
IPSJ SIG Technical Report

Autonomous Distributed System Based on
Behavioral Model of Social Insects

Daichi Teruya1,a) Bipin Indurkhya2 TadakatsuMaksaki3 Hironori Nakajo4,b)

Abstract: Social insects are self-organized living organism without a commanding system with a single leader. A
model which realizes self-organization of social insects can be constructed using a reaction threshold model based on
the concept of Stigmergy. This paper proposes such a model of new autonomous distributed system using a behavioral
model of social insects. This model is able to allocate autonomous computation resources and retain fault tolerance
without the control of a commanding manager. Our evaluation results show that the proposed model works as an au-
tonomous distributed system and demonstrates its effectiveness for fault tolerance. A problem with respect to unequal
resource distribution was found in the experimental model, so we proposed an improved method.

1. Introduction
1.1 The ecology of social insects and its applications

Social insects such as ants and bees construct colonies com-
posed of a very large number of individuals. These colonies
are not dominated by a commanding manager to distribute labor
for the necessary colony-management tasks among the members.
However, considering the overall organization of the colony, nec-
essary labor tasks are divided among the colony members adap-
tively.

Ishii et al. have find the existence of an adaptive control sys-
tem of labor, in which some individual workers take rest depend-
ing on the situation, in a colony of Myrmica kotokui [1]. This
control system is modeled mathematically by Bonabeau et al. as
“Response Threshold Model” [2]. The intensity of a stimulus to
which an ant starts to react is called “Response Threshold”, which
varies greatly among individuals. Because of this property, adap-
tive task distribution can be realized among individuals.

Self-Organization of social insects is realized by information
transmission via environment, which is called Stigmergy,. M.
Dorigo et al. proposes an optimization method as “Ant Colony
System” for traveling salesman problem[3]. When ants use mul-
tiple routes to collect foods, the pheromone on a shorter route has
a higher density than the pheromone on a longer route, which re-
sults in more ants selecting the shorter route. This algorithm is
widely applied in information systems as “Ant Colony Optimiza-

1 Department of Computer and Information Sciences Tokyo University of
Agriculture and Technology Koganei-shi, Tokyo, 184-8588 Japan

2 Department of Computer Science AGH University of Science and Tech-
nology Al. Mickiewicza 30, 30-059 Kraków, Poland

3 Department of Media Information Engineering National Institute of
Technology, Okinawa-collage 905, Henoko, Nago-shi, Okinawa, 905-
2171, Japan

4 Institute of Engineering Tokyo University of Agriculture and Technology
Koganei-shi, Tokyo, 184-8588 Japan

a) teruya@nj.cs.tuat.ac.jp
b) nakajo@cc.tuat.ac.jp

tion” [4].

1.2 Applications in distributed system
As computer systems are becoming more and more complex,

setting and managing network configuration has become a ma-
jor problem. Therefore, the concept of “Autonomic Computing”,
according to which a computer-system configuration optimizes
itself like a human body, has been proposed [5]. In this approach,
we focus on the commonality between the task-allocation mech-
anism of social insects and the resource-allocation problem in a
distributed system to develop autonomic-computing distributed
systems based on social-insect colonies.

Coordinating robots is one successful example that applies so-
cial insect ecology in the field of autonomous distributed system.
In the TERMES project, multiple robots, which have only their
own sensor information, collaborate to build a common construc-
tion [6].

1.3 Goals
We aim to tackle the problem of dynamically allocating tasks to

multiple computing resources by designing an architecture based
on Stigmergy and the Response Threshold model. In particular,
we would like our architecture to meet the following three goals:
• Distributed computing without a central node
• Dynamic allocation of computing resources according to

task status
• Robustness against failures in computing nodes
In this paper, we describe such an architecture for a distributed

system and evaluate it.
In the following section, we describe in detail the biological

models used in this paper. In section 3, we model an autonomous
distributed system using these biological models. In section 4,
we discuss related works and the distinguishing characteristics of
our research. Verification of the effects of the proposed model is

1ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-119 No.4
2018/7/30



IPSJ SIG Technical Report

Fig. 1 Graph of Pi j(t) using Equation(2) (T̄ = 100)(upper:θi = 0.5,
center:θi = 1, lower:θi = 2.0)

presented in Section 5. Finally, we present our conclusions and
evaluation of the proposed model in Section 5.

2. Applying biological models
2.1 Response Threshold model

Since the number of tasks and the amount of labor required for
each task at a certain moment are difficult to predict, it is neces-
sary to allocate an appropriate number of workers to each task ex-
isting at the time. Bonabeau et al. found decentralized command
system of ants. Each ant responds to a task when the intensity of
the stimulus brought by the task exceeds the threshold value for
that ant[9].

