
IPSJ SIG Technical Report

Playing Game 2048 with Deep Convolutional Neural
Networks Trained by Supervised Learning

Naoki Kondo1,a) Kiminori Matsuzaki2,b)

Abstract: Game 2048 is a stochastic single-player game and development of strong computer players for 2048 has
been based on N-tuple networks trained by reinforcement learning. Some computer players were developed with (con-
volutional) neural networks, but they did not perform well. In this study, we develop computer players for 2048 based
on deep convolutional neural networks (DCNNs). We increment the number of convolutional layers from two to nine,
while keeping the number of weights almost the same. We train the DCNNs by applying supervised learning with a
large number of play records from existing strong computer players. The best average score achieved is 86,030 with
five convolutional layers, and the best maximum score achieved is 401,912 with seven convolutional layers. These
results are better than existing neural-network-based players, while our DCNNs have less weights.

Keywords: game 2048, neural network, supervised learning

1. Introduction

Neural networks (NN) are now widely-used in the development
of computer game players. Among them, deep convolutional neu-
ral networks (DCNN) have been studied actively in recent years
and played an important role in the development of master-level
computer players, for example, for Go (AlphaGo [13] and Al-
phaGo Zero [15]), Chess (Giraffe [6] and DeepChess [2]), Shogi
(AlphaZero [14]), Poker (Poker-CNN [20] and DeepStack [10]),
and Atari games [9].

The target of this study is game “2048” [1], a stochastic single-
player game. Game 2048 is one of slide-and-merge games and its
“easy to learn but hard to master” characteristics attracted quite a
few people. According to its author, during the first three weeks
after the release, people spent a total time of over 3000 years on
playing the game.

Several computer players have been developed for game 2048.
Among them, the most successful approach is to use N-tuple net-
works (NTNs) as evaluation functions and apply a reinforcement
learning method to adjust the weights of NTNs. This approach
was first introduced to 2048 by Szubert and Jaśkowski [16],
and then several studies were based on it. The state-of-the-art
computer player developed by Jaśkowski [5] combined several
techniques to improve NTN-based players, and achieved average
score 609,104 under the time limit of 1 second per move.

DCNN-based computer players, however, have not achieved
a success yet. The only published work by Guei et al. [3] pro-
posed a player with two convolutional layers followed by two

1 Graduate School of Engineering, Kochi University of Technology
Kami, Kochi 782–8502 JAPAN

2 School of Information, Kochi University of Technology
Kami, Kochi 782–8502 JAPAN

a) 225119q@gs.kochi-tech.ac.jp
b) matsuzaki.kiminori@kochi-tech.ac.jp

full-connect layers but the average score was about 11,400. The
player by tjwei [17] used two convolutional layers with a large
number of weights with supervised learning and achieved average
score 85,351. There exist some other implementations of DCNN-
based players [12,18], but the performance of these players were
not reported.

In this paper, we try to improve the performance of DCNN-
based players by increasing the number of convolutional layers.
We designed DCNNs with 2–9 convolutional layers and applied
supervised learning with the play records of existing strong play-
ers [8]. As the result, we achieved better results than existing
NN-based players. The best player with five convolutional layers
achieved average score 86,030. The player with seven convo-
lutional layers achieved maximum score 401,912. These results
suggest that DCNNs with 5–7 convolutional layers have great po-
tential to develop strong 2048 players.

The rest of the paper is organized as follows. Section 2 briefly
introduces the rule of game 2048. Section 3 reviews existing com-
puter players for 2048, categorized in terms of N-tuple networks
and neural networks. Section 4 shows the design of our DCNN
players and explain how we applied supervised learning. Section
5 reports the experiment results. We discuss the findings in this
study in Section 6, and conclude the paper in Section 7.

