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Abstract: Aware agents (A-agents) are programs that can be aware of various situations and support human decisions.
The aim of this study is to implement A-agents on portable/wearable computing devices (P/WCDs) like smartphones.
Since P/WCDs usually have limited resources, it is difficult to implement many A-agents together in one P/WCD.
Cloud-based system is a solution, but this kind of system has privacy problem. To use a cloud server while preserving
privacy, we propose a new protocol that has four features, namely, 1) divide each A-agent into two parts, and imple-
ment the computationally expensive part using the cloud server; 2) encrypt the data before sending them to the server;
3) share the same black-box computing model on the server side by various A-agents; and 4) make the final decisions
on the P/WCD side with selected results obtained from the server. Experimental results show that the performance of
the A-agents does not change significantly even if they share the same black-box model. In addition, the P/WCD can
be more energy efficient. Therefore, the proposed protocol can be very useful for improving the usability of P/WCDs.

Keywords: neural network, extreme learning machine, privacy preserving, mobile computing device, wearable com-
puting device, cloud computing

1. Introduction

In this study, we define aware agents, or A-agents in short,
as computer programs for supporting human users to make de-
cisions in their daily lives. The A-agents can be aware of user
situations, intentions, preferences, etc., and provide useful in-
formation to the user. In practice, the A-agents are realized by
machine learning models, and many learning algorithms pro-
posed in the literature can be used to customize or personalize
the A-agents. In this study, we aim to implement the A-agents
on portable/wearable computing devices (P/WCDs) like smart
phones or smart watches. Since resources (e.g. CPU, memory,
and battery) of P/WCDs are usually limited, it is difficult to imple-
ment many A-agents together in one P/WCD. It will be more dif-
ficult if we want to implement high performance A-agents. Thus,
how to implement the A-agents more efficiently or economically
is a challenging problem.

Figure 1 is the concept of the system based on A-agents. For
developing A-agents as mobile applications, we suppose the fol-
lowing flow (see Fig. 2):
( 1 ) Train the A-agents on developer’s or user’s personal com-

puter (PC).
( 2 ) Distribute the A-agents to the mobile device.
( 3 ) Use the A-agents as daemons. If an A-agent observes a user

datum, it classifies the datum and provides information.
To solve the problem, we may try to design compact (i.e.,

with low calculation cost) and high performance A-agents and
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Fig. 1 An example of systems based on A-agents for user assistance.

Fig. 2 A-agents set up flow.

Fig. 3 The all-in-P/WCD approach.

implement them in the P/WCD (Fig. 3), or use a cloud server to
implement all A-agents based on a client-server model (Fig. 4).
In our earlier study, we tried the first approach and proposed the
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Fig. 4 The all-in-server approach.

decision boundary making (DBM) algorithm [1], [2]. The DBM
algorithm uses a relatively expensive model as a bridge to obtain
a high performance compact model. The flow for training is as
follows. First, we train the expensive model M0 to achieve a high
performance. Then, we generate new data around the decision
boundary based on M0, and add them to the training set. Using
the new training set, we can train a compact model M1 to ap-
proximate M0. In our research, a multilayer perceptron (MLP)
is used for M1, and a support vector machine (SVM) is used for
M0. Experiments on several public databases have verified the
performance of the DBM algorithm [3]. However, if we want to
implement many A-agents (one for each application) in a single
P/WCD, this all-in-P/WCD approach is still not enough.

The all-in-server approach is a basic method for implementing
many mobile or web applications. In this approach, a client (e.g.,
a P/WCD or web browser) is used as a user interface (UI) for in-
putting and outputting data, and all computations are conducted
in the cloud server. The clients and server are connected by a
network (e.g., internet). By this approach, we can implement any
number of A-agents without significantly increasing the load of
the P/WCD. However, this approach also poses information leak-
age and privacy invasion problems [4]. If the cloud server holds
the user data and the A-agent model, it is easy for the server
to analyze the user intention. Even if the server itself might be
trustable, a malicious person can see sensitive personal data eas-
ily, if he/she can visit the system using some illegal method. In
this sense, the all-in-server approach may not be trustable.

A well-known technology for user data protection is (fully) ho-
momorphic encryption (HE). For example, HE can be used to
implement a neural network (NN) using a cloud server [5], [6].
The HE-based NN can provide secure classification because all
computations are performed on the encrypted data. For example,
in Cryptonets proposed in Ref. [6], the client first encrypts a da-
tum using HE with a public key and sends it to a cloud server that
hosts an NN. The cloud server then conducts all computations of
the NN while keeping the datum and all intermediate results in
encrypted form, and sends back the final result, which is also en-
crypted, to the client. Finally, the client decrypts the result with
a secret key. This method is secure in the sense that the server
can only see the encrypted data. However, the computational cost
is usually high to implement the HE-based NN. In addition, the
size of the encrypted datum is also larger than that of the origi-
nal one. There is another serious problem in using the HE-based
approach. That is, the computing model (e.g., the NN) must be
hosted by the server, and therefore, some malicious person may

Fig. 5 The proposed approach.

analyse the data (e.g., the statistics, the data type, etc.) indirectly
based on the computing model and the input-output pairs. There-
fore, the HE-based approach is not P/WCD oriented and may not
be secure.