In this paper, according to Bonabeau’s model, we define the
probability function Pi j(t), which represents the probability of the
case where the worker i reacts to the task j at the time t as follows:

Pi j(t) =
(θi · S (Mi, t))2

(θi · S (Mi, t))2 + T̄ 2
(1)

Here θi represents the Reaction Threshold unique to the worker
i. It expresses the ease of reaction to the task. The default value
of θi is set to 1. A smaller value of θi means that it is harder for
the worker to start the task, and a larger value of θi means that it is
easier to start the work. S (M j, t) is the urgency of request to pro-
cess of task j at time t. The larger the value, the higher is the need
for processing. M j is additional information unique to the task j.
It is necessary for the worker to calculate the function S (M j, t).
T̄ is a constant to adjust the changing speed of Pi j throughout the
system; it represents the time until the reaction probability of a
worker with θi = 1 becomes 0.5.

Function S (M j, t) can be defined by arbitrary expressions ac-
cording to the change in the request patterns. For example, if the
requests increase linearly with time, we can define the function
S (M j, t) as follows, with the additional information M j being the
time T j when the task is given:

S (T j, t) = A · (t − T j) (2)

A is a constant introduced to adjust the rate of change in the re-
quests.

2.2 Concept of Stigmergy
Direct communication like P2P among individuals becomes in-

efficient when the colony becomes large; it also becomes difficult
to realize self-organization of the colony. Therefore, social in-
sects use an environment-based information transmission mech-
anism called “Stigmergy” as the basis for worker-allocation sys-
tems [10]. In the model proposed in this paper, we introduce this

information transfer mechanism to build an infrastructure for self-
organization. A subsystem for information storage, Stigmergy, is
allocated, which is equivalent to ”environment”. In the rest of
this paper, “Stigmergy” refers to this subsystem in the proposed
model.

3. Developing a model of the new autonomous
distributed system

In this section, we propose a new autonomous distributed sys-
tem using the Response Threshold model based on the concept of
Stigmergy. Components of this system and its flow of operation
are shown in Fig.2.

The unit of request given to the system by a user is called a
Job, which is divided into Tasks representing small problems to
which a unique ID j and additional information M j are added.

3.1 Components of the model
The system in the proposed model consists of three compo-

nents: Worker, Stigmergy, and Mediator. The components can
be implemented in a single computer system, or can be spread
across multiple computers.
3.1.1 Worker

Multiple Workers can be implemented to process tasks in a sys-
tem. Each Worker has a parameter θi representing its Reaction
Threshold, as well as a random number generator. The value of θi
is set in a Worker using uniform random numbers or normal ran-
dom numbers. However, range of values, average, variance etc.
are unified across all the Workers.
3.1.2 Stigmergy

Stigmergy is implemented uniquely in each system, and it rep-
resents the environment for sharing information. Stigmergy holds
‘waiting-task information’ and ‘processed-task information.’ The
processed-task information is composed of a unique task ID j,
and the result of the task. The Stigmergy subsystem supports the
following operations:
• Obtaining a list of waiting tasks
• Obtaining a list of processed tasks
• Obtaining and recording the task information and the task

results
3.1.3 Mediator

There can be multiple Mediators in a system. A Mediator is
an interface between the system and its user. A user can operate
the Mediator as necessary to post a Job and browse its processing
results. In addition, the Mediators handles partitioning a Job into
tasks and collecting the processed results from the tasks.

3.2 Flow of Job processing
Step 1. Input Jobs and divide into tasks

After Mediator divides a Job given by the user into tasks, a
task-specific identifier j and additional information M j are added
to each spawned task. Spawned tasks are transferred to Stig-
mergy.

Step 2. Task distribution via Stigmergy

The Worker regularly inquires Stigmergy for the list of waiting

2ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-119 No.4
2018/7/30



IPSJ SIG Technical Report

Fig. 2 Flow of Job processing

Table 1 Computers used for the experiment

A B

Machine
Raspberry Pi 2

Model B
Raspberry Pi 3

Model B

CPU
ARM Cortex-A7
4cores@900MHz

ARM Cortex-A53
4cores@1.2GHz

tasks. At this time, the Worker calculates the response probability
Pi j(t) for all tasks. If the uniform random number value r, which
varies from 0 to 1, is r < Pi j(t), the Worker acquires the task j
from Stigmergy for processing.

Step 3. Task processing by Worker

The Worker, on receiving a task from Stigmergy, begins to pro-
cess the task. When the task is completed, the Worker transfers
the result to Stigmergy. When Stigmergy saves the results of the
processed task, it deletes the task from the list of waiting tasks
and adds it to the list of processed tasks.

