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Abstract: Many companies and organizations have been collecting personal data with the aim of sharing it with part-
ners. To prevent re-identification, the data should be anonymized before being shared. Although many anonymization
methods have been proposed thus far, choosing one from them is not trivial since there is no widely accepted cri-
teria. To overcome this situation, we have been conducting a data anonymization and re-identification competition,
called PWS CUP, in Japan. In this paper, we introduce a problem appeared at the competition, named an excessive
anonymization, and show how to formally handle it.
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1. Introduction

Background: Many companies and organizations have become
aware of the potential competitive advantage they can obtain from
the use of big data. This situation has motivated them to share
their data with their partners. Because a possibility exists that
such data will contain private and sensitive information, it is of-
ten recommended that an anonymization method be applied to the
data before it is shared.

Although many anonymization methods have been proposed
thus far [5], [6], owing to a lack of widely accepted criteria for
anonymization methods, selecting one has been a difficult task.
To establish such criteria, among other purposes, we have held an
anonymization and re-identification competition in Japan, called
PWS CUP, since 2015.

There are two phases to PWS CUP, namely, anonymization

and re-identification. During the anonymization phase, the par-
ticipant is first given an original dataset, say T, and their task is
then to generate an anonymized dataset and a permutation, say
T′ and p, respectively. For ease of explanation, let us assume
that datasets T and T′ are represented by a matrix (or simply a
table), where each row corresponds to a record of the customer
(or user), and each column corresponds to an attribute. The key
issue of the evaluation framework employed in the competition
is the existence of permutation p. Intuitively, this permutation
p indicates the relationship between the positions of each cus-
tomer in T and that in T′. For example, in Fig. 1, X1, X2, and X3
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Fig. 1 An example of the anonymization.

are the attributes, and the permutation p is defined through each
arrow. That is, the arrow at the top indicates that the first col-
umn (0, 22, 15) of T is anonymized simply by rounding and then
mapped to the second column (0, 20, 20) of T′.

The anonymized dataset T′ is evaluated along with T and p

from the viewpoints of security and utility. Intuitively, this is per-
formed as follows:
• If T and T′ are a similar (or near), then the triplet (T,T′, p)

will be given a high score as the utility evaluation, and
• If predicting p given T and T′ is hard, then the triplet will be

given a high score as the security evaluation
Evaluation in this framework: Let us assume that T and T′ are
n ×m matrices, where n is the number of customers, and m is the
number of attributes. We denote the i-th column of T by Ti.

The evaluation based on the triplet (T,T′, p) has some seri-
ous difficulty, which we call an excessive swap or more generally
excessive anonymization. That is, there is a possibility that the
participant will anonymize the dataset as

T = T′, p(x) = (x mod n) + 1,where, x � 0,

which results in high scores. This occurs for the following rea-
sons:
• (Utility) Because T = T′, the utility evaluation will become

a high score, and
• (Security) For each i, because Ti = T′i , the natural re-

identification algorithms will output the identity function

c© 2018 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.26

Fig. 2 An example of excessive anonymization.

p′(i) = i for all i, where p′ is the prediction of p. That is, the
security evaluation will become a high score as well.

An example of an excessive anonymization is shown in Fig. 2.
From this example, it is easy to see that, for every i, because
Ti = T′i , the natural re-identification algorithm tends to predict p

as p(i) = i for every i.
At first glance this dataset seems to be “non-anonymized” and

hence worthless for an anonymization. However, another inter-
pretation is possible. That is, we can regard this anonymization
dataset as a result of swapping of two records Ti, T(i mod 4)+1 for
every i. Since a swap is one of the widely accepted anonymiza-
tion operations, it is difficult to strongly assert that this dataset
has not been anonymized. Thus, two choices may exist for an
interpretation of excessive anonymizations:
(1) the dataset is secure but not useful, or
(2) the dataset is insecure but useful.
In PWS CUP, we regard the dataset has order, that is, T =

(T1, . . . ,Tn). This makes two records

(T1, . . . ,Ti, . . . ,T j, . . . ,Tn)

� (T1, . . . ,T j, . . . ,Ti, . . . ,Tn)

if Ti � T j, and the interpretation (1) becomes possible. On the
other hand, if we regard that the dataset is a set T = {T1, . . . ,Tn},
then

{T1, . . . ,Ti, . . . ,T j, . . . ,Tn}
= {T1, . . . ,T j, . . . ,Ti, . . . ,Tn}.

