model parameters for small mini-batch
and large mini-batch training respectively. In Figure 2, we can
clearly see that the rate of change is relatively high in the neigh-
bourhood of large mini-batch training. This suggests that large
mini-batch training ends up in sharp minima.
2.3.3 Origin of Generalization Gap

In general, a model trained with large mini-batch has been
found to lose its generalization ability even if trained ”without any
budget or limits, until the loss function ceased to improve [6]”.
This phenomenon of decrease in the performance is known as
generalization gap.

The insight into the origin of the generalization, and moreover,
discovering ways to close this gap will have a significant practi-
cal importance, especially for large mini-batch training. Keskar
et al. [6] empirically made the following observations:
( 1 ) Models trained with large mini-batch ended up in sharp min-
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Fig. 3 Impact of SGD with ratio of learning rate η and batch-size S on
flatness of final minima for a 4 layer ReLU MLP architecture on
FashionMNIST dataset. For higher value of the ratio, SGD finds flat
minima. [8]

ima while models trained with small mini-batch ended up in
flat minima.

( 2 ) Models trained with large mini-batch howed poor general-
ization ability than those trained with small mini-batch

Based on the above observations, they suggested that generaliza-
tion gap can be attributed to sharp minima.

2.4 Related Work for closing Generalization Gap
Hoffer et al. [7] have proposed to use square root scaling of

learning rate, Ghost Batch-Normalization and sufficient iterations
to close the generalization gap. In their experiments conducted
on MNIST, CIFAR10 and ImageNet dataset, they were able to
decrease the generalization gap from 5% to 1% − 2%. However,
the increased number of iterations to overcome the generalization
may not be useful to obtain speed-up from parallelization of large
mini-batch training.

Jastrzebsk et al. [8] found that larger value of η
B steers SGD

into flat minima which are associated with better generalization
ability. They measured the spectral norm (i.e. largest eigenvalue
denoted by max jλ j , where λ j are the eigenvalues of the Hes-
sian) of the Hessian of the loss function at the minima for models
trained with different values of η

B as shown in Figure 3.
Increasing the ratio η

B is not an easy task in practice. This is
because to increase the ratio η

B , the scale factor for the learning
rate has to be more than that of the batch size. The training of the
DNN with larger learning rate is not stable and might not always
result in convergence.

3. Proposed Method
3.1 Proposed Method

There is a trade-off between the number of increased iterations
and speed-up in the method proposed by Hoffer et al. [7]. Sim-
ilarly, the learning rate in the method proposed by Jastrzebsk et
al. [8] may be large enough to converge to the minima or we
might require additional efforts. Due to these limitations in the
previous works, we propose a new method to close the general-

ization gap by adding white noise to the gradients. The idea of
adding noise to the gradient itself is not new ?, the application of
the concept to overcome generalization gap is unique to our best
knowledge. The proposed method can be put simply put into two
steps:
( 1 ) Linearly scale the learning rate by the same scale factor as

that of the mini-batch.
( 2 ) Add a white noise to the gradients calculated from the mini-

batch according to the distribution N(0, σ2
t I) where σt2 =

α
(1+t)γ decays exponentially with time. α and γ are the hyper
parameters which need to be tuned. In our experiments, we
use α = 0.00001 and γ = 0.55.

3.2 Motivation
Our main reason behind deliberately adding white noise to the

gradient is that the covariance of the gradients decreases when the
mini-batch size increases. The decrease in the covariance makes
the gradients less stochastic. Since stochasticity in the gradient
helps in the exploration of the parameter space, it is an important
feature for the success of small mini-batch training. It might even
help SGD with small mini-batch escape from sharp local minima.
We add noise to the gradient to compensate for the decrement in
the covariance.

3.3 Covariance of the Gradients of Mini-Batch
Let, gi(θt) be the gradient of loss on the ith sample, gB(θt) be the

average gradient of the mini-batch, ḡ(θt) and Σ(θt) be the average
gradient and covariance of the entire dataset. For the sake of sim-
plicity we just write them as gi, gB, ḡ and Σ. Then the following
equations will hold.

