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An Efficient Operation Auto-batching Strategy for Neural
Networks Having Dynamic Computation Graphs
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Abstract: It has become crucial to improve the speed of training neural networks for the research and development
of deep learning models and applications. Organizing the same operations, which can be executed in parallel, in the
computation graph of a neural network into batches helps making full use of the available hardware resources. This
batching task is usually done by the developers manually. The operations in the neural networks having dynamic com-
putation graphs, however, are difficult to be efficiently grouped by manual because of the data with varying dimensions
and structures or the dynamic flow control. Several automatically batching strategy have been proposed, but they don’t
efficiently group the operations in the backward propagation of training neural networks. This paper tries to apply
efficient operation auto-batching in both the forward and backward propagations of neural networks having dynamic
computation graphs. We also report the evaluation results of our strategy.

1. Introduction
Recent years, neural networks (NN) have been applied on

a lot of machine learning topics and shown their great effects.
Natural Language Processing (NLP), which is analyzing, under-
standing, and deriving meaning from human languages by us-
ing computers, has also benefit from applying new neural net-
works based models on all kinds of its sub topics. In the recent
years, neural network based solutions have made impressive ad-
vancements in all kinds of NLP tasks like Sentiment Classifica-
tion [15], [17], Named-Entity Recognition (NER) [10], Machine
Translation (MT) [6], [16], [19], Question Answering (QA) [9]
and so on. Deep learning with neural networks enables auto-
matic feature extraction and representation learning, which liber-
ates NLP tasks from time-consuming and often incomplete hand-
crafted features. What’s more, the neural networks based NLP
gains from incremental dataset, which can be obtained easily in
the Big Data Era. As the neural networks used for NLP as well
as the training sample dataset become larger and larger, train-
ing time for one single network are rising into hours even days
[3], [5], [6], [7]. Here we take Machine Translation, whose model
is very complex and training process is time-consuming, as an ex-
ample topic to discuss on the time-consuming training procedure
of NLP applications. Table. 2 summarized not only the accuracy
performance but also the computing performance of the training
process of the state-of-the-art works on WMT 2014 English-to-
French translation tasks. From this summary we can see the train-
ing process of the machine translation is very time-consuming. It
takes at least days to finish even equipped with multiple GPUs.
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Therefore, it’s becoming more and more important to take the
computation performance of neural networks into consideration.

Several frameworks such as TensorFlow [1], Chainer [18] and
DyNet[12] have been developed to help user to build up neural
networks easily by reducing engineering work and provide ef-
ficient execution of the computation graph of neural networks.
Since models for NLP applications are usually trained from sen-
tences with different lengths, the structures of computation graphs
for different instances varies a lot. Therefore, frameworks sup-
porting dynamic computation graph definition and execution are
more welcome. Usually, the parallel computing is utilized to
help with achieving higher computing performance. However,
for NLP tasks, which mostly utilize Recurrent Neural Networks
(RNNs) or Recursive Neural Networks to extract the sequential
and syntactic information from the input words or sentences, are
hard to be parallelized because of the dependency between differ-
ent parts inside of the model as well as the variable lengths and
syntactic tree structures of the inputs. Batching, which means
organizing the same operations, which can be executed in par-
allel, in the computation graph of a neural network into batches
helps enabling parallelism and making full use of the available
hardware resources. This batching task is usually done by the
developers manually. However, it’s difficult for programmers to
group the operations efficiently by manual because of the data
with varying dimensions and structures or the dynamic flow con-
trol.

Researchers are trying to implement automatic batching in the
frameworks for deep learning. Several automatically batching
strategy have been proposed, but they don’t efficiently group the
operations in the backward propagation of training neural net-
works. In this paper, we discuss on two different automatic batch-
ing strategy and their shortcomings and try to apply efficient op-
eration auto-batching in both the forward and backward propaga-
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Table 1 Accuracy and Performance of State-of-the-art works for NMT on WMT2014 English to French
Dataset.

