
IPSJ SIG Technical Report

Scaling Word2Vec with Uniform Word Sampling
(Unrefereed Workshop Manuscript)

Bofang Li1,2,a) Aleksandr Drozd1,3,b) SatoshiMatsuoka1,3,4, ,c)

Abstract: Word2Vec is a popular model for learning word embeddings, an important component of many natural lan-
guage processing applications. Original Word2Vec algorithm’s training time is proportional to the size of the corpus,
which makes it prohibitive for training on terabyte-scale datasets. Another issue with the original approach is that em-
beddings corresponding to frequent words are updated more frequently. This results in lower quality embeddings for
low-frequency words. These two issues also cause sub-optimal GPU utilization when using batch training. This work
addresses these issues by proposing an alternative training scheme in which word-context pairs are sampled from the
corpus uniformly, regardless of their frequencies. This allows us to use a larger batch size (equal to the vocabulary size)
and better utilize GPU resources. Using the ChainerMN framework, our model can scale to up to 16 GPUs without
accuracy drop. Our model also obtains lower loss for low-frequency words compared to the reference implementation.

1. Introduction
In recent years, there is a growing interest in word embedding

models, where words are embedded into low-dimensional (dense)
real-valued vectors. Semantically similar words tend to be close
in this vector space. The trained word embeddings can be di-
rectly used for solving intrinsic tasks like word similarity and
word analogy [10, 11, 14]. Word embeddings have also become
the building blocks for extrinsic tasks, such as part-of-speech tag-
ging, chunking, named entity recognition [7] and text classifica-
tion [19, 34].

Multiple models of training word embeddings have been pro-
posed in recent years [4, 5, 8, 21, 26, 27, 29, 30, 31, 33]. Probably
one of the most popular model among them is Word2Vec [29]. It
achieves state-of-the-art results on a range of linguistic tasks, and
scales to corpora with billions of words.

The original Word2Vec implementation is based on a single
node CPU. Recent works have tried to accelerate the training
speed using multiple nodes with CPUs and GPUs [3, 12, 16, 28,
35]. Since Word2Vec is inherently a sequential algorithm, di-
rectly parallelizing the model is unfeasible. Scaling often results
in the low-quality of learned word embeddings or sub-optimal
GPU utilization. To the best of our knowledge, by using 8 GPUs,
the fastest implementation [12] is only around 9 times faster than
the original Word2Vec on one 8-threaded CPU.

In this paper, we address two issues in the original Word2Vec
1 Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
2 Renmin University of China, Haidian, Beijing 100872, P.R. China
3 AIST- Tokyo Tech Real World Big-Data Computation Open Innovation

Laboratory, Meguro-ku, Tokyo 152-8550, Japan
4 RIKEN Center for Computational Science, Chuo-ku, Kobe, Hyogo 650-

0047 Japan
a) libofang@ruc.edu.cn
b) alex@blackbird.pw
c) matsu@is.titech.ac.jp

algorithm. The first is online learning scheme. Original
Word2Vec scans through the corpus and optimizes the cosine
distance between word-context pairs. The training time is thus
proportional to the size of the corpus. This makes the algorithm
hard to train on terabyte-scale datasets such as CommonCrawl
*1. The second issue is the insensitivity to low-frequency words.
The number of times a word is updated is equal to the word’s fre-
quency. This causes high loss for low-frequency words. These
two issues also limit the use of the large batch size, and make the
GPU utilization sub-optimal.

We propose an alternative training scheme called W2V-UWS
(Word2Vec with Uniform Word Sampling). W2V-UWS samples
word-context pairs from the corpus uniformly. Each word is as-
signed with an equal number of context samples. In this way, the
training time depends only on the vocabulary size and the con-
text size. During training, W2V-UWS scans through all sampled
word-context pairs, and optimize their embedding’s distance. The
number of times that high-frequency and low-frequency words
are updated is equal. Moreover, we are able to use a larger batch
size (equal to the vocabulary size) and better utilize GPU re-
sources.

Experiments show that on single GPU, our model is around
2 times faster than the Chainer baseline without accuracy loss.
Due to the large batch size used in this model, W2V-UWS can be
scaled on multiple nodes. We achieve 5.5 times speedup using 8
GPUs, and around 8 times speed up using 2 nodes with total 16
GPUs.

Since W2V-UWS only requires the pre-assignment of word-
context pairs, it can be directly integrated into deep learning
frameworks. We demonstrate the flexibility of W2V-UWS by
implementing a subword-level word embedding model [24] on

*1 http://commoncrawl.org/

c© 2018 Information Processing Society of Japan 1

Vol.2018-HPC-165 No.14
2018/7/31

IPSJ SIG Technical Report

Table 1: Illustration of word-context pairs collection P for sen-
tence “i like apple juice” (window size is 2).

word contextual word word contextual word
i like apple i
i apple apple like

like i apple juice
like apple juice like
like juice juice apple

Table 2: Examples of high-frequency (left) and low-frequency
(right) words.