Recently, stealing machine learning model attack, also known
as model extraction attack, was shown by Florian Tramèr et
al. [7]. Based on their research, some malicious third person can
copy and analyse the machine learning model (i.e., the A-agents)
using some request queries for prediction or classification, in
existing machine learning cloud services like Amazon ML and
BigML. Therefore, the all-in-server approach itself may not be
trustable.

To solve the problem, we proposed a privacy preserving pro-
tocol in Ref. [8]. The main point of the proposed protocol is to
realize each A-agent using an extreme learning machine (ELM)
which was proposed in Refs. [9] and [10]. Briefly speaking, ELM
is a single hidden layer MLP. The basic idea of the protocol is to
divide ELM into two parts, and implement these two parts sep-
arately by the client (P/WCD) and the server (see Fig. 5). The
server holds the weight matrix (W) of the hidden layer, and the
P/WCD holds the weight matrix (β) (which is a vector for two-
class classification problems) of the output layer. Since the hid-
den layer weight matrix W of an ELM is generated at random
and fixed, the server or some malicious third party cannot inter-
pret the decision making model based on information available
on the server side, therefore we can call it black-box computing.
Thus, the proposed protocol can protect the user decision model
effectively.

To protect the personal data, we may use HE to encrypt the data
and decrypt the results on the client (P/WCD) side. To improve
the computational efficiency, however, we do not use HE, but use
the transposition cypher instead. That is, each datum, which is
usually represented as a real vector, is encrypted via permutation
by the client. In addition, instead of decrypting the results, we
generate a different β for each transposition cypher key, and save
it in the client. This way, we can make decisions efficiently while
protecting the user data and the user computing model.

To further improve the usefulness of the proposed protocol,
we proposed two methods in Ref. [11]. The first method is to
share the same hidden layer weight matrix for various A-agents
(i.e., agents for different classification tasks or for different users).
That is, we can generate a large W0 at random, fix it, and use a
sub-matrix of W0 for each specific A-agent. This method not
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only makes the user decision model more secure, but also re-
duces the response time of the server because it is not necessary
to load or re-load W for requests from different clients. The sec-
ond method given in Ref. [11] is to use part of the results obtained
from the server to make the final decision on the client side. This
method makes it more difficult for the malicious person to anal-
yse the user intention because the input-output relation cannot be
observed on the server side.

This paper is the journal version of two conferences pa-
pers [8], [11]. In this paper, we have summarized the background
and some related concepts into one place, and extended the expla-
nations about the protocol, the training and testing phases. This
journal version is more self-contained and can be more useful for
the readers to understand the whole story. In addition, we have
added more results (e.g., results for more datasets, and results for
battery consumption). As for the system itself, we have upgraded
the method for fast data transmission (i.e., changed the method
from JSON to Protcol buffer), and the method for fast memory
access inside the P/WCD.

This paper is organized as follows. In Section 2, we introduce
very briefly ELM and its learning algorithm. Section 3 explains
the proposed protocol in detail. Section 4 investigates the per-
formance, the computational cost, and the battery consumption
of the P/WCD via experiments on several public datasets. Sec-
tion 5 draws some conclusions and suggests some topics for fu-
ture work.

2. Preliminaries

To make this paper relatively self-contained, here we intro-
duce ELM very briefly. For more detail, the readers may refer
to Ref. [9] or its improved versions. The most fundamental form
of an ELM is a single hidden layer MLP. The only difference
between an ELM and a normal MLP is that the hidden neuron
weights are given at random and fixed. For training, only the
output neurons are tuned based on the training data. Therefore,
training of an ELM is usually more cost efficient. In this study,
we just adopt the training algorithm given in Ref. [9].

For convenience of discussion, here we introduce some nota-
tions. We use Nf , Nh, x, W, and β to denote, respectively, the
dimension of the feature space, the number of hidden neurons,
the input vector, the weight matrix of the hidden layer, and the
weight matrix of the output layer. For two-class problems, β is a
vector. Here, we consider two-class problems only because all
discussions can be generated to multi-class problems straight-
forwardly. In addition, we use the augmented input defined by
x = (x1 · · · xN f 1)t, and therefore the weight vector of the ith hid-
den neuron is wi = (wi1 · · · wi,N f bi)t, where bi is the bias. Note
that the hidden layer weight matrix can also be represented by
W = (w1 · · · wNh ). Based on these notations, the output function
of an ELM is give below.

f (x) = sign(h(x) · β) (1)

where h(x) is the output vector of the hidden layer given by

h(x) = G(Wt · x) = [g(z1) · · · g(zNh )]t (2)

and where zi = w
t
i · x and g(zi) are, respectively, the effective input

and the output of the i-th hidden neuron, and g is the activation
function defined by

g(z) =
1

1 + exp(−λ · z)
(3)

where λ is a positive real number.
To train an ELM, we first define the training set as follows:

Ω =
{
(x j, t j) | x j ∈ RN′f , t j ∈ {−1, 1}, j = 1, ...,Nd

}
(4)

where Nd is the number of training data, N′f = Nf + 1 is the di-
mension of the augmented feature vector, x j is the j-th datum,
and t j is the desired output or the teacher signal for the j-th da-
tum. The training data are often represented in a matrix form as
follows:

X = [x1 · · · xNd ]. (5)

The training process is given below.
( 1 ) Initialize the hidden layer weight matrix W at random. In

our study, the range of each weight is [−1, 1].
( 2 ) Calculate the output vector of the hidden layer.

H = [h(x1) · · · h(xNd )]t

= [G(Wt · x1) · · · G(Wt · xNd )]t (6)

( 3 ) Find the output weight vector.

T = H · β (7)

β = H+ · T (8)

where H+ is the Moor-Penrose generalized inverse matrix of
H, and

T = (t1 · · · tNd )t. (9)

Theoretically speaking, the neural network model used in this
paper is able to realize any aware agents, because an MLP is
known to be a universal approximator. However, in this paper,
we consider only A-agents that can be implemented in a P/WCD,
and that can be used for decision support in the user’s daily life.
For the time being, we do not consider agents for “optimization”
(i.e., for finding the best solution for a given problem). An A-
agent is trained based on permutated user data, and the weights
of the output layer are saved in the P/WCD. The agent works as
a “daemon.” That is, it is triggered only when needed (e.g., the
P/WCD captures a new “health related datum” from the user’s
smart watch, or a new “situation related datum” from the user’s
smart home). A triggered agent first encrypts the datum, sends
it to the server, and makes a decision (e.g., health/home condi-
tion is normal or abnormal) based on the results received from
the server.

3. ELM-Based Privacy Preserving Protocol

The main point of the protocol proposed in our study is to use
ELM for protecting the agent model [8], [11]. In the proposed
protocol, the hidden neuron weights, which are given at random,
are put in the cloud server, and the weights for the output neu-
ron are put in the P/WCD. It is impossible to estimate the agent
model using information available on the server side only. To
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make the protocol more practically useful, we also introduced
three methods for protecting the user data, for sharing the same
hidden layer matrix between various agents/applications, and for
protecting the user intention. These three methods are discussed
in detail below.

3.1 Method for Protecting the Data
In any cloud-based computing, protection of user data is a basic

request. The most commonly known technology for this purpose
is (fully) homormophic encryption (HE). However, HE in its cur-
rent status is not suitable for P/WCD because it is computation-
ally expensive. In our study, we propose to use a transposition
cipher. That is, for any input feature vector, we just encrypt it
by using permutation. In the following discussion, the key for a
transposition cipher is a vector whose elements are indices of the
encrypted vector. We call the key for a transposition cipher the
“trans-key.” When the feature vector to encrypt is x ∈ RN′f , the
trans-key is Kt = (k1, k2, ..., kN′f ), then the d-th elements of x will
be the c-th element of the encrypted vector if kc = d (1 ≤ c ≤ N′f ).
For example, if x = (x1, x2, x3) and Kt = (2, 3, 1), the encrypted
vector will be Enc(x,Kt) = (x2, x3, x1).

In practice, for any given classification problem, we can gen-
erate many trans-keys at random, and design the same number of
models for this problem. These models share the same hidden
layer weight matrix, but have different output layer weight vec-
tors. The former is stored in the cloud server, and the latter are
stored in the P/WCD. For any input, if we encrypt it using the i-th
trans-key, we can get the correct answer by using the i-th output
layer weight vector. Thus, even if we do not decrypt the results
obtained from the server, we can make correct decisions.

We may consider three types of attacks. One is on the client
side, the second is on the server side, and the third is on the
communication channel side. In this research, we assume that
the trans-key (along with other keys) are stored in a secure re-
gion in the P/WCD, and we do not consider attack to the client or
P/WCD. The main concern here is to protect the user data from
some malicious third party on the server side. Denoting the num-
ber of inputs (features) by Nf , there are Nf ! possible patterns for
the permutation. Theoretically, it is difficult for the third party to
understand the original input vector if the trans-key is unknown
and if Nf is large. In our research, we consider only “homoge-
neous” data. That is, all elements of the input vector have the
same or very similar “statistical properties” (e.g., dynamic range,
mean, variance, etc.). In this sense, permutation alone is quite
safe. If each element of the input vector has a unique property,
permutation is not good because the third party may find the orig-
inal features using their statistical properties. One way to solve
the problem is to normalize the original input vector, so that all
elements share the same (or similar) statistical properties. In fact,
this way is useful not only for security, but also recommended
for improving the performance of machine learners (e.g., SVM,
MLP, etc.). To protect the user data from third party attacks on the
communication channel side, we should use a secure method like
HTTPS [12] for data communication between the server and the
P/WCD. In fact, HTTPS is now recommended for all web-based
applications.