Step 4. Collecting processed results

The Mediator periodically queries Stigmergy for the processed
task list. The Mediator requests the results from task processing
as necessary, and collects them. When all the results are col-
lected, they are outputted.

Therefore, our model is easy to analyze because it is equivalent
to an M/M/K typed queue, so it is advantageous to apply it to a
practical system.

4. Verification of the model
This section explains validation of the proposed model for ver-

ification with experiments especially on each of the three new
advantages: auto scaling, adaptive task allocation, and setting pri-
ority for each task/job using Equation (2).

4.1 Environment of implementation and experiment
There are two types of computers, called A and B, used in the

experiment, as shown in Table 1. We utilize computer A as Stig-
mergy and Mediator, and 10 nodes of computer B as Workers.
These are connected using a router and a switching hub.

4.2 Experiment model
4.2.1 System structure

A single Mediator and multiple Workers are implemented to

collaborate via Stigmergy in the experimental system. It is as-
sumed that four Workers can operate as different processes in
each computer.
4.2.2 Job and Task Settings

Brute force attacks against RC4 cryptography is adopted as an
example to evaluate our system. In the implementation, a Job is
given with the following contents:
• Length of a key (Byte) - Nk

• Number of divisions - Nd

• Plain text
• Cipher text
Since the search range of the key is divided into Nd pieces and

allocated to each Task, the number of keys to be searched for one
task is Nr = Nk/Nd. A serial number is given to each Job as its ID.
The time T j at the time when the task j is divided is given to the
task j as the additional information M j. The Mediator generates
a task ID combining the ID of the source Job and a serial number.
A task is composed of the following contents:
• Length of a key (Byte)
• Length of the search range - Nr

• Plain text
• Cipher text
The function S , which expresses the degree of request of Task

j, is set to S (A j,T j, t) = A j · (t − T j). A j is the priority of task j
and T j is the time at which Task j is generated.
4.2.3 Worker Settings

The value of Response Threshold θi is determined in a worker
when the Worker process is activated. A normal random number
takes a value in the range of 0 to 2 according to a normal distribu-
tion with µ = 1.0, σ2 = 0.4. The same uniform random number
generators also used to decide whether the task processing should
be started or not.

4.3 Experiment 1: Verify Auto Scaling
4.3.1 Experimental method

We prepared a bare system that does not apply Reaction
Threshold model, namely System-E1A, and a system applied
with the model as System-E1B. System-E1A includes 30 Work-
ers while System-E1B includes 50 Workers. The parameters of
System-E1B are set to be 10 Workers who do not operate on av-
erage when a single Job divided into 30 tasks is launched.

First, we observe the number of operating Workers and pro-
cessing time when a single Job divided into 50 tasks is launched
into both systems.
4.3.2 Evaluation results for Ex.1

The processing was completed in about 20 seconds when a Job
divided into 50 tasks was launched into System-E1A, and in about
26 seconds when it was launched in System-E1B.

The upper graph of Fig.3 shows the number of Workers pro-
cessing a Task for every 0.1sec. Although few Workers start to
process a Task soon after the Job is launched, 30 Workers are
busy after about 10 seconds. Thus, the application of the Reac-
tion Threshold model exhibits effects of Auto Scaling.

3ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-119 No.4
2018/7/30



IPSJ SIG Technical Report

Fig. 3 Number of Workers which is processing task for each 0.1sec of ex-
periment 1

Fig. 4 Number of Workers which is processing task for each 0.1sec of ex-
periment 2 (Upper: System-E2A, Lower: System-E2B)

4.4 Experiment 2: Verify Setting Priority for each Task/Job
4.4.1 Experimental method

System-E2A and System-E2B consisting of the same 40
Workers are prepared for the next experiment.

Every second, we count the number of tasks completed for
each Job, and verify feasibility of the processing speed accord-
ing to the priority. Two Jobs divided into 40 Tasks are given to
each system at the same time. In System-E2A, two Jobs are given
with the same priority. In System-E2B, Job2 is given a priority
A2, which is 3 times larger than the priority A1 of Job1.
4.4.2 Evaluation results for Ex.2

Fig.4 shows the results of Experiment 2. Two Jobs with the
same priority are completed at almost the same time, whereas
Jobs with a higher priority are completed earlier. It also shows
that the number of Workers is allocated according to the ratio of
A j. This confirms that the Setting Priority can be realized without
communicating between the server that controls the processing
and the one that has the nodes.

5. Conclusions
This paper proposed a new model of autonomous decentral-

ized system inspired by the ecology of social insects using the
Response Threshold model based on the concept of Stigmergy.
The model was implemented and experiments were conducted to
verify its effectiveness.