ḡ =
1
N

N∑
i=1

∇l(θt, xi, yi) (3)

gB =
1
B

B∑
i=1

∇l(θt, xi, yi) (4)

Σ =
1
N

N∑
i=1

(gi − ḡ)(gi − ḡ)> (5)

Statistically the mini-batch will follow a sampling distribution.
In case of large mini-batch, the central limit theorem will hold.
As a result of which, gB will follow a normal distribution with
average ḡ and covariance Σ

B .

gB ∼ N(ḡ,
Σ

B
).

Alternately, we can also express the above expression as

gB = ḡ +
1
√

B
ε, ε ∼ N(0,Σ), (6)

where ε is the noise in the gradient which follows the distribution
N(0,Σ). Then finally the parameter update in Equation 2 can be
rewritten as

θt+1 = θt − ηtḡ +
ηt
√

B
ε, ε ∼ N(0,Σ). (7)

The third term on the right hand side of Equation 7 is the noise
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term which makes SGD stochastic, and is responsible for the ex-
ploration of the parameter space or helps in escaping from the
local minima. The two most important observations made from
Equation 7 are as follows:
( 1 ) When we increase the mini-batch size the noise decreases by

square root term.
( 2 ) This noise is time dependent since the covariance of the en-

tire dataset is time dependent.
Based on the above two observations, we propose to add a white
noise to compensate for the decrement in the noise due to decre-
ment in the covariance when using large mini-batch. Similarly,
we also propose that the covariance of the white noise should be
time dependent and decay with time. The optimal value of the
covariance of the noise itself is a hyperparamter that needs to be
tuned.

4. Preliminary Experiment and Result
4.1 Objective

The goal of our experiment was to provide a proof of concept
for our proposed method. Moreover, during the course of experi-
ments, we also reproduced some of the experiments conducted in
the related works.

4.2 Experimental Setup
In all of our experiments, we have used Caltech101 dataset

to train ResNet50. ResNet50 is convolutional neural network
(CNN) which consists of 50 layers and has been extensively used
in state-of-the-art [5] training of large mini-batches. Similarly,
Caltech101 is a small dataset of merely 9147 images but consists
of untouched real-world images. It is very suitable for verifying
complex ideas in short period of time. We split this dataset into
training and validation dataset by 3 : 1 ratio. The training set
consists of 6903 images. In most of our experiment, the training
accuracy nearly reached 100%. This is due to the fact that over-
parametrized CNN tend to overfit the data. This phenomenon was
also reported by Jastrzebsk et al. [8].

We conducted our experiment on the arcturus-server of Taura
laboratory. The details of this server are as follows:
• CPU: Intel Xeon E5-2699 v4 2.20GHz
• Memory: DIMM DDR4 2400 MHz 32GB x 16
• GPU: NVIDIA GP100GL Tesla P100 SMX2 16GB ]x2

All of the codes for our experiments were written using chainer.

4.3 Scaling the Mini-Batch Size Without Noise
We trained ResNet50 on Caltech101 dataset for η

B ∈

{ 0.01
32 ,

0.02
64 and 0.04

128 } by decaying the learning rates by 10% at 25th,
40th and every following 10th epoch. Although the mini-batch
size of 128 (1.85%) in this experiment appears to be small, it in
fact is relatively large mini-batch as compared to the whole train-
ing dataset. Goyal et al. [10] had used a mini-batch of size 8192
which is just 0.66% of the entire ImageNet dataset.

The results of the experiment are as shown in Figure 4. The
gap between the training (dotted curve) and the validation (solid
curve) accuracy is huge 4(b). This leaves us with thinking if this
is the case of overfitting. Had it been a case of overfitting, the val-
idation loss curve 4(a) would have been increased. Since it stays

*[t]
(a) Loss curve.

(b) Accuracy curve. Generalization gap increases with increasing
batch size. It is smallest for red curve (B=32) and biggest for green
curve (B=64).

Fig. 4 Training ResNet50 on Caltech101 without noise. The solid and dot-
ted curves are validation and training curves respectively.

the same without much fluctuations, we can say that this is not
the case of overfitting. Morever, Jastrzebsk et al. [8] have also
reported the same phenomenon.

One of the important observation from this result is that the
generalization gap increases with increasing batch-size 4(b) from
red curve to green curve. The accuracy for red, blue and green
curves are 74.45%, 70.29% and 67.86% respectively.