The interpretation (2) is well suited in this case. In PWS CUP,
we assume that the dataset has order and hence our choice is (1)
naturally.
Contributions: In this paper, we show how to handle excessive
anonymization to avoid giving the triplet high scores. Our ap-
proach is as follows: (1) we show how to design the distance func-
tion d, which measures the distance between two datasets T and
T′, and (2) show how to choose threshold t, which becomes the
key factor in determining whether the given anonymized dataset
is excessive anonymization. More formally, if

dp(T,T′) = d(T,T′; p) ≥ t,

then we regard the triplet as excessive anonymization *1. In the

*1 Since we concentrate on the difference between Ti and T′p(i), we also
use p.

competition, the triplet satisfying the above inequality is not ac-
cepted as the proper anonymization and is rejected by the system.
To push this approach forward, we must determine the following:
( 1 ) a method to construct the distance function d, and
( 2 ) a method to choose the threshold t.
It is easy to see that choosing a correct t is not easy because if t

is extremely small, no secure anonymization methods exist. Our
contributions include a method to handle this difficulty.

2. Approach for Handling Excessive
Anonymization

2.1 Overview of PWS CUP 2016 and the Problem
2.1.1 Overview

In this section, the competition of PWS CUP 2016 is intro-
duced briefly. For further information, please see Ref. [4].

There are two phases, anonymization and re-identification, in
the competition. During the anonymization phase, the partici-
pant’s task is to anonymize the dataset T. Let us denote the
anonymized dataset as T′. In addition to T′, the participants have
to generate the permutation p to determine the relation between
T and T′. Let us assume that T and T′ are n × m matrices, where
n is the number of customers, and m is the number of attributes.
If Ti is anonymized and becomes T′j, then the permutation p sat-
isfies p(i) = j. For Fig. 1 as an example, X1, X2, and X3 are the
attributes, and the permutation p is defined through each arrow.
In this case, T1 becomes T′2, T2 becomes T′3, T3 becomes T′4, and
T4 becomes T′1 and hence p(i) = (i mod 4) + 1.

In the re-identification phase, each participant tries to guess
other participants’ p’s. The security is essentially evaluated as

|{p(i) = q(i) | 1 ≤ i ≤ n}|
n

,

where q is the guess submitted by other participants. The util-
ity evaluation can be defined by the distance between T and T′.
For example, the difference between RFM (Recency, Frequency,
Monetary) analysis of T and T′ was used in the competition [4].

As we have explained in Section 1, this framework has a prob-
lem to overcome. Let us consider a triplet (T,T′, p) such that
T = T′ and p being a random permutation. Then, it is hard
for other participants to guess p since p is random. Hence, the
dataset T′ is evaluated as secure. Moreover, the utility evalua-
tion becomes a high score because T = T′. We call this type of
anonymizations as excessive anonymizations and our motivation
in this paper is defeating these problematic anonymizations.
2.1.2 Typical Excessive Anonymizations

Let us consider a triplet (T,T′, p) such that T = T′. In PWS
CUP, the following powerful excessive anonymizations cause the
problem:
• (Shift-type excessive anonymization) p = pshift(i) = (i mod

n) + 1
• (Random-type excessive anonymization) p = prandom is the

random permutation on {1, . . . , n}.
There are many possible extensions to the above types of exces-
sive anonymization. For the case that every Ti j is real, one of the
simplest extensions is that for every i, j

T′i j = Ti j + εi j (1)
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Fig. 3 Two Approaches.

Fig. 4 Variant of the shift-type anonymization.

with the above p’s, where each εi j is a small real number. Intu-
itively, we say that (T,T′, p) is an excessive anonymization if

(T1, . . . ,Tn) and (T′p(1), . . . ,T
′
p(n))

are “too far” from each other. In this paper, we discuss how to
formally determine the meaning of the term “too far.”

2.2 Two Approaches
Let T′p(i) be an anonymized record of Ti, d(Ti,T′p(i)) be their

distance, and let t′, t be any non-negative real numbers thresh-
olds, where t = n × t′.

There seem to exist at least two approaches to defeat excessive
anonymization. For both approaches, the key ingredient is view-
ing each Ti as a point in a particular space. In Fig. 3, each point
Ti is mapped to the space. With this figure, we can view the shift-
type excessive anonymization as the swapping of T1 to T2, T2 to
T3, and so on. To reject the excessive anonymizations, we have
at least the following two approaches:
• (Approach I) Determine T′p(i) as an excessive anonymized

record if i and j exist such that i � j and

d(T′p(i),T j) ≤ t. (2)

The intuition of this approach is shown in (1) of Fig. 3.
• (Approach II) Determine T′p(i) as an excessive anonymized

record if

d(T′p(i),Ti) > t.