2. Game 2048

The game 2048 is played on a 4× 4 grid. The objective of
the original 2048 game is to reach a 2048 tile by moving and
merging the tiles on the board according to the rules below. In
an initial state (Fig. 1), two tiles are put randomly with numbers
2 (p2 = 0.9) or 4 (p4 = 0.1). The player selects a direction (ei-
ther up, right, down, or left), and then all the tiles will move in
the selected direction. When two tiles of the same number col-
lide they create a tile with the sum value and the player gets the

c⃝ 2018 Information Processing Society of Japan 1

Vol.2018-GI-40 No.2
2018/6/29

IPSJ SIG Technical Report

Table 1 Summary of players in terms of number of weights and average score of greedy play

authors description weights ave. score

Szubert& Jáskowski [16] 17×4-tuples, TD learning 860,625 51,320

Szubert & Jáskowski [16] 2×4-tuples & 2×6-tuples, TD learning 22,882,500 99,916

Wu et al. [19,21] 4×6-tuples, TD learning, 3 stages 136,687,500 143,958

N-tuple Oka & Matsuzaki [11] 40×6-tuples, TD learning 671,088,640 210,476

network Oka & Matsuzaki [11] 10×7-tuples, TD learning 2,684,354,560 234,136

Matsuzaki [7] 8×6-tuples, TD learning 134,217,728 226,958

Matsuzaki [7] 8×7-tuples, TD learning 2,147,483,648 255,198

Matsuzaki [8] 4×6-tuples, backward TC learning, 8 stages 536,870,912 232,262

Jáskowski [5] 5×6-tuples, TC learning, 16 stages, redundant encoding, etc. 1,347,551,232 324,710

This work (comparison) 5×4-tuples, TC learning, 3 stages 983,040 50,120

Gueiet al. [3] 2 convolutional (2× 2), 2 full-connect, TD learning N/A ≈11,400

Neural Guei et al. [3] 3 convolutional (3× 3), 2 full-connect, TD learning N/A ≈ 5,300

network tjwei [17] 2 convolutional (2× 1 & 1 × 2), 1 full-connect, supervised learning 16,949,248 85,351

This work 2 convolutional (2× 2), 1 full-connect, supervised learning 816,192 25,669

This work 5 convolutional (2× 2), 1 full-connect, supervised learning 831,488 86,030

(a) 2

2

(b) 2 2

2

(c) 2 4

2

(a) Anexample of the initial state. Two tiles are put randomly.
(b) After the first move:up. A new 2-tile appears at the lower-left

corner.
(c) After the second move:right. Two 2-tiles are merged to a 4-tile,

and score 4 is given. A new tile appears at the upper-left corner.

Fig. 1 Process of game 2048

sum as the score. Here, the merges occur from the far side and
newly created tiles do not merge again on the same move: move
to the right from222␣, ␣422 and2222 results in␣␣24, ␣␣44, and
␣␣44, respectively. Note that the player cannot select a direction
in which no tiles move nor merge. After each move, a new tile
appears randomly at an empty cell with number 2 (p2 = 0.9) or 4
(p4 = 0.1). If the player cannot move the tiles, the game ends.

When we reach the first 1024-tile, the score is about 10,000.
Similarly, the score is about 21,000 for a 2048-tile, about 46,000
for a 4096-tile, about 100,000 for an 8192-tile, about 220,000 for
a 16384-tile, and about 480,000 for a 32768-tile.

3. Existing 2048 players

Table 1 summarizes the existing computer players in terms of
their features, the number of weights, and the average score with
greedy plays (i.e. without search methods).

3.1 Players based on N-Tuple Networks
The most successful approach to computer 2048 players is

based on N-tuple networks (NTNs) and reinforcement learn-
ing methods, which was first introduced by Szubert and
Jáskowski [16]. NTNs consist of a set of N-tuples and associated
tables of (feature) weights. Given NTNs, we compute the evalua-
tion value of a state simply by looking up weights corresponding
to the tiles where the N-tuples cover.

Thanks to the simple design and implementation of the NTNs,
we can increase the number of also weights to improve the per-
formance of players. We can also extend NTNs as follows.

(1) Enlarge the size of tuples. Szubert and Jaśkowski [16] re-
ported that the computer player performed significantly bet-
ter by introducing 6-tuples instead of 4-tuples. Some studies
used larger 7-tuples [5, 7, 11]. Note that a 4-tuple requires
164 = 65,536 weights, a 6-tuple does 166 = 16,777,216, and
a 7-tuple does 167 = 268,435,456.

(2) Increase the number of N-tuples. Though several studies
have used four 6-tuples designed by Wu et al. [19], we can
use more N-tuples if memory size permits. Oka and Mat-
suzaki [11] and Matsuzaki [7] analyzed the performance of
players that utilizes many 6-tuples or 7-tuples. Jaśkowski’s
redundant encoding is also a technique to increase the num-
ber of N-tuples (and we can save the number of weights with
the use of smaller additional tuples).