3.2 Method for Sharing the Hidden Layer Weight Matrix
The basic idea here is to generate a very large random weight

matrix W0, and store it in the cloud server. Different tasks from
different users can share W0 by using a sub-matrix of W0. A
sub-matrix of W0 is defined by its position (i.e., row number and
column number) and size (i.e., the number of hidden neurons and
the number of features). The size of the sub-matrix for a certain
task is N′f × N′h where N′h is the number of hidden neurons (to be
defined in the next sub-section). We call the position of the sub-
matrix the “pos-key.” A pos-key contains 2 elements, namely the
row number and the column number. For example, if the pos-key
is Kp = (e, f ), where e and f are integers, then the (e, f )-th ele-
ment of W0 will be the “upper-left” or the (1,1)-th element of the
sub-matrix. When the size of W0 is Wx × Wy, the range of e is
1 ≤ e ≤ Wx − N′f , and that of f is 1 ≤ f ≤ Wy − N′h.

There are mainly two advantages by sharing the random hidden
weights. The first one is cost reduction for loading/reloading the
hidden weight. The second advantage is to hide the user inten-
tion. That is, the server or some third party cannot see what kind
of model a user/application uses.

Similar to the trans-keys, we can generate many pos-keys for
a given problem, and extract a sub-matrix W from W0 for each
pos-key. Corresponding to each sub-matrix W, we can design a
model, and save the output layer weight vector on the P/WCD
side.

3.3 Method for Protecting the User Intention
If we use all results obtained from the cloud server for making

the final decisions, some malicious person may still try to guess
the user intention by observing the relation between the input and
the output of the hidden layer. To protect the user intention fur-
ther, we can drop some of the results obtained from the server,
and use only some selected results for making the final decisions.
That is, we can drop some elements of h ∈ RN′h and generate
h′ ∈ RNh . That is, the length of h′ is smaller than that of h
(Nh ≤ N′h). Here, we define a redundancy rate r (1 ≤ r ≤ t,
t ∈ R), and N′h = r · Nh, where Nh is the number of hidden neu-
rons actually used by the agent, and N′h is the number of hidden
neurons for computation. We call the key for selecting against
some un-used elements of h the “drop-key.” The drop-key should
be kept in the P/WCD. A drop-key Kd is a vector that defines
the indices of the dropped elements. The range of the elements
of Kd is 1 ≤ Kd ≤ N′h, and the number of elements of Kd is
N′h − Nh = (r − 1) · Nh. For example, if Nh = 2, r = 2.0, then
N′h = r · Nh = 4. Therefore, the server calculates h using a “re-
dundant” number of hidden neurons N′h = 4. After that, if the
output of the hidden layer is h = (h1, h2, h3, h4)t (i.e., the dimen-
sions of h is N′h) and Kd = (1, 3), then drop(h,Kd) = (h2, h4)t. In
this example, hidden neurons 1 and 3 are “dummy neurons”, and
their outputs are not used by the agent to make the final decision.

In practice, we can generate many drop-keys for any given
problem, and design a model for each drop-key. Using different
drop-keys, it will be extremely difficult for a malicious person to
guess the user intention.

The same as trans-keys, drop-keys should also be stored in a
secure place of the P/WCD. In this study, we assume that the
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final decisions made by the P/WCD are not observable by any
third person.

3.4 The Training Process
The flow for training using the proposed protocol is as follows.

( 1 ) Define a large enough real matrix W0 at random. Various
classification tasks can share this W0.

( 2 ) Define a redundancy rate r, the number of hidden neurons
Nh, and a redundant number of hidden neurons N′h = r · Nh.

( 3 ) Generate a set of trans-keys Kt = {K1
t ,K

2
t , ...,K

n
t }.

( 4 ) Generate a set of pos-keys Kp = {K1
p,K

2
p, ...,K

m
p }.

( 5 ) Generate a set of drop-keys Kd = {K1
d ,K

2
d , ...,K

l
d}.

Note that n trans-keys, m pos-keys, and l drop-keys are all
generated at random.

( 6 ) Generate a new training set X′ by encrypting all data in the
original training set X using each trans-key. For example, if
the number of training data is Nd, and the dimension N′f of
the augmented feature vectors is 4, the original training set
is given by Eq. (10). If the trans-key is given by Eq. (11), the
encrypted training set is Eq. (12).

X =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13 1
x21 x22 x23 1
...

...
...

...

xNd1 xNd2 xNd3 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

(10)

Kt =
(

4 3 1 2
)

(11)

X′ = transposition(X,Kt)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x13 x11 x12

1 x23 x21 x22

...
...

...
...

1 xNd3 xNd1 xNd2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

(12)

For n trans-keys, we can generate n training sets, and an
agent can be designed from each of them.