Word Frequency
the 1061396
of 593677

and 416629
one 411764
in 372201
a 325873
to 316376

zero 264975
nine 250430
two 192644

Word Frequency
diluted 50
bored 50

salaries 50
jp 50

clearer 50
ridiculous 50

trailer 50
bitmap 50

originals 50
sensible 50

top of it. Experiments show similar trends of scaling, and faster
training speed compared to the original Chainer implementation.

2. Word2Vec
Due to the popularity and state-of-the-art performance,

we choose the Skip-Gram model with negative sampling in
Word2Vec [29] as our word embedding baseline. For simplicity,
we directly refer it as Word2Vec in the rest of this paper.

Given a training corpus Text consists of n words
w1, w2, w3, ..., wn, Word2Vec first extracts the word-context
pair collection P. Each element (w, c) ∈ P represents a word and
its corresponding contextual word. There are multiple ways of
defining the context [21, 25, 37, 38]. In this work, we consider
the words that precede and follow the target word within some
fixed distance as context. An example of collection P is shown
in Table 1.

The objective function of Word2Vec is defined as:

∑
(w,c)∈P

log p

c
∣∣∣∣∣∣∣∣~w

 (1)

where ~w is the contextual vector of word w. With Negative Sam-
pling technique, the log probability in above equation can be es-
timated as:∑

(w,c)∈P

logσ
(
~w · ~c

)
−

K∑
k=1

logσ
(
~w · ~cNk

) (2)

where σ is the sigmoid function, K is the negative sampling size,
~w the vector for word w. The negatively sampled word cNk is ran-
domly selected on the basis of its unigram distribution (#(w)∑

w #(w))ds,
where #(w) is the number of times that word w appears in the cor-
pus, and ds is the distribution smoothing hyper-parameter which
is usually defined as 0.75.

2.1 Issues with the Online Learning Scheme
Original Word2Vec is trained in an online fashion. It scans

through the corpus to obtain word-context pairs, and optimize
the distance between them based on the objective function. The

larger the corpus is, the longer training time is needed. This on-
line learning scheme also fixes the order of training word-context
pairs. Pairs that appear at the head of the corpus are always opti-
mized first. We argue that it is possible to re-arrange the order of
training for better quality of learned word embeddings.

2.2 Issues with Low-frequency Words
Aside from the online training issue, there is also a possible

problem with how Word2Vec treat low-frequency words. The
number of times a vector updates depends on the number the cor-
responding word appears in collection P, which in terms depend
on the word’s frequency.

For example, in the Text8 corpus (described in Section 6.1),
word “predicting” appears only 63 times while word “the” ap-
pears 1061396 times. This indicates that the vector of word “the”
will update 16847 times more often than the vector of word “pre-
dicting”.

It is reasonable to treat high-frequency words more carefully
since they are often also more frequent in downstream tasks.
However, intuitively, millions of updates may be too much for
learning a word embedding. It may also be problematic that the
vectors of low-frequency words update too few times and could
not be properly learned.

3. Chainer’s Implementation of Word2Vec
The original W2V-C (Word2Vec Toolkit *2) is implemented us-

ing C on CPU. It moves over each word in the corpus and repeats
the training step in an online fashion. In order to take the advan-
tage of GPU, recent deep learning frameworks implement and
optimize Word2Vec using mini-batch training.

We choose Chainer deep learning framework [36] in this study.
It is a Python-based deep learning framework, and supports the
use of CUDA/cuDNN for building and training neural networks.
For example, Fig. 6 shows how Chainer framework *3 imple-
ments the Word2Vec algorithm. We refer to this implementation
as W2V-Chainer in the rest of this paper.

Compared to W2V-C, W2V-Chainer is more flexible. For ex-
ample, one can easyly modify this architecture to subword-level
word embeddings [24]. The resulting word embeddings can also
be directly read as input for neural networks on downstream tasks.

Note that W2V-C can be regarded as a special case of this im-
plementation where the batch size is set to 1.

3.1 Profiling Training Speed on GPUs
In our experiments, we use Tesla K80 GPU and Xeon(R) CPU

E5-2630 v4. The memory bandwidth of CPU and GPU are 480
GB/s and 68.3 GB/s respectively. In Word2Vec training the dot
product between rows of two lookup tables is the dominant oper-
ation. For each memory access, only one multiplication operation
is performed. In theory, the speed of Word2Vec is bound by the
memory bandwidth, and GPU should be around 7 times faster
than CPU.