(3) Multi-staging. Multi-staging is a technique to divide a game
into multiple stages and to use different tables of weights for
each stage, which was first introduced by Wu et al. [19] for
2048.

The feature weights are adjusted by reinforcement learning
methods. For 2048 players, temporal difference learning (TD
learning) was commonly used [16, 19, 21], and then a learning-
rate-free variant (temporal coherence learning) was introduced [5,
8]. Due to the characteristics of the game, biasing the boards
to learn sometimes improves the performance, such as carousel
shaping [5] and restart strategy [8].

The state-of-the-art player by Jaśkowski [5] was based on
five 6-tuples networks adjusted by the temporal coherence learn-
ing with some other improvements, and achieved average score
324,710 with the greedy play and 609,104 with the expectimax
search under the time limit of 1 second. Though NTNs have
worked fine, a weakness remains: missing generalization. Since
the weights are basically independent from each other, NTNs
do not obtain some important property of the game (for exam-
ple, the similarity among 1024–2048–4096 tiles and 2048–4096–
8192 tiles). Weight promotion [5, 8], which initializes a first-
accessed weight with a certain existing one, can be considered
as a human-aided solution to this issue. A more affirmative reuse
of feature weights achieved even a 65536-tile [4].

c⃝ 2018 Information Processing Society of Japan 2

Vol.2018-GI-40 No.2
2018/6/29

IPSJ SIG Technical Report

conv2d conv2d conv2d conv2d full-connect

0.00

0.26

0.66

0.08

4×4×16

4×4×256 4×4×256 4×4×256 4×4×256

So
ftm

ax

Fig. 2 Overview of our deep convolutional neural network

3.2 Players based on Neural Networks
Behind the success of NTNs, (deep) neural networks have been

less studied or utilized for the development of 2048 players. As
far as the authors know, the work by Guei et al. [3] was the only
published one. Some open-source programs have been devel-
oped, for instance, (convolutional) neural network player [17],
deep Q-learning player [18], and deep recurrent neural network
player [12], but the performance of these players was not ana-
lyzed well (at least from the documents provided).

Guei et al. [3] first tried to develop 2048 players based on con-
volutional neural networks. They developed two networks, one
with 2 × 2 filters and the other with 3× 3 filters. The first net-
work consists of two convolutional layers and two full-connect
layers. The input board was encoded to a 4×4 16-channel image,
where each channel corresponds to either empty-cells, 2-tiles, 4-
tiles, . . . , or 32768-tiles. Then, 2× 2 filters are convoluted twice
followed by ReLU, which result in 2× 2 image (the number of
filters for these convolutional layers was not described in the pa-
per). The pixel values are flattened and then processed with two
full-connect layers. The output consists of a single value (for TD
learning) or four values (for Q learning). The second network is
different from the first one in terms of the size of filters and the
number of convolutional layers: 3× 3 filters are convoluted (with
zero padding) three times. The weights in these networks are ad-
justed by TD-learning and Q-learning methods with the results of
selfplays. The best average score achieved with the first network
was about 11,400 and with the second network about 5,300.

The neural network developed by tjwei [17] consists of two
convolutional layers followed by a full-connected layer. The in-
put is a 4× 4 16-channel image. In the first convolutional layer,
2 × 1 filters and 1× 2 filters are applied concurrently and then
ReLU, yielding a 3× 4 512-channel image and a 4× 3 512-
channel image. In the second convolutional layer, 2×1 filters and
1×2 filters are applied concurrently to both intermediate images,
yielding four 4096-channel images. The pixel values are finally
processed in a full-connected layer to a single output value. The
average score achieved was 85,351 for the player trained with the
supervised learning method.

4. Design

In this study, we have designed deep convolutional neural net-
works (DCNNs) that have more convolutional layers than exist-
ing work [3, 17] and adjusted the weights by supervised learning
with play records of existing strong players. In this section, we
show the structure of designed DCNNs, the method of supervised
learning, and the play method with the trained DCNNs.