The intuition of this approach is shown in (2) of Fig. 3.
At first glance, Approach I may seem better than Approach II.
However, this approach seems to have potential difficulty; for
example, its naı̈ve implementation of this approach results in
accepting the variant of the shift-type excessive anonymization
shown in Fig. 4. That is,

Fig. 5 The difference between strict and average.

• (step 1) apply the shift-type excessive anonymization to the
dataset, and then

• (step 2) increase the distance so as not to satisfy Eq. (2).
The resulting anonymized dataset seems to obtain a high score
for the security and utility evaluations. On the other hand, if the
method based on Approach II is implemented in our system, the
system can then reject all of these anonymized datasets. Intu-
itively, this is because the space for the anonymization is limited
compared to Approach I. Hence, our choice is Approach II.
Strict or Average: If Approach II is chosen, then there are two
choices for the consideration:
• (Strict) If there exists Ti such that

d(Ti,T′p(i)) > t′,

then determine this anonymized dataset as excessive
anonymization (see the upper half of Fig. 5).
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• (Average) If the average is bigger than t′, that is
∑

1≤i≤n

d(Ti,T′p(i)) > t = n × t′, (3)

then determine this anonymized dataset as excessive
anonymization (see the lower half of Fig. 5).

Thus, if “strict” is chosen, no anonymized record goes beyond
threshold t′, as shown in the upper half of Fig. 5. On the other
hand, if “average” is chosen, then although some of the records
can go beyond the threshold, their average does not, as shown in
the lower half of Fig. 5. In other words, if we choose “strict”, then
our system can reject all excessive swapping. However, because
the swapping is one of the anonymization operations, we chose
the “average” in this paper.
Summary of this section: Our approach is based on Approach
II, and determines whether the given dataset is an excessive
anonymization based on the “average”. Based on this approach,
we consider how to design the distance function d and determine
the threshold t′.

3. Design of Distance Functions

Let T be the set of all possible non-anonymized and
anonymized records, i.e., Ti,T′i ∈ T for all i. Let d : T×T → R

+

be a distance function, where R
+ is the set of non-negative real

numbers. Although the proposal in this paper does not depend
on the specific distance functions, the cardinalities may be as fol-
lows:
Euclid distance: If each row in T is the customer’s location,

then we can view the attributes X1 and X2 as the longitude
and latitude, respectively. When Ti = (x1, x2), T′i = (x′1, x

′
2),

then the Euclidian distance

dE(Ti,T′i ) =
√

(x1 − x′1)2 + (x2 − x′2)2

can be considered.

Jaccard distance: Let A, B be multi-sets. Then the Jaccard in-
dex J for the multi-sets is defined by

J(A, B) =
|A ∩ B|
|A ∪ B| . (4)

Further, the Jaccard distance is defined by

dJ(A, B) = 1 − J(A, B).

We can employ this distance function when each record of T
is the multi-set. For example, Ti is a set of gifts bought by
customer i.

The distance between the non-anonymized and anonymized
records of customer i is defined by d(Ti,T′p(i)). Further, the dis-
tance between a non-anonymized T, and anonymized T′ is de-
fined by

d(T,T′; p) =
∑

1≤i≤n

d(Ti,T′p(i)). (5)

4. How to Determine the Threshold

4.1 Basic Properties of the Distance Function
To determine the threshold, we focus on powerful excessive

anonymization such as those introduced in Section 2.1. To do

so, we estimate the amount of t = min(d(T,T′; p)) for the case
of T = T′. However, for “all” possible p’s, min(d(T,T; p)) = 0
because p may be an identity function. Hence to estimate t, the
number of fixed points

Re(p) = |{p(i) = i}|

is considered and we then concentrate on estimating

sexact(r) = minp s.t.Re(p)≤r(d(T,T; p)) (6)

according to each integer r ≥ 0.
Remark 1. The readers should note that the number of fixed

points of the permutation pshift used in the shift-type excessive

anonymization is zero because pshift(i) � i for all i. Thus, if we

know sexact(0) and assign the threshold t as t < sexact(0) then we

can detect any shift-type excessive anonymization. Moreover, we

can “expect” that inequality (3) works with (T,T′, pshift) even if

T and T′ are close in the sense of Eq. (1) with approximately the

same t.