To saturate GPU utilization, sufficient number of

*2 https://github.com/tmikolov/word2vec
*3 https://github.com/chainer/chainer/tree/master/

examples/word2vec

c© 2018 Information Processing Society of Japan 2

Vol.2018-HPC-165 No.14
2018/7/31

IPSJ SIG Technical Report

W1, W2, W3, W4
W5, W6, , Wn

Corpus

Batched word-
context pairs

W1
W1
W2
W2
W2

Wn

W2
W3
W1
W3
W4

Wn

Batched word-context
pairs plus negative

examples

Matrix batch

Extract word-
context pairs

Lookup word
embeddings

Row-wise dot
product

Activate using
sigmoid

LabelsPredictions

split into batchs

For each batch,
sample negative

examples

Number of neurous

B
atch size

Number of neurous

B
atch size

B
atch size

batch size

Fig. 1: Illustration of Skip-Gram with Negative Sampling in Chainer Framework

8 10 12 14 16 18
base 2 logarithm of batch size

7.5

10.0

12.5

15.0

17.5

20.0

ba
se

 2
 lo

ga
rit

hm
 o

f
 th

e
nu

m
be

r o
f w

or
ds

/s
ec

on
d dot product

loss function
forward pass
all operations

Fig. 2: Number of words/second with different batch sizes. dot
product: calculate the row-wise dot product of two input matri-
ces directly using CuPy. loss function: calculate the loss of two
input matrices directly using CuPy. forward pass: calculate the
loss of a batch of word pairs using Chainer. all operations: train
the full model using Chainer.

threads/operations have to be executed per batch update.
Moreover, as each batch needs to be transferred from host
memory to GPU, increased computation per batch alleviates
communication overhead. Since the dimension of embeddings
is fixed, the only way to increase the amount of computation per
batch size is to have more samples per batch. Finally, having
a larger batch size improves scalability on multiple GPUs or
multiple GPU nodes, as the amount of data to be sent through the
network does not depend on the batch size, but only in the size of
the model.

In our experiments, we have observed GPU performance to
be inferior to what can be estimated for just the dot product of
embedding vectors. This can be explained by multiple layers
of overhead imposed by the deep learning framework: compu-
tation history need to be recorded for tape-based differentiation

0 20000 40000 60000
batch size

0

2000

4000

6000

8000

10000

12000
M

em
or

y
fo

ot
pr

in
t (

M
B)

Memory footprint

Fig. 3: Memory footprint with different batch sizes

Fig. 4: Illustration of flat and sharp minimum [17].

etc. Yet for all the operations involved we observe similar perfor-
mance dynamics with respect to the batch size. The bottom line
is that larger batch sizes are always beneficial performance wise,
as measured empirically and illustrated in Fig. 2. The number of
words/second increases almost linearly with the batch size.

3.2 Issues with the Large Batch Size
It seems promising to use large batch size for training word

embeddings. However, we find that there are mainly two prob-
lems with large batch size that limits Word2Vec achieve the ideal

c© 2018 Information Processing Society of Japan 3

Vol.2018-HPC-165 No.14
2018/7/31

IPSJ SIG Technical Report

8 9 10 11 12 13 14 15 16
base 2 logarithm of batch size

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

es
 (a

cc
ur

ac
y

or
 S

pe
ar

m
an

 c
or

re
la

tio
n)

word_analogy 1_Inflectional_morphology
word_analogy 2_Derivational_morphology
word_analogy 3_Encyclopedic_semantics
word_analogy 4_Lexicographic_semantics
word_analogy semantic
word_analogy syntactic
word_similarity bruni_men
word_similarity luong_rare
word_similarity radinsky_mturk
word_similarity sim999
word_similarity ws353
word_similarity ws353_relatedness
word_similarity ws353_similarity

Fig. 5: Word similarity scores with different batch sizes.

speed on GPU.
The first and most obvious problem with large batch sizes is the

the memory boundedness of the algorithm. It is especially prob-
lematical when we training neural networks, as per-neuron gra-
dients have to be stored to perform back prorogation. As shown
in Fig. 3, the memory footprint increases linearly with the batch
size. The Tesla K80 GPU has 12GB memory, thus 216 = 65536
is the maximum number of batch size that used to train the full
Word2Vec algorithm.

Another more dramatic problem with large batch size is the
low-quality of learned word embeddings. Previous researches
[15] show that there can be flat and sharp minimums in train-
ing functions. Models with large batch size tend to converge to
the sharp minimum, and result in bad performance on a range of
computer vision tasks [17]. We test the impact of batch size on
word similarity and word analogy task as shown in Fig. 5. Prob-
ably due to the same reason, for all the tasks and datasets that we
tested, the scores drop when we increase the batch size. In the rest
of this paper, we experiment only on the batch size 210 = 1024,
which is also the default setting in Chainer’s implementation.

4. Word2Vec with Uniform Word Sampling
This study tries to use large batch sizes by addressing the above

issues of Word2Vec. We propose an alternative training scheme
called W2V-UWS (Word2Vec with Uniform Word Sampling).
The overall architecture of W2V-UWS is shown in Fig. 6.