( 7 ) Define a sub-matrix W of W0 using each pos-key. Here, we
suppose N′h and N′f are given. For m pos-keys, we can get m

sub-matrices. For example, if W0 is given by Eq. (13), where
N is a sufficiently large integer, pos-key is given by Eq. (14),
r = 1.6, Nh = 5, N′h = r · Nh = 1.6 · 5 = 8, and N′f = 4,
then, the sub-matrix is defined by Eq. (15). The size of W is
N′f × N′h = 4 × 8.

W0 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w1,1 . . . w1,N

...
. . .

...

wN,1 . . . wN,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(13)

Kp =
(

2 9
)

(14)

W = position(W0,Kp,N
′
h,N

′
f )

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w2,9 . . . w2,16

...
. . .

...

w5,9 . . . w5,16

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(15)

( 8 ) For each X′ generated in Eq. (12) and each W defined in
Eq. (15), find the output of the hidden layer, and select the el-
ements for making the final decision using each of the drop-
keys. For example, when r = 1.6, Nh = 5, N′h = r · Nh =

1.6 ·5 = 8, N′f = 4, the drop-key is given by Eq. (17), and the
output of the hidden layer is given by Eq. (16). The result
after dropping is given by Eq. (18) because the 5-th, the 4-th,
and the 7-th rows are dropped based on Eq. (17).

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 h1,3 . . . h1,Nd

h2,1 h2,2 h2,3 . . . h2,Nd

h3,1 h3,2 h3,3 . . . h3,Nd

h4,1 h4,2 h4,3 . . . h4,Nd

h5,1 h5,2 h5,3 . . . h5,Nd

h6,1 h6,2 h6,3 . . . h6,Nd

h7,1 h7,2 h7,3 . . . h7,Nd

h8,1 h8,2 h8,3 . . . h8,Nd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

(16)

Kd =
(

5 4 7
)

(17)

H′ = drop(H,Kd)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1,1 h1,2 h1,3 . . . h1,Nd

h2,1 h2,2 h2,3 . . . h2,Nd

h3,1 h3,2 h3,3 . . . h3,Nd

h6,1 h6,2 h6,3 . . . h6,Nd

h8,1 h8,2 h8,3 . . . h8,Nd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

(18)

( 9 ) Find an output layer weight vector β for each data set X′

generated in Eq. (12), each sub-matrix W defined in Eq. (15),
and each H′ obtained in Eq. (18). Altogether there are n ·m · l
output layer weight vectors.

( 10 )Store W0 in the cloud server, and βs = {β111,β112, ...,βnml}
in the P/WCD. The keys, that is, Kt , Kp, and Kd, and the
parameter N′h are also stored in the P/WCD.

3.5 The Classification Process
The classification flow of the protocol is as follows.

( 1 ) On the P/WCD side:
• Obtain a feature vector x ∈ RN′f from the user through

some sensors (which can be physical sensors or software
sensors).

• Generate i at random from 1 ≤ i ≤ n, and load the i-th
trans-key Ki

t .
• Encrypt x using Ki

t and Eq. (19), and get x′.

x′ = transposition(x,Ki
t ) (19)

• Generate j at random from 1 ≤ j ≤ m, and load the pos-key
K j

p.
• Send x′, K j

p and N′h = r · Nh from P/WCD to the cloud
server.

( 2 ) On the server side:
• Extract W from W0 using K j

p, N′h and N′f using Eq. (20).

W = position(W0, K j
p, N′h, N′f ) (20)

• Calculate the hidden layer output using Eq. (21).

h(x′) = G(Wt · x′) (21)

• Return h(x′) to the P/WCD.
( 3 ) On the P/WCD side:
• Upon receiving h(x′), generate k at random from 1 ≤ k ≤ l,

and load the drop-key Kk
d .
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Fig. 6 Block diagram for classification phase.

Fig. 7 Neural Network diagram for ELM based privacy preserving proto-
col.

• Select the hidden layer outputs useful for making the final
decision using Eq. (22).

h′ = drop(h(x′),Kk
d) (22)

• Load βi jk and calculate the final result y as follows:

y = sign(h′ · βi jk) (23)

Figure 6 shows a block diagram of the classification process,
and Fig. 7 is a diagram focusing on the learning model. Here, we
show only for classifying one datum.

3.6 Computational Costs
In the following, we discuss the theoretical time cost and bat-

tery cost (energy consumption) of each method. For convenience
of discussions, cost functions are listed as follows.
• Chid(Nf ,Nh): Time cost for calculating the hidden layer out-

puts.
• Cout(Nh,Nc): Time cost for calculating the final outputs.
• Csend(Nf ): Time cost for sending an Nf -dimensional datum

to the server.
• Creceive(Nh): Time cost for receiving an Nh-dimensional re-

sult form the server.

• Ctrans(Nf ): Time cost for encrypting the datum using trans-
position cipher.

• Cdrop(N′h): Time cost for selecting the results received from
the server.

• Cpos: Time cost for extracting a sub-matrix from W0 stored
in the server.