Paper Model BLEU Training Time
(Cho et al., 2014) [4] Phrase table with neural features 34.50 3 Days

(Sutskever et al., 2014) [16] Reranking phrase-based SMT best list + LSTM seq2seq 36.5 10 Days-8 GPUs
(Wu et al., 2016) [19] Residule LSTM seq2seq + RL refining 41.16 6 Days-96GPUs

(Gehring et al., 2017) [7] seq2seq with CNN 41.29 37 Days-8 GPUs
(Vaswani et al., 2017) [2] Attention mechanism 41.0 3.5 Days-8 GPUs

tions of neural networks having dynamic computation graphs.
The rest of this paper is organized as follows: Section 2 intro-

duce the basic principle of batching and two automatic batch-
ing strategies that have been proposed. We also analyze the
shortcomings of them. Section 3 present the automatic batch-
ing method proposed by us. An experimental evaluation is shown
in Section 4 and we give our analysis. Section 5 introduces our
future goal and plan.

2. Batching
Batching is the most common way to enable parallelism in

deep learning. Minibatching takes multiple training example and
groups them together to be processed simultaneously, often al-
lowing large gains in computation efficiency due to the fact that
modern hardware (CPUs and GPUs) have very efficient vector
processing instructions that can be exploited with appropriately
structured inputs. As shown in Fig. 1, common examples of this
in neural networks include grouping together matrix-vector mul-
tiplies from multiple examples into a single matrix-matrix multi-
ply, or performing an element-wise operation (such as tanh) over
multiple vectors at the same time as opposed to processing single
vectors individually.

Fig. 1 An example of minibatching for an affine transform followed by a
tanh nonlinearity [12].

2.1 Unefficient Batching
It is necessary to batch up all the operations to make the se-

quences be processed in parallel so as to make good use of ef-
ficient data-parallel algorithms and hardware. However, for re-
current and recursive neural networks, it’s really hard to apply an
ideal batching because the lengths and syntax structure of differ-
ent inputs varies a lot.

Left part of Fig. 2 shows a computation graph for computing
the loss on a minibatch of three training sentences with recurrent
neural networks. All these three sentences have different lengths
of 2, 3, 4. The operations at Step 1 and 2 can be batched to-
gether for parallel execution. However, only operations of sen-
tence 1 and 3 on Step 3 can be batched together and executed in

parallel. Given the training samples in this figure, an idea set of
batching should be (Op1

1,Op2
1,Op3

1), (Op1
2,Op2

2,Op3
2), (Op1

3,Op3
3),

(L1,L2,L3). If it can be batched like that, the minibatch of sen-
tences can be processed with the most parallelism.

However, it’s really hard to implement an ideal batching for ev-
ery minibatch since the lengths of inputs vary in each minibatch.
We can’t count on programmers to implement an ideal batching
manually. Usually, users would like to pad the inputs in the same
minibatch to let them have the same length, like what the right
part of Fig. 2 tells us. Though the inputs with padding have the
same length and are easy to be batched, the computation on the
padding parts are totally wasted. The wasted computation is con-
siderable and leads to un-efficiency to the model’s training.

2.2 Automatic Batching
Since we want to achieve ideal batching without manual im-

plementation, researchers started to explore the possibility to im-
plement automatic batching algorithms. Generally, an automatic
batching algorithm consists of several steps [12]:
• Graph definition: In this steps, applications define the graph

that represents the computation. Nodes in this graph repre-
sent different operations (tanh, log, ...)

• Operation Batching: First, the algorithm partition the nodes
into groups, where nodes in the same group should have
the potential for batching. This is done through associating
nodes with a signature. Nodes with the same signature can
be batched together and are able to be executed simultane-
ously when their inputs are ready. This signature usually de-
pends on the operation the node represent and also contains
the information about its input/output dimension to provide
more information for batching. Second, the algorithm sched-
ules an execution order in which nodes that have the same
signature and do not depend on each other are scheduled for
execution on the same step

• Forward-backward graph execution and update: The frame-
work performs the calculation according to the execution or-
der and batching decisions generated in the second step.