Given a training corpus Text and its vocabulary V , the first step

W1, W2, W3, W4
W5, W6, , Wn

Corpus

Batched word-
context pairs

Extract word-
context pairs

Split into batchs

W1
W2
W3

Wn

W7,W2,W3
W4,W8,W5
W1,W6,W7

W9,W5,W3

Context size

vocabulary size

vocabulary
size

vocabulary size * C
ontext size

Fig. 6: Illustration of W2V-UWS

of W2V-UWS is to sample word-context pairs uniformly from
Text. Each word in the vocabulary is assigned with l context
samples. This pre-processing step creates a word-contexts matrix
M with size (|V |, l). Element mi, j ∈ M represents the jth contex-
tual words of the ith word in the vocabulary.

More precisely, we scan through the corpus before training,
and extract the contextual words for all the words in the vocabu-
lary. For high-frequency words that have contextual words more
than l, we randomly discard the abundant contextual words. For
low-frequency words that have fewer contextual words than l, we
randomly duplicate the existing contextual words.

This pre-processing step is done on CPU using single thread.
Empirically, it takes around 400 seconds to process 100M corpus.
Note that word-contexts matrix M can be stored and re-used. Due
to this season, we do not count the time of this pre-processing step
in the rest of our experiments.

The objective function of W2V-UWS is similar to the origi-
nal Word2Vec. However, instead of scanning through the corpus,
W2V-UWS scans through the word-contexts matrix M:

l∑
j=0

|V |∑
i=0

logσ
(
~wi · ~mi, j

)
−

K∑
k=1

logσ
(
~wi · ~cNk

) (3)

where wi is the ith word in the vocabulary.
For each iteration, the batch size is set to |V |. As shown in

Fig. 6, words appear once and only once in the left word list.
However, in the right word list, high-frequency words still appear
much more times than low-frequency words. In order to ensure
the equivalence of updating, the left word list looks up the word
vectors and context vectors iteratively. We only update the left
side of the matrix, and directly ignore the loss on the right side.

Note that |V | is usually ranging from 50000 to 500000, which
is much larger than the 1024 batch size used in W2V-Chainer.

4.1 Scaling W2V-UWS using Multiple GPUs and Nodes
We also explore the possibility of using multiple nodes and

multiple GPUs to scale our W2V-UWS model. Due to the large

c© 2018 Information Processing Society of Japan 4

Vol.2018-HPC-165 No.14
2018/7/31

IPSJ SIG Technical Report

batch size used in W2V-UWS, we choose model parallelism in
this study. The larger batch size we have, the more data we can
send to each GPU. In this way, the number of iterations is re-
duced, and thus speeds up the training.

More specifically, we first split each batch into multiple small
batches. Suppose we have N workers, we randomly assign each
worker with B/N word-context pairs, where B is the batch size.
For each iteration, workers communicate to obtain the averaged
gradient over gradients of all workers. Then, the aggregated
gradient is used to improve the model in the optimization step.
For fair comparison, we also implement the parallelized W2V-
Chainer using the same idea.

5. Related Work
This paper takes the Chainer framework as an example of scal-

ing Word2Vec. There are also several other deep learning frame-
works have implemented Word2Vec on GPU, such as Gensim
with Keras *4 and Theano *5. However, those frameworks share
the same issues with Chainer, and performs worse than original
Word2Vec in terms of speed [12]. TensorFlow *6 implements
Word2Vec on CPU and calls C++ functions, which achieved
comparable speed as the original Word2Vec.

Another promising direction for accelerating Word2Vec is di-
rectly parallelizing it regardless of the conflicts. In fact, the orig-
inal Word2Vec implementation utilizes multiple threads to accel-
erate the training speed. It seems promising to train the same
model with multiple nodes. However, as shown in Spark ML-
Lib [28] and Deeplearning4j [35], the accuracy drops signifi-
cantly when more nodes are employed. To the best of our knowl-
edge, the most promising work on CPU is to convert the dot
product to matrix multiplication by carefully aligning the order
of word-context pairs. It speeds up the original Word2Vec 2-3
times on Intel BDW and Intel KNL [16] without accuracy drop.

There are also works that tries to accelerate Word2Vec on
GPUs using CUDA [3, 12]. To alleviate the conflict issue, these
two methods assign each CUDA block with a whole sentence in-
stead of word pairs. This ensures the good quality of learned word
embeddings. Using 2 GPUs, 21.3 times speedup over 1-threaded
CPU are achieved in [3]. Similarly, using 8 GPUs, around 9x
speedup over an 8-threaded CPU are achieved in [12].