Inspired by the work of Hoffer et al. [7], we trained the net-
work for sufficient number of iterations to see if the generaliza-
tion gap decreased. We obtained a result as shown in Figure 5. We
state here that making a comparison from this experiment with the
works of Hoffer et al. [7] is unfair because we used linear scaling
rule instead of square root scaling and performed normal Batch-
Normalization instead of Ghost Batch-Normalization. However,
we can say that under our experiment conditions, the generaliza-
tion did not improve even if we trained it for sufficient number of
iterations.

In order to investigate the inherent cause of this generalization
gap, we also performed an experiment to see what was happening
around the minima. We made a parametric plot as explained in
Section 2.3.2. The result of the plot is as shown in Figure 6. The
plot suggests that minima in either cases are similar. This obser-
vation is in agreement with the works of Jastrzebsk et al. [8] who
suggests that for the same value of η

B the nature of the minima
should be similar.

All of them probably may be sharp minima given a huge differ-
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Fig. 5 Accuracy curve for ResNet50 trained on Caltech101. Even if we
trained it for suffiecient number of iterations, we did not see any im-
provement in the performance.

Fig. 6 Parametric plot. The solid and the dotted lines represent validation
and train accuracy respectively. Red curve (B=32) is for small mini-
batch at α = 0, blue (B=64) and green (B=128) are for large mini-
batch at α = 1.

ence between training and validation accuracy. The point here is
that even if the minima are the same they generalize differently. In
the light of this result, we hypothesize that Goyal et al. [10] also
might have ended up in the similar minima (because of propor-
tionate scaling of learning rate and batch size) but with different
generalization gap.

4.4 Scaling the Mini-Batch Size With Noise
From the experiment in the previous section, we found that we

might get a generalization gap even if we ended up in the similar
kind of minima. Adding a white noise to the gradients, we were
able to close this gap.

In this experiment, we simply added a white noise from the
distribution N(0, 0.00001

(1+t)0.55 ) to the gradients before making an up-
date to the parameter. All the other settings were similar to the
experiment conducted in the previous section. We performed the
experiment twice for B = 128 and once for B = 64.

Figure 7 shows the result of the experiment conducted with
addition of noise to the gradient for the mini-batch size of 128.
The black solid line is for the experiment conducted with noise
and the green solid line is for the experiment conducted without
noise. There is an overall improvement in the learning dynamics
throughout all the epochs. It also surpasses the performance of

Fig. 7 Effect of noise on generalization gap. Noise helps to close the gap.
The black curve is obtained from the noise experiment while the
coloured curves from experiment without noise.

Table 2 Effect of noise in generalization gap

B=64 B=128
No noise 70.29% 67.86%

Noise 72.07% 71.01 ± (0.42)%

B = 64. The results are tabulated in Table 2.
The result of this experiment is motivating because it is in

agreement with our claim that the decrement in the covariance of
the gradients with increasing mini-batch size could be compen-
sated by the addition of white noise in the gradient. Motivated
with this result, we would like to further investigate about why it
works and how it can be applied for large mini-batch training.

5. Conclusion and Future Work
Large mini-batch training is inevitable for speeding up the

training of DNN. However, it has been found empirically that
the performance of the model decreases when large mini-batch is
used for the training. Keskar et al. [6] empirically found that min-
ima of the models trained with large mini-batch are sharp minima
which are associated with poor generalization ability. Jastrzebsk
et al. [8] suggested that we can avoid sharp minima during the
training by increasing the ratio η

B .
In the linear learning rate rule for large mini-batch train-

ing [10], the ratio η
B remains constant. We showed that the gen-

eralization gap in linear learning rate scaling, when the ratio η
B

remains constant and probably the nature of the minima are the
same, can be decreased by adding noise to the gradients.

We are considering the following direction for our research in
the future:
( 1 ) Our proposed method is only verified against ResNet50 on

Caltech101. We will verify its validity on a variety of other
networks like MLP, GoogleNet and AlexNet on datasets like
MNIST, CIFAR10, CIFAR100, Caltech256 and ImageNet.

( 2 ) We will conduct a very large mini-batch training
(8192, 16384, 32768) using ResNet50 on ImageNet-1k.

( 3 ) The optimal amount of noise that needs to be added to the
gradient for optimal training is another investigation for the
future.
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