4.1 Structure of Our DCNN
As we reviewed in the previous section, existing NN-based

players consisted of two (or three) convolutional layers. Since
the game is played on a small 4× 4 board, twice applications of
convolution might cover the board. We, however, considered that
those networks were too shallow to obtain good (and versatile)
knowledge in the games, and designed DCNNs with more con-
volutional layers. Figure 2 depicts the structure of our DCNN
for the case of four convolutional layers. In general, our DCNNs
havek convolutional layers, a full-connected layer, and a softmax
layer.

The input board is encoded to a 4× 4 16-channel image as the
work by Guei et al. [3]. Each channel represents the positions
of empty cells, 2-tiles, 4-tiles, . . . , and 32768-tiles, respectively.
Then, 2× 2 filters are convolutedk times. The stride width is one
and zero padding is on so that the size of result images is also 4×4.
We used the same numberCh(k) of filters (equals to the number
of channels of intermediate images) for all the convolutional lay-
ers. Note that the convolution is asymmetric because the zero
padding is applied only on the right and the bottom sides. After
each convolution, ReLU is applied. After the convolutional lay-
ers, all the pixel values are processed in the full-connected layer
that outputs four values. After the softmax layer, the four values
represent probabilities of selecting the four directions.

We selected the numberCh(k) so that designed DCNNs have
almost the same number of weights to see the importance of depth
of DCNNs. Table 2 shows the number of layersk, the number of
channelsCh(k) and the number of weights in the DCNNs. Note
that the numbers of weights are between 810,000–832,000, which
are much smaller than that of existing players (only comparable
to that of [16]).

c⃝ 2018 Information Processing Society of Japan 3

Vol.2018-GI-40 No.2
2018/6/29

IPSJ SIG Technical Report

Table 2 Numbers of convolutional layers, channels and weights

Layersk ChannelsCh(k) Weights

2 436 816,192

3 312 818,688

4 256 819,200

5 224 831,488

6 200 825,600

7 182 818,272

8 168 811,776

9 158 819,072

4.2 Supervised Learning
Since the authors developed strong computer players for

2048 [8], we used play records of existing players as the train-
ing data of supervised learning.

Since our DCNNs output probabilityP(i) for each movei, the
supervised learning adjusts the weights to maximize the proba-
bility of the desired move. For this end, we defined the errorE

based on the cross entropy as follows.

E = −
3∑

i=0

t(i) log P(i)

where t(i) =

 1 if i is the best move
0 otherwise

We selected three players from the artifacts of our previous
work [8] to generate the training data. These players utilized
N-tuple networks as the evaluation functions: the networks con-
sisted of four 6-tuples and the game was split to eight stages
based on the maximum number of tiles. The weights of the
networks were adjusted by backward temporal coherent learning
with restart strategy. These players selected moves by the 3-ply
expectimax search. The difference of the players was only in the
weights. The average scores of the players were 459,455, 463,660
and 460,069.

For the training data, we selected 6× 108 boards from the play
records of these players (these boards were from about 33,000
games). Each board was augmented with the move that the player
selected, and we used the move to be the best move. Note that the
training data were shuffled before fed to supervised learning.

We would like to add short remarks about symmetry. The
board and the rule of the game 2048 is rotation- and reflection-
symmetric, but the moves of a player are not usually symmetric.
The N-tuple networks used in this study were trained in a com-
pletely symmetric manner, and the play records were not biased in
terms of symmetry. Therefore, we did not feed symmetric boards
in the training of DCNNs.

4.3 Playing Method
As we discussed above, the training data were not biased in

terms of symmetry, but the structure of DCNNs was asymmet-
ric due to the implementation of zero padding. Therefore, in the
playing, we generate eight symmetric boards and feed each of the
eight boards to the DCNN. Table 3 gives an example. For each of
the board, the DCNN returns the probabilities of the moves. We
pick up the move with the largest probability and compute the
corresponding move in the original board (written in the paren-

Table 3 Example of state and its symmetries

up 0.000 0.000 0.188 0.095

right 0.256 0.178 0.001 0.644(↓)
down 0.660(↓) 0.560(↓) 0.444(→) 0.252

left 0.084 0.261 0.367 0.009

up 0.673(↓) 0.649(↓) 0.317 0.248

right 0.083 0.147 0.372(↓) 0.001

down 0.000 0.001 0.312 0.196

left 0.244 0.202 0.000 0.556(↓)

theses).We finally select the move to play with a majority vote.
If two or more moves become the majority, we select the move
based on the sum of probabilities.