6. Experiments
6.1 Implementation Details

We implement W2V-UWS using Chainer deep learning frame-
work [36]. For scaling to multiple GPUs and nodes, we use the
ChainerMN framework [2], which is an additional package for
Chainer. We also choose a relatively small TEXT8 *7 corpus,
which contains the first 109 bytes of the English Wikipedia dump
from Mar. 3, 2006. The word embedding size N is set to 500. The
negative sampling size is set to 5, and the window size is set to 2.
Following Chainer’s original word2vec implementation, we use
Adam [20] as the optimization function, which performs much

*4 https://github.com/niitsuma/word2vec-keras-in-gensim
*5 https://github.com/Ignotus/theano-word2vec
*6 https://www.tensorflow.org/tutorials/word2vec
*7 http://mattmahoney.net/dc/textdata.html

20000 40000 60000 80000 100000 120000
context size

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

es
 (a

cc
ur

ac
y

or
 S

pe
ar

m
an

 c
or

re
la

tio
n)

word_analogy 1_Inflectional_morphology
word_analogy 2_Derivational_morphology
word_analogy 3_Encyclopedic_semantics
word_analogy 4_Lexicographic_semantics
word_analogy semantic
word_analogy syntactic
word_similarity bruni_men
word_similarity luong_rare
word_similarity radinsky_mturk
word_similarity sim999
word_similarity ws353
word_similarity ws353_relatedness
word_similarity ws353_similarity

Fig. 7: Word similarity and word analogy scores with different
context size.

better than SGD [18] in our pilot experiments. Words which ap-
pear fewer than 50 times are directly discarded, which results in
vocabulary size of 18498. All models are trained for 1 epochs on
the Nvidia Tesla K80 GPU(s).

6.2 Datasets
In order to measure the quality of learned word embeddings,

we choose word similarity and word analogy tasks as bench-
marks.

Word similarity task aims at producing semantic similarity
scores of word pairs, which are compared with the human scores
using Spearman’s correlation. The cosine distance is used for
generating similarity scores between two word vectors. In our ex-
periments, we use WordSim353 (WS) [10] dataset, divided into
similarity (sem.) and relatedness (rel.) categories [1,39], Sim 999
dataset [14], MEN dataset [6], and Mech Turk dataset [32], Rare
Words dataset [26].

The word analogy task aims at answering questions generalize
as “a is to a’ as b is to ?”, such as “London is to Britain as
Tokyo is to Japan”. We use the LRCos method [9] for solving
word analogies, which significantly improves on the traditional
vector offset method. We use Google analogy dataset [29] along
with a much bigger and balanced BATS analogy dataset [11].

6.3 Impact of Context Size l
The most important hyper-parameter in our W2V-UWS model

c© 2018 Information Processing Society of Japan 5

Vol.2018-HPC-165 No.14
2018/7/31

IPSJ SIG Technical Report

Table 3: Different model’s results on word similarity and word analogy datasets. The best results in each datasets are marked BOLD.

Model
Training Word Similarity Word Analogy

time Rare WS WS Sim MEN Mech BATS Google
(seconds) Words sem. rel. 999 Turk inf. der. enc. lex. sem. syn.

Word2Vec (1 threaded CPU) 138 .379 .580 .475 .241 .474 .462 .470 .078 .211 .054 .147 .381
W2V-Chainer (1 GPU) 3061 .351 .606 .496 .232 .531 .562 .583 .123 .201 .065 .287 .397
W2V-UWS (16 GPUs) 193 .314 .655 .526 .232 .594 .623 .490 .151 .332 .098 .390 .405

1000 2000 3000 4000 5000 6000 7000 8000 9000
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

a) Top-100 high-frequency words in W2V-Chainer.

100 200 300 400 500 600 700 800 900 1000 1100 1200
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

b) Top-100 high-frequency words in W2V-UWS.

1000 2000 3000 4000 5000 6000 7000 8000 9000
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

lo
ss

c) Top-100 low-frequency words in W2V-Chainer.

100 200 300 400 500 600 700 800 900 1000 1100 1200
iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0
lo

ss

d) Top-100 low-frequency words in W2V-UWS.

Fig. 8: The loss of high-frquency and low-frequency words on W2V-Chainer and W2V-UWS.

is context size l. Since the vocabulary size is fixed for a given
corpus, context size l directly defines how big the word-contexts
matrix M is. Consequently, it affects the quality of learned em-
beddings, as well as the training speed.

As shown in Fig. 7, we test the effect of different context size
on word similarity and word analogy tasks. It is clear that larger
context size yields higher scores. However, the scores stop grow-
ing when the context size reaches around 216 = 65536. We thus
set context size to this number in the following experiments.