Actually, the first and the third step are shared with standard ex-
ecution of computation graphs. There are two different heuristic
strategies for identifying execution orders for the second step:

Depth-based Batching [11] is implemented by assigning each
node the depth of it in the original computation graph. The depth
of a node is defined as the maximum length from a leaf node to
itself. Nodes that have an identical depth and signature (opera-
tion) are batched together. With this design, nodes have the same
depth don’t depend on each other and all the nodes will have a
higher depth than its inputs. As a result, batching can be done.
However, this heuristic strategy has a shortcoming and will miss
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Fig. 2 Two computation graphs for computing the loss on a minibatch of three training instances consist-
ing of a sequence of input vectors paired with a fixed sized output vector. [12].

good opportunities like batching loss function calculation in Fig.
2 because they don’t have the same depth.

Agenda-based batching [13] is a way that dose not depend on
depth. This method implements and maintains an agenda that
record all the available modes which don’t have unsolved depen-
dencies. Each node maintains an agenda tracking available nodes
(have no unresolved dependencies) in the computation graph.
During the initialization, nodes have no coming inputs are put
into the agenda. Then at each iteration, the algorithm select nodes
with the same signatures from the agenda and group them into a
single batch. After the execution of the batched nodes, the algo-
rithm remove these nodes from agenda and decrease the depen-
dency counter of all of their successors. This process is repeated
until all the nodes have been processed. During the execution,
there may be two groups of batched nodes existing in the agenda
at the same iteration. In order to prioritize nodes in the agenda,
there is a heuristic method based on the average depth of all nodes
with their signatures, such that nodes with a lower average depth
will be executed earlier. With this heuristic method, such that
nodes with a lower average depth will be executed earlier.

2.3 Shortcomings
According to [13], the agenda-based automatic batching strat-

egy performs better than the depth-based one and shows a very
good computing performance. This strategy is implemented
based on DyNet and can be easily used by the programmers.
However, this automatic batching strategy stills has some short-
comings.

As we know, the training procedure of a neural network actu-
ally contains two parts: the forward propagation and the back-
ward propagation. In the agenda-based automatic batching strat-
egy, the framework only do the analysis about the node’s batching
generation and execution order during the forward propagation.
The strategy treats the backward propagation as a simple reverse
one of the forward propagation. In the batched execution of the
backward propagation, it just transverses the nodes of operations
in the reverse order of the batched execution. When it arrives at a
group of batched nodes, it calculates all the arguments’ derivative
of those nodes. However, this will lead to missing some chance

to batch operations in the backward propagation.
Fig. 3 illustrates parts of the computation graph of a vanilla

RNN language model. We can see that the node Wh0 and Wh1

can not be batched together during the forward propagation since
there is dependency between each other. In the backward prop-
agation, however, the derivative from Wh0 to W and that from
Wh1 to W can be batched and calculated together. In the agenda
based strategy, this batching strategy will be missed because it
just uses a reverse execution order and batch generation of the
forward propagation.

Fig. 3 An example of computation graph.

3. Proposed Approach
Our goal is to make more use of the batching chance in the

backward propagation and we developed our proposed approach
based the agenda-based strategy. According to our analysis, the
missed batching chances in the backward propagation by the
agenda-based strategy are mostly the calculation of the param-
eters weight matrices. Therefore, we implemented some modifi-
cation in the backward propagation when using the agenda-based
strategy.

In the backward propagation, we don’t calculate the derivatives
to the parameters until the last moment. After other derivatives
to other nodes have been all calculated, do the calculation of the
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parameter’s gradients

4. Experimental Evaluation
4.1 Settings

We conducted our experiments on a modern multi-core CPU
platform consisting of dual 2.3 GHz Intel Xeon E5-2699 v3
Haswell CPUs. Each CPU has 18 physical cores (36 hardware
threads). Thus, the machine has 36 cores (72 hardware threads).
It is equipped with 768 GB main memory. In our experiments, we
just use 1 single thread to execute the benchmarks so that we can
get the pure computing performance gain from the our automatic
batching strategy. The operating system is Ubuntu 16.04 and all
the code is complied with GNU GCC 5.4.