Since the training data were not biased, we had considered this
use of symmetric boards worked insignificantly, but in fact it im-
proved the score to a degree. Another design choice of selecting
a move from symmetric ones was simply based on the sum of
probabilities. This, however, performed worse than the majority
vote.

5. Experiments

5.1 Implementation and Experiment Settings
We implemented the DCNN player using the TensorFlow

framework. The supervised learning was executed with a batch of
1,000 boards. We usedtf.train.AdamOptimizer for the opti-
mization algorithm with the learning parameter 0.001. The initial
values of weights were set randomly between−0.1 and 0.1.

During the training phase, we observed the progress of learn-
ing through the errorE and the accuracy. Here, the accuracy was
calculated during the training using the training data themselves.

After each training with 2× 107 boards, the player took the
snapshot of the weights and performed test plays of 1000 games.
After the test plays, we calculate the average score, the maximum
score, and the ratio of reaching 2048.

5.2 Experiment Results
The progress of training was plotted in Fig. 3. We plotted the

cases with two convolutional layers and five convolutional lay-
ers only, because the graphs for three to nine convolutional layers
were quite similar. From Fig. 3, the training proceeded fast up to
1× 108 boards, and did not stop even at 6× 108 boards. We ob-
served rather large oscillation of the error (and also the accuracy),
and considered that this was caused by wide variety of states com-
pared with the number of weights available. Table 4 summarized
the error and the accuracy of selecting moves after training with
5.9–6.0 × 108 boards. Generally speaking, the smaller the error
the larger the accuracy. The smallest error and highest accuracy
were achieved with six convolutional layers, and the results of
3–8 convolutional layers would be within the oscillation.

c⃝ 2018 Information Processing Society of Japan 4

Vol.2018-GI-40 No.2
2018/6/29

IPSJ SIG Technical Report

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

A
ve

ra
ge

 lo
ss

Training data (x 108)

 2x conv2d

 5x conv2d

Fig. 3 Transition of error over learning

Table 4 The average error and accuracy during 5.9×108 – 6.0×108 actions

layers error accuracy

2 0.698 0.692

3 0.543 0.749

4 0.537 0.750

5 0.535 0.752

6 0.532 0.755

7 0.544 0.748

8 0.551 0.751

9 0.552 0.744

0

2

4

6

8

10

0 1 2 3 4 5 6

A
ve

ra
ge

 s
co

re
 (

x
1

0
4
)

Training data (x 108)

 5x conv2d

 3x conv2d

 2x conv2d

Fig. 4 Transition of average score over learning

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9

B
e

st
 s

co
re

 (
x1

0
4
)

Number of conv2d layers

 ave max

Fig. 5 Average score and maximum score of players

Table 5 Average score, maximum score, and ratio of reaching 2048

average score maximum 2048

layers 2× 108 4× 108 6× 108 score ratio

2 22,189 25,530 25,669 175,628 45.6

3 61,037 64,212 69,840 332,868 79.4

4 65,022 73,054 80,284 343,496 83.3

5 68,153 73,435 86,030 385,560 84.7

6 69,482 74,441 83,791 387,376 83.5

7 67,874 77,448 79,812 401,912 83.1

8 64,465 74,737 74,787 363,916 81.1

9 66,732 73,484 68,129 358,736 75.9

Table 6 Distribution of maximum tiles

layers ≤256 512 1024 2048 4096 8192 16384

2 109 134 301 307 148 1 0

3 39 39 128 188 412 186 8

4 46 36 85 172 387 263 11

5 50 37 66 155 394 280 18

6 55 33 77 152 378 284 21

7 27 39 103 166 382 275 8

8 35 51 103 190 363 245 13

9 50 54 137 187 348 216 8

We then plotted the average scores of test plays in Fig. 4.
We selected the cases with 2, 3, and 5 convolutional layers: the
graphs for 5 and 6 convolutional layers were close and the graphs
for 4, 6, 7, 8 and 9 convolutional layers were between those of
3 and 5 convolutional layers at most of the points. Table 5 sum-
marized the average scores of the test plays after the training of
2× 108, 4× 108 and 6× 108 boards, the maximum score over the
whole test plays (up to training 6× 108 boards), and the ratio of
reaching 2048 after the training with 6× 108 boards. The aver-
age scores and the maximum scores were also plotted in Fig. 5.
From these figures and table, we claim that the player with two
convolutional layers performed apparently worse than those with
more convolutional layers. The best average score was 86,030
with five convolutional layers, which was a bit higher than the
average score of tjwei’s player [17]. The best maximum score
was 401,912 with seven convolutional layers. Note that the aver-
age score were still increasing at the training with 6× 108 boards
as we can see in Fig. 4.