For context size 65536, the word-contexts matrix M has |V | ·l =

18498 · 65536 = 12 billion elements. This indicates that we have
to do 12 billion dot product operations in total in one epoch of
training. In the case of W2V-Chainer, the number of dot product
operations directly depends on the corpus size. There are 0.17
billion words in total in the vocabulary. For each word, we have
to calculate 4 contextual words and 5 negative samples. The total
number of operations is 0.17 · 4 = 0.68 billion in W2V-Chainer,
which is around 17.6 times less than W2V-UWS. This suggests
that compared to W2V-Chainer, our W2V-USW has a lot of re-
dundant computation, which may need further investigation in
the future. Nonetheless, due to the large batch size used in W2V-
USW, it is still faster than W2V-Chainer as shown in Section 6.5.

6.4 The Quality of Learned Word Embeddings
In this section, we evaluate the quality of learned word em-

beddings. As shown in Table 3, all three models perform com-
parable on these tasks and datasets. This may first look counter-
intuitive since those models have different training strategies. For
example, the Chainer implementation of Word2Vec uses mini-
batch training with Adam optimizer, while the C implementation
uses Stochastic Gradient Descent. Our W2V-UWS even differs
from other two models in the objective function. However, all
those models are actually based on the Distributional Hypothe-
sis [13]. No matter how those models are trained, the goal is still
to make “words that occur in similar contexts to have similar em-
beddings”. As also shown in previous works [22, 23], when the
hyper-parameters are set to the same values, it is hard to find a
consistent advantage to one model over another.

6.5 Analyzing the Loss of Individual Words
In this section, we analyze the loss of high-frequency words

and low-frequency words. In every iteration, we save the losses
for each individual words and draw the loss curve in Fig. 8. The
total training time is similar in all the sub-figures. On a single
GPU, W2V-UWS takes 1594 seconds to train for 1024 iterations.
W2V-Chainer takes 1573 seconds to train for 8000 iterations.

For both models, the losses of high-frequency words show

c© 2018 Information Processing Society of Japan 6

Vol.2018-HPC-165 No.14
2018/7/31

IPSJ SIG Technical Report

the same trends (Fig. 8-a and Fig. 8-b). They all gradually de-
crease as the number of iterations increases. However, for the
low-frequency words, the losses actually increase or stay high in
W2V-Chainer (Fig. 8-c). The updating times of low-frequency
words in W2V-Chainer is low. As we discussed in Section 2.2, it
is hard to learn meaningful word embeddings with few updates.

Note that for W2V-UWS, the losses of high-frequency words
are much higher than the losses of low-frequency words. The
high-frequency words are related to much more contextual words
than low-frequency words, and is harder to optimize.

2 4 6 8 10 12 14 16
number of GPUs

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

nu
m

be
r o

f w
or

ds
/s

ec
on

d

Model
W2V-Chainer
W2V-UWS

Fig. 9: Training speed of word-level word embeddings with dif-
ferent number of GPUs.

6.6 Scaling with Multiple Nodes
Fig. 9 shows the scaling results with multiple nodes. Our W2V-

UWS scales quite linearly. Using 8 GPUs on a single nodes, our
model achieves around 11 million words per second, which is 5.5
times faster than single GPU implementation. It also achieves 7.5
time speed up using 2 nodes with total 16 GPUs. Note that W2V-
Chainer actually gets lower speed when using multiple GPUs.
This is mainly due to the small batch size.

Word 3Word 2Word 1
Contextual word

b) Convolutional Neural Network

Fully connected layer
flatten

Max pooling

1D convolution

Char 1 Char 2 Char 3 Char 4 Char 5

Target word

Characters or character ngrams
Lookup table (character vectors)

Target word

Lookup table
(word vectors)

Word 3Word 2Word 1
Contextual word

a) Skip-Gram

Fig. 10: Illustration of word-level and subword-level word em-
bedding models.

2 4 6 8 10 12 14 16
number of GPUs

0

100000

200000

300000

400000

500000

600000

700000

800000

nu
m

be
r o

f w
or

ds
/s

ec
on

d

Model
W2V-Chainer
W2V-UWS

Fig. 11: Training speed of subword-level word embeddings with
different number of GPUs.

6.7 Training Subword-level Word Embeddings
In this section, we explore the flexibility of our model by im-

plementing the subword-level word embeddings model [24] on
top of W2V-UWS.

As shown in Fig. 10, the only difference between training
word-level word embeddings and subword-level word embed-
dings is the way of obtaining word vector. For word-level word
embeddings, each word is directly assigned with a vector. For
subword-level word embeddings, the vector of a word is com-
posed by its character vectors. More precisely, subword-level
word embedding model first extracts the characters in the word,
and assign vectors for the characters. All those character vec-
tors are then fed into a Convolutional Neural Network (CNN).
Finally, the convolution results are flattened, and fed into a fully
connected layer to form the word vector.

Implementing a CNN from scratch is not easy, especially for
both inference and training. However, since our W2V-UWS is
implemented using Chainer deep learning framework, we can di-
rectly call chainer’s CNN functions with few lines of code. This
simplicity and flexibility are the main reason that we choose to
use this deep learning framework instead of CUDA.