We used three benchmarks used in [13] and the experiments are
based on implementation in the DyNet benchmark repositoryt*1.
The information about the three benchmark and the correspond-
ing parameters setting are described below:
• BiLSTM: This is a benchmark that trains a tagger using a bi-

directional LSTM to extract features from the input sentence,
which are then passed through a multi-layer perceptron to
predict the tag of the word. The model used in this bench-
mark is based on the one proposed by Huang et al. [8] and is
trained and tested on the WikiNER English Corpus [14]. In
the experiments, the word embedding size is set to 128 while
the LSTMs in either direction containing 256 hidden states.
The size of multi-layer perceptron is set to 32.

• BiLSTM w/char: This benchmark is similar to the above one
but has something different. In the first benchmark, words
that have a frequency of at least five use an embedding spe-
cially for that word and other less frequent words use an em-
bedding calculated by running a bi-directional LSTM over
the characters in the word. This model can improve gener-
alization with using the spelling of low-frequency words. In
the experiments, char embedding size is 64 and the word em-
bedding size is still 128. The size of hidden states in LSTM
is 256 and the size of multi-layer perceptron is set to 32. The
datasets used are the same with those in the first benchmark.

• Tree-LSTM: This benchmark is a sentiment analyzer based
on tree-structured LSTMs [17]. Tree LSTMs are trained on
the Stanford Sentiment Tree-bank regression task, which is
provided in the benchmark repository.

In the experiments, all the benchmarks are executed with the
batch size 64. For the first and second benchmark, 100 batches
of samples are trained. For the third benchmark, all the samples
are trained. All the experiments are implemented and executed
on DyNet.

4.2 Performance
We executed the three benchmarks with different automatic

batching strategy: By-depth, by-agenda and ours. Table 2 show
the computing performance of the three benchmarks. The com-
puting speed is shown as the number of sentences processed per
second. The running time of each experiment is also recorded for
comparing and reference. According to the table, we can find that

*1 https://github.com/neulab/dynet-benchmark

the agenda-based automatic batching strategy and what we pro-
posed one beat the depth-based strategy in all cases. The agenda-
based one beats ours on BiLSTM and the Tree-LSTM while our
proposed strategy performs faster on the BiLSTM w/char bench-
mark. Please notice that the running time of different benchmarks
varies a lot. The BiLSTM w/char’s training time is about more
than 10 time of the other two benchmarks.

4.3 Analysis
According to the Table. 2, it seems that our proposed strat-

egy doesn’t perform better than the agenda-based one. However,
please notice that the running time of both these two strategy on
the BiLSTM and Tree-LSTM benchmarks are almost the same.
That means the overhead of our proposed strategy is a little higher
than the gains from it. However, our proposed strategy is 46
seconds faster than the agenda-based one on the BiLSTM w/char
benchmark, in which the model is much more complex than that
in the first one. That means maybe our proposed strategy will
gain more on the complex models and applications.

There are several possible reason that is able to explain why
our proposed strategy is slower that the agenda-based one in
some cases. The overhead comes from the data copy and addi-
tional analysis on the computation graph will reduce the effort of
the gain from the batching chance in the backward propagation.
When the overhead is larger than the gain, our proposed strategy
is slower.

Due to the time limitation, our implementation and experi-
ments focus on CPU. However, we think the our proposed strat-
egy also benefits for GPU platform and the gain should be more
since adding batching chance in the backward propagation can
reduce the kernel launch times and make better usage of GPU’s
computation.

5. Conclusion and Future Work
In this work, we focus on automatic batching strategy applied

on dynamic computation graphs of the neural networks for NLP.
However, the existing strategies will miss some batching chance
in the backward propagation during the training a model. Based
on the agenda-based automatic batching strategy, we do some
modification on it and develop our own one. The experiments
shows that our strategy performs better on complex benchmarks.

We believe our strategy will performs much better than the oth-
ers on GPU platforms since the taking the batching chance in
the backward propagation in our way will benefit more on GPU.
We will finish the implementation of strategy and execute exper-
iments on GPU to verify what we believe in the future.
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