Each cost is proportional to its parameters. If the values of pa-
rameters are increased, the costs are also increased. Note that for
the proposed protocol, Nh used in Cout(Nh,Nc) is slightly differ-
ent from the one used in Chid(Nf ,Nh) because some of the results
received from the server are dropped.

In practice, the last three types of costs (Ctrans(Nf ), Cdrop(N′h),
and Cpos) can be ignored because they are relatively small com-
pared with other costs. For Chid(Nf ,Nh) and Cout(Nh,Nc), they
are much smaller and can be ignored if the calculations are con-
ducted on the server side, because a cloud server is usually much
more powerful compared with a P/WCD. Thus, the time costs of
the proposed approach can be given approximately as follows

Cproposed � Cout(Nh,Nc) +Csend(Nf ) +Creceive(Nh) (24)

On the other hand, the time cost of the all-in-P/WCD approach is
given by

Call−in−p/wcd = Chid(Nf ,Nh) +Cout(Nh,Nc) (25)

Therefore, the proposed approach can make a decision faster if
the following condition is satisfied

Cproposed < Call−in−p/wcd

⇔ Csend(Nf ) +Creceive(Nh) < Chid(Nf ,Nh) (26)

That is, the proposed approach is faster if the data transmission
time is shorter than the time used by the P/WCD to find the hid-
den layer outputs.

As for battery cost, the energy consumption of a P/WCD con-
sists of the following two parts: 1) The energy consumed for
computations conducted inside the device, and 2) The energy
consumed for transmitting the data. From Eq. (26) we can see
that the proposed approach is more energy efficient if energy con-
sumed for Csend(Nf ) + Creceive(Nh) is less than that consumed for
Chid(Nf ,Nh).

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

4. Experiments and Discussions

In this section, we look at the usefulness of the proposed pro-
tocol from three different view points. The first one is to see if
we can obtain good A-agents using only one W0; the second one
is to see if the response time is fast enough for data with various
sizes; and the third one is to see if the proposed protocol is really
energy efficient.

4.1 Experiment 1: The Classification Performance
The intention of this experiment is to confirm that the proposed

protocol can work correctly. That is, the accuracy of the sys-
tem will not be degraded even if a large random weight matrix
is shared by various applications. We compared the classification
performance of two methods. The first one is the original ELM in
which each agent is implemented using a different model; and the
second method is the proposed protocol in which all agents share
the same W0. To make the results more reliable, we conducted 10
times 5-fold cross-validation.

Before the experiments, the best number of hidden neurons Nh

for each problem was found via grid search from 10, 20, 30, ...,
100, 200, ..., 1,000, 1,500, and 2,000. The standard sigmoid
function was used as the activation function of all hidden neu-
rons. The programs were written by us using Python3, Numpy
1.10.4 [13], Scipy 0.17.0 [14] and Scikit-learn 0.18.1 [15]. The
datasets we used are shown in Table 1. All datasets were taken
from the UCI Machine Learning Repository [16] and normalized
(the norm equals to one) before the experiment.

Table 2 shows the accuracy of the original ELM and that of our
protocol with the best parameter of Nh. We can see that the ac-
curacies of both methods are almost the same. That is, even if all
datasets share the same random matrix W0, there is no significant
change in the performance.

4.2 Experiment 2: Time Cost for Classification
In the second experiment, we actually implemented the proto-

col, and tested the response time for each datum. We compared
the classification times of the following two methods:
• Local: The all-in-P/WCD method.
• Protocol: The proposed protocol.

The main purpose of this experiment is to see if the response
time is acceptable for data with different sizes. The classifica-
tion time is the total time used in the whole classification process,
i.e., from loading a datum to finding the final result. Again, the
number of hidden neurons Nh was set to the best value found
in Experiment 1. The number n of trans-keys, the number m of
pos-keys, and the number l of drop-keys were all set to 5 in the
experiment. The redundancy rate r was set to 1.4, and the size
of W0 was 10,000 × 10,000. The system contains a smartphone,
a router, and a server. The router and the server were connected
by a LAN cable. The router and the smartphone were connected
via Wi-Fi (i.e., wireless connection). NEC Aterm WR8370N was
used as the router. Two different smartphones were used in the
experiment to see if the results depends on the platforms or not.
The environments of the smartphones and the server are shown in
Table 3 and Table 4.

Table 1 Parameters of data sets.

Number of classes Number of features Number of data

Australian 2 14 690
QSAR 2 41 1,055
Satimage 6 36 6,435
MNIST 10 784 70,000
Gisette 2 5,000 7,000

Table 2 Classification performance:
Original ELM V.S. Proposed protocol.

Dataset Nh Original (%) Protocol (%)

Australian 100 79.4 79.0
QSAR 60 85.5 85.3
Satimage 2,000 94.3 93.5
MNIST 2,000 95.8 95.8
Gisette 2,000 96.6 96.3

Table 3 Smartphone environment.