Table 6 summarized the number of test plays categorized by
the maximum number of tiles at the game end. Unfortunately, the
players could not reach a 32768-tile. The best player with six con-
volutional layers reached a 16384-tile in 2% of the games. This
ratio was higher than that achieved by tjwei’s player [17], while
the ratios of reaching 8192-, 4096- and 2048-tiles were lower.

6. Discussion

The most interesting result in this study is that the performance
of the player improved significantly from two convolutional lay-
ers to three convolutional layers. Since the size of board is just
4 × 4, applying 2× 2 filters twice would cover the whole board.
One possible reason is related to generalization of knowledge ob-
tained through the training phase. Let us consider combinations
of tiles on an edge: [128, 64, 32, 16], [256, 128, 64, 32], and
[512, 256, 128, 64]. There patterns often appear in good plays,

c⃝ 2018 Information Processing Society of Japan 5

Vol.2018-GI-40 No.2
2018/6/29

IPSJ SIG Technical Report

and thus we would like to evaluate those patterns better. However,
it would be impossible to obtain generalized knowledge with just
two convolutional layers (we need to encode combinations inde-
pendently in the weights). If we have three (or more) convolu-
tional layers, we could encode the knowledge in the additional
layer(s). This could be a reason why the players with three or
more convolutional layers performed almost as the same level as
the existing NN-based player [17], while the number of weights
is much smaller. Of course, we could improve the performance
by increasing the number of weights, but it is our future work to
confirm it.

It is also interesting that the results in this study are much bet-
ter than those in the work by Guei et al. [3], even if the network
consists of two convolutional layers. There could be several rea-
sons for the improvement: the difference of learning method, that
is, we used supervised learning instead of reinforcement learn-
ing; the number of weights available in the networks might be
too small.

Under the condition of a similar number of weights, the pro-
posed DCNN players performed better than existing players in-
cluding NTN-based ones . The first NTN-based player developed
by Szubert and Jaśkowski achieved the average score 51,320. We
also generated an NTN-based player with the techniques in [8],
but the average score was almost the same. The best DCNN
player achieved average score 86,030.

One drawback of the proposed method is the long training
time. In our preliminary tests, the training of DCNN players took
500 times longer than that of NTN players. Since we used only
CPUs in the training, we could speed up the training by using
GPUs.

7. Conclusion

In this paper, we developed computer players for game 2048
based on deep convolutional neural networks trained by super-
vised learning. We changed the number of convolutional lay-
ers from two to nine while keeping the total number of weights.
These networks were trained with the play records of existing
strong computer players.

The experiment results showed some interesting findings. The
player with two convolutional layers did not perform well, and the
players with three or more convolutional layers did much better,
even with similar number of weights. The best player with five
convolutional layers achieved the average score 86,030 without
combining any search techniques, which was higher than exist-
ing NN-based players. The average score was also higher than
that of NTN-based players under a similar number of weights.
The player with seven convolutional layers achieved the maxi-
mum score 401,912, and this suggested that a deeper network
would perform better if we could use more weights and training
data.

One of our future work is to identify the knowledge that our
DCNN players have obtained by investigating the weights in the
networks. We expect that the DCNNs successfully encoded some
generalized knowledge, which is hard to obtain in N-tuple net-
works. We also want to increase the number of weights and train-
ing data and improve the performance of DCNN players for 2048.

Acknowledgment
The training data used in this study were generated under the

support of the IACP cluster in Kochi University of Technology.

References

[1] Cirulli, G.: 2048, http://gabrielecirulli.github.io/2048/
(2014).

[2] David, O. E., Netanyahu, N. S. and Wolf, L.: DeepChess: End-to-
End Deep Neural Network for Automatic Learning in Chess,Interna-
tional Conference on Artificial Neural Networks and Machine Learn-
ing (ICANN 2016), pp. 88–96 (2016).