Fig. 11 shows the scaling results of subword-level word em-
bedding models. The trends of subword-level word embeddings
are similar to that on word-level word embeddings. On single
GPU, our W2V-UWS model is around 2 times faster than W2V-
Chainer. Compared to single GPU performances, we are able to
speed up the training around 9 times with 16 GPUs.

Note that compared to the training speed of word-level mod-
els in Fig. 9, the speed of subword-level W2V-UWS is around 2
times slower. This is reasonable since CNNs in the subword-level
model need a lot of computation.

7. Conclusion
We propose W2V-UWS, an algorithm to train word embed-

dings with uniform word sampling. Our algorithm is invariant
to the corpus size, and treats high-frequency and low-frequency
words equally. Compared to the reference Chainer implemen-

c© 2018 Information Processing Society of Japan 7

Vol.2018-HPC-165 No.14
2018/7/31

IPSJ SIG Technical Report

tation, W2V-UWS is able to train using large batch size without
accuracy loss, and is around 2 times faster. Moreover, W2V-UWS
is able to scale on multiple GPUs and nodes. We show 5.5 times
speed up using 8 GPUs, and 7.5 times speed up using 2 nodes
with total 16 GPUs.

W2V-UWS is flexible. We implement a subword-level word
embedding model on top of it with little effort. Our subword-level
model is around 2 times faster than the original implementation,
and scales well on multiple GPUs and nodes.

Acknowledgments This work was partially supported by
JSPS KAKENHI Grant Number JP17K12739 and JST CREST
Grant Numbers JPMJCR1303 and JPMJCR1687.

References
[1] Agirre, E., Alfonseca, E., Hall, K., Kravalova, J., Paşca, M. and Soroa,

A.: A study on similarity and relatedness using distributional and
wordnet-based approaches, NAACL, Association for Computational
Linguistics, pp. 19–27 (2009).

[2] Akiba, T., Fukuda, K. and Suzuki, S.: ChainerMN: Scalable
Distributed Deep Learning Framework, Proceedings of Workshop
on ML Systems in The Thirty-first Annual Conference on Neu-
ral Information Processing Systems (NIPS), (online), available from
〈http://learningsys.org/nips17/assets/papers/paper25.pd f 〉 (2017).

[3] Bae, S. and Yi, Y.: Acceleration of Word2vec Using GPUs, Inter-
national Conference on Neural Information Processing, Springer, pp.
269–279 (2016).

[4] Bengio, Y., Ducharme, R., Vincent, P. and Janvin, C.: A neural prob-
abilistic language model, The Journal of Machine Learning Research,
Vol. 3, pp. 1137–1155 (2003).

[5] Bojanowski, P., Grave, E., Joulin, A. and Mikolov, T.: Enriching Word
Vectors with Subword Information, Transactions of the Association
for Computational Linguistics, Vol. 5, pp. 135–146 (2017).

[6] Bruni, E., Boleda, G., Baroni, M. and Tran, N.-K.: Distributional se-
mantics in technicolor, ACL, Association for Computational Linguis-
tics, pp. 136–145 (2012).

[7] Collobert, R. and Weston, J.: A unified architecture for natural lan-
guage processing: Deep neural networks with multitask learning,
ICML, ACM, pp. 160–167 (2008).

[8] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K.
and Kuksa, P.: Natural language processing (almost) from scratch,
The Journal of Machine Learning Research, Vol. 12, pp. 2493–2537
(2011).

[9] Drozd, A., Gladkova, A. and Matsuoka, S.: Word Embeddings, Analo-
gies, and Machine Learning: Beyond king - man + woman = queen,
COLING (2016).

[10] Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolf-
man, G. and Ruppin, E.: Placing search in context: The concept revis-
ited, WWW, ACM, pp. 406–414 (2001).

[11] Gladkova, A., Drozd, A. and Matsuoka, S.: Analogy-based Detection
of Morphological and Semantic Relations With Word Embeddings:
What Works and What Doesn’t., NAACL-HLT, pp. 8–15 (2016).

[12] Gupta, S. and Khare, V.: BlazingText: Scaling and Accelerating
Word2Vec using Multiple GPUs, Proceedings of the Machine Learn-
ing on HPC Environments, ACM, p. 6 (2017).

[13] Harris, Z.: Distributional structure, Word, Vol. 10(23), pp. 146–162
(1954).

[14] Hill, F., Reichart, R. and Korhonen, A.: Simlex-999: Evaluating se-
mantic models with (genuine) similarity estimation, Computational
Linguistics (2016).

[15] Hochreiter, S. and Schmidhuber, J.: Flat minima, Neural Computa-
tion, Vol. 9, No. 1, pp. 1–42 (1997).

[16] Ji, S., Satish, N., Li, S. and Dubey, P.: Parallelizing word2vec in multi-
core and many-core architectures, arXiv preprint arXiv:1611.06172
(2016).