Machine Google Nexus6 Motorola Moto Z play
OS Android 7.0 Android 7.0
Chipset Snapdragon 805 Snapdragon 625
CPU Quad-core 2.7 GHz Octa-core 2.0 GHz

Krait 450 Cortex-A53
Memory 3 GB 3 GB
Wi-Fi IEEE 802.11 b/g/n IEEE 802.11 ac/a/b/g/n

Table 4 Server environment.

Machine Dell Precision-WorkStation-T3400
OS Ubuntu 14.04
CPU Intel Core2 Duo E8500 (3.16 GHz)
Memory 4 GB

The communication method for the protocol was implemented
as a REST-like API, so that we used HTTP/1.1. The model
(W0 and β) and the keys (Kt,Kp,Kd) were generated by using
Python3, and saved as npy format. The npy format is a general
binary format for Numpy array. The program for implementing
ELM was also written in Python3. The sever was implemented by
Python3 bottle [17], Nginx [18], uWSGI [19]. The HTTP cache
was set to off (Add “Cache-Control: no-store” to the HTTP
header), and the keep-alive was set to disable. The program for
the Android smart phone was written in Kotlin (a programming
language for Java virtual machine (JVM)) and C++. Kotlin is
an official programming language for Android application de-
velopment. The network connection for the Android was im-
plemented in Rxjava (ReactiveX) [20], Retrofit [21]. The format
for data transmission was Google protocol buffers [22]. And we
used wire [23] to compile protocol buffers scheme to Java code
for Android. The methods for loading the weights (W and β),
the keys (Kt,Kp,Kd), and for matrix multiplication were imple-
mented in Android NDK. Android NDK provides higher calcu-
lation performance compared with JVM. To connect Kotlin pro-
grams and C++ programs, we used Java Native Interface (JNI).
Single thread three-for-loop method was used for matrix multi-
plication. In our experiments, time used for model loading and
classification were all included in measuring the computing time.
We measured 30 times for classification of each datum, and took
the average computing time.

Figures 8–12 are results of the classification time using
Nexus6, and Figs. 18–22 are results of Moto Z play. The ver-
tical axis indicates average time (in seconds) for classifying one
datum. The error bar shows the standard deviations. The left bar
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Fig. 8 Classification time of Australian on Nexus6. Fig. 9 Classification time of QSAR on Nexus6. Fig. 10 Classification time of Satimage on Nexus6.

Fig. 11 Classification time of MNIST on Nexus6. Fig. 12 Classification time of Gisette on Nexus6.

Fig. 13 Time details of Australian on Nexus 6. Fig. 14 Time details of QSAR on Nexus 6. Fig. 15 Time details of Satimage on Nexus 6.

Fig. 16 Time details of MNIST on Nexus 6. Fig. 17 Time details of Gisette on Nexus 6.

shows the time of the local method, and the right bar shows the
time of our protocol. The right bar has two parts (bottom and
top). The top one is the time between sending a request to the
server and receiving a response (The sum of transmission time
and the server calculation time), and the bottom one is the time
for calculation in a P/WCD (transposition encryption and calcu-
lation of the output layer). The details of classification time of
the protocol using Nexus6 are shown in Figs. 13–17. The details
of Moto Z play are given in Figs. 23–27. The vertical axis shows
the classification time. The horizontal axis shows the classifica-
tion count which ranges from 1 to 30 because we have 30 trials.
There are also two patterns on each bar. The bottom one is time
for local calculation, and upper one is time for data transmission
and server calculation.

For small datasets (i.e., Australian and QSAR), the classifica-
tion of local method is faster than our protocol. This means that
our protocol may not be needed for classification of simple prob-
lems. But in the Gisette and MNIST datasets, which have large
Nf and require large Nh, our protocol can classify faster in both
smartphones. This means the Gisette and MNIST databases sat-
isfies Eq. (26). Since the calculation cost depends on the numbers
Nf and Nh, our protocol is efficient if these two values are large.

In both devices and all databases, the standard deviations of
classification time of protocol are relatively large. We can see the
reason from Figs. 13–17 and Figs. 23–27. In 30 classification tri-
als, the first (or start) trial takes the largest time in all databases.
This is because the first (or start) trial needs to generate some ob-
jects for classification on Android side and server side, and for
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Fig. 18 Classification time of Australian on Moto Z. Fig. 19 Classification time of QSAR on Moto Z. Fig. 20 Classification time of Satimage on Moto Z.

Fig. 21 Classification time of MNIST on Moto Z. Fig. 22 Classification time of Gisette on Moto Z.

Fig. 23 Time details of Australian on Moto Z. Fig. 24 Time details of QSAR on Moto Z. Fig. 25 Time details of Satimage on Moto Z.

Fig. 26 Time details of MNIST on Moto Z. Fig. 27 Time details of Gisette on Moto Z.

establishment of network connection. Hence the overhead cost is
larger in the first step.

The upper regions in the bar graphs of Figs. 13–17 and
Figs. 23–27 correspond roughly to Csend(Nf )+Creceive(Nh). From
these figures we can see that, the proposed approach is not neces-
sarily the best choice if the time cost used for finding the hidden
layer outputs is relatively small compared with data transmission
cost.