These features can be utilized as middleware for P2P dis-
tributed processing. By packaging data and programs and putting

them on Stigmergy, a general-purpose distributed processing in-
frastructure can be realized without changing the workers. It is
very easy to build and expand the system as there is no central
computer that supervises the Workers, and each Worker can freely
set its own parameters without negotiating with others. In addi-
tion, as the percentage of workers who are not active can be con-
trolled by the parameter T̄ , it is also possible to adjust redundant
systems and so forth in systems with large task-volume fluctu-
ations. Finally, as it is also possible to assign priority to Jobs
and tasks, the proposed architecture is highly useful as a base for
general purpose distributed processing.

References
[1] Ishii, Y. and Hasgeawa, E.: The mechanism underlying the regula-

tion of work-related behaviors in the monomorphic ant, Myrmica ko-
tokui, Journal of Ethology, Vol. 31, No. 1, pp. 61–69 (online), DOI:
10.1007/s10164-012-0349-6 (2013).

[2] Bonabeau, E., Sobkowski, A., Theraulaz, G. and Deneubourg, J.-L.:
Adaptive Task Allocation Inspired by a Model of Division of Labor in
Social Insects, Working Papers 98-01-004, Santa Fe Institute (1998).

[3] Dorigo, M. and Gambardella, L. M.: Ant colony system: a cooperative
learning approach to the traveling salesman problem, IEEE Transac-
tions on Evolutionary Computation, Vol. 1, No. 1, pp. 53–66 (online),
DOI: 10.1109/4235.585892 (1997).

[4] Liao, T., Socha, K., de Oca, M. A. M., Stützle, T. and Dorigo, M.:
Ant Colony Optimization for Mixed-Variable Optimization Problems,
IEEE Transactions on Evolutionary Computation, Vol. 18, No. 4, pp.
503–518 (online), DOI: 10.1109/TEVC.2013.2281531 (2014).

[5] Kephart, J. O. and Chess, D. M.: The vision of autonomic
computing, Computer, Vol. 36, No. 1, pp. 41–50 (online), DOI:
10.1109/MC.2003.1160055 (2003).

[6] Petersen, K., Nagpal, R. and Werfel, J.: TERMES: An Au-
tonomous Robotic System for Three-Dimensional Collective Con-
struction, Robotics: Science and Systems (2011).

[7] Byrski, A., Świderska, E., Lasisz, J., Kisiel-Dorohinicki, M.,
Lenaerts, T., Samson, D., Indurkhya, B. and Nowé, A.: Socio-
cognitively inspired ant colony optimization, Journal of Com-
putational Science, Vol. 21, pp. 397 – 406 (online), DOI:
http://dx.doi.org/10.1016/j.jocs.2016.10.010 (2017).

[8] Miyoshi, T.: Synthesijer. http://synthesijer.github.io/web/,
access: Apr. 2016.

[9] Bonabeau, E., Theraulaz, G. and Deneubourg, J.-L.: Quantitative
study of the fixed threshold model for the regulation of division of la-
bor in insect societies, Proc. Roy. Soc. London B 263, pp. 1565–1569
(1996).

[10] Dorigo, M., Bonabeau, E. and Theraulaz, G.: Ant algorithms and stig-
mergy, Future Generation Computer Systems, Vol. 16, No. 8, pp. 851 –
871 (online), DOI: http://dx.doi.org/10.1016/S0167-739X(00)00042-
X (2000).

[11] Erman, L. D., Hayes-Roth, F., Lesser, V. R. and Reddy, D. R.: The
Hearsay-II Speech-Understanding System: Integrating Knowledge to
Resolve Uncertainty, ACM Comput. Surv., Vol. 12, No. 2, pp. 213–253
(online), DOI: 10.1145/356810.356816 (1980).

[12] Mori, K., Ihara, H., Kawano, K., Koizumi, M., Orimo, M., Nakai,
K., Nakanishi, H. and Suzuki, Y.: Autonomous Decentralized Soft-
ware Structure and Its Application, Proceedings of 1986 ACM Fall
Joint Computer Conference, ACM ’86, Los Alamitos, CA, USA,
IEEE Computer Society Press, pp. 1056–1063 (online), available from
⟨http://dl.acm.org/citation.cfm?id=324493.325044⟩ (1986).

[13] Eager, D. L., Lazowska, E. D. and Zahorjan, J.: Adaptive
Load Sharing in Homogeneous Distributed Systems, IEEE Trans.
Softw. Eng., Vol. 12, No. 5, pp. 662–675 (online), available from
⟨http://dl.acm.org/citation.cfm?id=5527.5535⟩ (1986).

4ⓒ 2018 Information Processing Society of Japan

Vol.2018-MPS-119 No.4
2018/7/30