[3] Guei, H., Wei, T., Huang, J.-B. and Wu, I.-C.: An Early Attempt at
Applying Deep Reinforcement Learning to the Game 2048,Workshop
on Neural Networks in Games(2016).

[4] Guei, H. and Wu, I.-C.: personal communication (2018).
[5] Jáskowski, W.: Mastering 2048 with Delayed Temporal Coherence

Learning, Multi-Stage Weight Promotion, Redundant Encoding and
Carousel Shaping,IEEE Transactions on Computational Intelligence
and AI in Games, Vol. 10, No. 1, pp. 3–14 (2018).

[6] Lai, M.: Giraffe: Using Deep Reinforcement Learning to Play
Chess, Master’s thesis, Imperial College London, arXiv 1509.01549v1
(2015).

[7] Matsuzaki, K.: Systematic Selection of N-tuple Networks with Con-
sideration of Interinfluence for Game 2048,Proceedings of the 2016
Conference on Technologies and Applications of Artificial Intelligence
(TAAI 2016)(2016).

[8] Matsuzaki, K.: Developing 2048 Player with Backward Temporal Co-
herence Learning and Restart,Proceedings of Fifteenth International
Conference on Advances in Computer Games (ACG2017), pp. 176–
187 (2017).

[9] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D. and Riedmiller, M.: Playing Atari With Deep Reinforce-
ment Learning,NIPS Deep Learning Workshop(2013).

[10] Moravćık, M., Schmid, M., Burch, N., Liśy, V., Morrill, D., Bard, N.,
Davis, T., Waugh, K., Johanson, M. and Bowling, M. H.: DeepStack:
Expert-level artificial intelligence in heads-up no-limit poker,Science,
Vol. 356, No. 6337, pp. 508–513 (2017).

[11] Oka, K. and Matsuzaki, K.: Systematic Selection of N-tuple Net-
works for 2048,Proceedings of 9th International Conference on Com-
puters and Games (CG2016), Lecture Notes in Computer Science,
Vol. 10068, Springer, pp. 81–92 (2016).

[12] Samir, M.: 2048 Deep Recurrent Reinforcement Learning.https:
//github.com/georgwiese/2048-rl.

[13] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N.,
Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,
T. and Hassabis, D.: Mastering the game of Go with deep neural
networks and tree search,Nature, Vol. 529, No. 7587, pp. 484–489
(2016).

[14] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M.,
Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap,
T., Simonyan, K. and Hassabis, D.: Mastering Chess and Shogi by
Self-Play with a General Reinforcement Learning Algorithm, arXiv
1712.01815 (2017).

[15] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lil-
licrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T. and
Hassabis, D.: Mastering the game of Go without human knowledge,
Nature, Vol. 550, pp. 354–359 (2017).

[16] Szubert, M. and Jaśkowski, W.: Temporal Difference Learning of N-
Tuple Networks for the Game 2048,2014 IEEE Conference on Com-
putational Intelligence and Games, pp. 1–8 (2014).

[17] tjwei: A Deep Learning AI for 2048.https://github.com/tjwei/
2048-NN.

[18] Wiese, G.: 2048 Reinforcement Learning.https://github.com/
georgwiese/2048-rl.

[19] Wu, I.-C., Yeh, K.-H., Liang, C.-C., Chang, C.-C. and Chiang, H.:
Multi-Stage Temporal Difference Learning for 2048,Technologies
and Applications of Artificial Intelligence, Lecture Notes in Computer
Science, Vol. 8916, pp. 366–378 (2014).

[20] Yakovenko, N., Cao, L., Raffel, C. and Fan, J.: Poker-CNN: A Pattern
Learning Strategy for Making Draws and Bets in Poker Games, arXiv
1509.06731 (2015).

[21] Yeh, K.-H., Wu, I.-C., Hsueh, C.-H., Chang, C.-C., Liang, C.-C. and
Chiang, H.: Multi-stage temporal difference learning for 2048-like
games,IEEE Transactions on Computational Intelligence and AI in
Games, Vol. 9, No. 4, pp. 369–380 (2016).

c⃝ 2018 Information Processing Society of Japan 6

Vol.2018-GI-40 No.2
2018/6/29