4.3 Experiment 3: Investigation of Battery Consumption
We compared the battery consumption speeds of two methods

used in experiment 2. The smart phone classifies 1,000 data one
by one. After classification of each datum, we measured the bat-
tery level. The maximum battery level is 100%, and the minimum

is 0% which means no power. The GPS and blue-tooth were set to
off and the display brightness was not changed during the exper-
iment. The smart phone was not connected to cellular network.
The implementation environment, the used devices, the datasets,
and the ELM parameters were the same as those used in experi-
ment 2.

Table 5 shows the battery level reduction after 1,000 classifi-
cations. Because of the specifications, Android battery level can
be measured only by an integer number. For datasets with small
data, there is no significant difference between the two methods
(i.e., local and the proposed protocol). For the Gisette dataset,
however, the battery consumption of the proposed protocol is
smaller.

From Table 5, we can make a conclusion similar to the previous
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Fig. 28 Another framework.

Table 5 Battery Consumption:
Using only P/WCD V.S. Proposed protocol (%).

Dataset Nh Nexus 6 Moto Z play
Local Protocol Local Protocol

Australian 100 -0 -0 -0 -0
QSAR 60 -0 -0 -0 -0
Satimage 2,000 -0 -0 -0 -0
MNIST 2,000 -1 -1 -0 -0
Gisette 2,000 -5 -2 -1 -0

experiment from the point of view of energy consumption. That
is, the proposed approach can be useful for computationally
heavy tasks. For example, in the future, if we implement A-
agents using deep neural networks, the cost for data transmis-
sion will be smaller compared with that for computing the hidden
neuron outputs. In addition, next generation communication tech-
nology (e.g., the 5-th generation wireless communication or 5G)
may also provide strong support to the proposed method.

5. Conclusion

The purpose of our research is to implement multiple A-agents
in a single P/WCD (e.g., smart phone). To improve the com-
putation efficiency while preserving privacy, we have proposed
ELM-based privacy preserving protocol. The proposed protocol
has several features. The first one is to divide an A-agent into
two parts. This division makes it possible to protect the agent
model and at the same time to reduce the computational cost and
energy consumption on the P/WCD side. To protect the agent
model further, the proposed protocol uses an ELM to implement
each A-agent. Using the ELM, we can put a random matrix on
the server side, and this makes it difficult for any malicious per-
son to estimate the agent model based on information available
from the server. To protect the user data, the proposed protocol
uses the transposition cipher, which is very easy to implement in
a P/WCD. To improve the computational efficiency, we have also
proposed to share a large hidden layer matrix, so that for any re-
quest from any user, the server can respond without loading or
re-loading the matrix again and again. Finally, to protect the user
intention further, we have proposed to use a drop-key, to use the
results returned from the server selectively.

Experimental results show that our protocol keeps original
ELM classification accuracy score even if the same random hid-
den weight matrix is shared by different agents. We also con-
firmed that the protocol classification is faster and more energy
efficient when the dimension of the data is high or the number

of hidden neurons needed is large. Currently, we are trying to
implement the system using a real cloud server, and try to solve
some practical problems using the protocol.

It is interesting to notice that the proposed protocol can also
be extended easily to the framework shown in Fig. 28. In this
framework, the data collector (i.e., someone who collects and
distributes the data) and the end-user (i.e., P/WCD user) are dif-
ferent. The data collector (e.g., a local server in a smart home)
collects a datum, transforms it into a feature vector, encrypts the
vector using a trans-key, and sends the feature vector to the cloud
server along with a pos-key. The Server calculates the hidden
layer outputs, and sends them to the P/WCD of the end-user. The
P/WCD selects the results using a drop-key, and makes the final
decision using a β corresponding to the selected trans-key, pos-
key, and drop-key. This approach can protect user privacy and the
agent model from the server or some third person. The server can
see only the encrypted data, a random matrix, and their multipli-
cation results that contains some dummy elements. The P/WCD
can get the final decision without reducing accuracy.

Note that in the above framework, we need a method for shar-
ing i, j, and k (the indices of the keys). This can be easily imple-
mented if the data collector and the P/WCD share a common ran-
dom seed. That is, every time when a decision is needed, i, j, and
k are generated using the same random process based on the same
seed. Of course, we may also use some more advanced scheme
for key exchange between the data collector and the P/WCD.

The above framework will be used for the smart home project
conducted in our laboratory. The purpose of this project is to
support elderly people while protecting their privacy. In this situ-
ation, the data collector is supposed to be a local server in a smart
home (in which an elderly person lives alone), and the end-user
is supposed to be a trusted person (e.g., the doctor or the children
of the elderly person). If the data collected contain something un-
usual, the system can send a notification to some reliable person.
So far, we have investigated the life-cycles of a resident using one
infrared sensor [24], and studied methods for sensor array-based
location and activity recognition [25], [26]. In the next step, we
are going to implement the smart home system using the above
framework, so that the system can be more computationally effi-
cient and more trustable for the users.
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