[17] Keskar, N. S., Mudigere, D., Nocedal, J., Smelyanskiy, M. and Tang,
P. T. P.: On large-batch training for deep learning: Generalization gap
and sharp minima, arXiv preprint arXiv:1609.04836 (2016).

[18] Kiefer, J. and Wolfowitz, J.: Stochastic estimation of the maximum
of a regression function, The Annals of Mathematical Statistics, pp.
462–466 (1952).

[19] Kim, Y.: Convolutional Neural Networks for Sentence Classification,
EMNLP, pp. 1746–1751 (2014).

[20] Kingma, D. P. and Ba, J.: Adam: A method for stochastic optimiza-
tion, arXiv preprint arXiv:1412.6980 (2014).

[21] Levy, O. and Goldberg, Y.: Dependency-Based Word Embeddings.,
ACL, pp. 302–308 (2014).

[22] Levy, O. and Goldberg, Y.: Neural Word Embedding as Implicit Ma-
trix Factorization, NIPS, pp. 2177–2185 (2014).

[23] Levy, O., Goldberg, Y. and Dagan, I.: Improving Distributional Sim-
ilarity with Lessons Learned from Word Embeddings, TACL, Vol. 3,
pp. 211–225 (2015).

[24] Li, B., Drozd, A., Liu, T. and Du, X.: Subword-level Composition
Functions for Learning Word Embeddings, Proceedings of the Second
Workshop on Subword/Character LEvel Models, pp. 38–48 (2018).

[25] Li, B., Liu, T., Zhao, Z., Tang, B., Drozd, A., Rogers, A. and Du,
X.: Investigating Different Syntactic Context Types and Context Rep-
resentations for Learning Word Embeddings, EMNLP, pp. 2411–2421
(2017).

[26] Luong, T., Socher, R. and Manning, C. D.: Better Word Representa-
tions with Recursive Neural Networks for Morphology., CoNLL, pp.
104–113 (2013).

[27] Melamud, O., Goldberger, J. and Dagan, I.: context2vec: Learning
generic context embedding with bidirectional lstm, Proceedings of
The 20th SIGNLL Conference on Computational Natural Language
Learning, pp. 51–61 (2016).

[28] Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu,
D., Freeman, J., Tsai, D., Amde, M., Owen, S. et al.: Mllib: Machine
learning in apache spark, The Journal of Machine Learning Research,
Vol. 17, No. 1, pp. 1235–1241 (2016).

[29] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J.:
Distributed Representations of Words and Phrases and their Composi-
tionality, NIPS, pp. 3111–3119 (2013).

[30] Mikolov, T., Yih, W.-t. and Zweig, G.: Linguistic Regularities in Con-
tinuous Space Word Representations., HLT-NAACL, Vol. 13, pp. 746–
751 (2013).

[31] Pennington, J., Socher, R. and Manning, C. D.: Glove: Global Vectors
for Word Representation, EMNLP, pp. 1532–1543 (2014).

[32] Radinsky, K., Agichtein, E., Gabrilovich, E. and Markovitch, S.: A
word at a time: computing word relatedness using temporal semantic
analysis, WWW, ACM, pp. 337–346 (2011).

[33] Salle, A., Idiart, M. and Villavicencio, A.: Matrix Factorization using
Window Sampling and Negative Sampling for Improved Word Repre-
sentations, The 54th Annual Meeting of the Association for Computa-
tional Linguistics, p. 419 (2016).

[34] Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng,
A. Y. and Potts, C.: Recursive deep models for semantic composition-
ality over a sentiment treebank, EMNLP, Vol. 1631, Citeseer, p. 1642
(2013).

[35] Team, D.: Deeplearning4j: Open-source distributed deep learning for
the jvm, Apache Software Foundation License, Vol. 2 (2016).

[36] Tokui, S., Oono, K., Hido, S. and Clayton, J.: Chainer: a next-
generation open source framework for deep learning, Proceedings of
workshop on machine learning systems (LearningSys) in the twenty-
ninth annual conference on neural information processing systems
(NIPS), Vol. 5 (2015).

[37] Vulic, I. and Korhonen, A.: Is ”Universal Syntax” Universally Useful
for Learning Distributed Word Representations?, ACL, p. 518 (2016).

[38] Yatbaz, M. A., Sert, E. and Yuret, D.: Learning Syntactic Cate-
gories Using Paradigmatic Representations of Word Context, EMNLP-
CoNLL, pp. 940–951 (2012).

[39] Zesch, T., Müller, C. and Gurevych, I.: Using Wiktionary for Com-
puting Semantic Relatedness., AAAI, Vol. 8, pp. 861–866 (2008).

c© 2018 Information Processing Society of Japan 8

Vol.2018-HPC-165 No.14
2018/7/31