For the property of sexact(r), we have a simple but useful
lemma:
Lemma 1. For any positive integer r, sexact(r − 1) ≥ sexact(r).

Proof. Recall that from the definition of Eq. (6),

sexact(r − 1) = minp s.t.Re(p)≤r−1(d(T,T; p)),

sexact(r) = minp s.t.Re(p)≤r(d(T,T; p)).

Since

{p | Re(p) ≤ r − 1} ⊆ {p | Re(p) ≤ r},

we have sexact(r − 1) ≥ sexact(r). �

Our contribution comes from the following simple to prove
theorem:
Theorem 1. For any t, if Re(p) ≤ r and t < sexact(r), then

d(T,T; p) > t. (7)

Proof. From the definition of sexact(r) in Eq. (6),

d(T,T; p) ≥ sexact(r).

Further, from the condition of the theorem,

sexact(r) > t.

Therefore, d(T,T; p) > t. �

Thus, if we determine a triplet (T,T, p) as excessive
anonymization with t satisfying t < sexact(r), then since

t < sexact(r) ≤ sexact(r − 1) ≤ . . . ≤ sexact(0),

the triplet using the permutation p′ such that Re(p′) ≤ r is also
judged as an excessive anonymization.
Remark 2. With an excessive anonymization, when the permuta-

tion p with Re(p) = r is used, then a “natural” re-identification

algorithm can re-identify r customers. Therefore, if the num-

ber of fixed points Re(p) becomes bigger, it becomes insecure.

For example, if p with Re(p) = 40 is employed, then based on

the re-identification algorithm, 40 or more customers will be re-

identified.
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Table 1 The relation between slower(TC400, r)/400 and the number of fixed points r.

num. of fixed points r slower(TC400, r)/400 Remarks

99 0.64352876022

47 0.763481675361 The expectation of the number of fixed points with
multi-random-type excessive anonymization

19 0.829107320761

1 0.872342498246 The expectation of the number of fixed points with
random-type excessive anonymization

0 0.87483931124 sexact(0) ≈ 0.89 × 400 (See Section 4.3.1), The
number of fixed points with shift-type excessive
anonymization

Fig. 6 The relation between Re(p) = r and slower(TC400, r)/400.

4.2 How to Estimate the Minimum of sexact(r) According to r
Our purpose is to estimate sexact(r). However, as we will men-

tion in Remark 3, computing sexact(r) seems difficult. Hence in
this section, we show how to estimate the lower bound, slower(r),
of sexact(r).

To estimate the lower bound, sexact(r) is first expanded as fol-
lows:

sexact(r) = minp s.t.Re(p)≤r(d(T,T; p))

= minp s.t. Re(p)≤r(d(T1,Tp(1)) + d(T2,Tp(2))

+ · · · + d(Tn,Tp(n))).

For every j, mdis j is defined as

mdis j = min1≤k≤n, j�kd(T j,Tk).

That is, for every T j, the nearest Tk is taken. Further, {mdis j}1≤ j≤n

are arranged as:

mdis j1 ≤ mdis j2 ≤ . . . ≤ mdis jn .

Then, as the lower bound of sexact(r), we have

sexact(r) ≥ slower(r) =
n−r∑
k=1

mdis jk (8)

for all 0 ≤ r ≤ n − 2 *2.
Application to the dataset of PWS CUP 2016: For PWS CUP
2016, d = dJ , and the dataset T was T = TC400, which is in fact
a subset of the dataset used in Ref. [1]. In TC400, there are 400
customers, whereas there are about 5,000 customers in the origi-
nal dataset. Within this setting, the lower bound (8) is computed
as shown in Table 1 and Fig. 6.

*2 Precisely, since sexact(n − 1) = sexact(n) = 0, we should remove the case
when r = n − 1.

As we explain later in Section 4.3.1,

sexact(TC400, 0) ≈ 0.891 × 400.

On the other hand, the lower bound derived from Eq. (8) becomes

slower(TC400, 0) = 0.8748 × 400.

Hence, within this dataset, the lower bound seems relatively tight.

4.3 Choice of Threshold t
In this section, we estimate the threshold based on the number

of fixed points used in a typical excessive anonymization, such as
the ones introduced in Section 2.1.
4.3.1 Shift-type Excessive Anonymization

As we noted previously, because the permutation used in a
shift-type excessive anonymization has a property that

∀i : p(i) � i,

we have

Re(p) = 0.

Hence, if threshold t is chosen such that t < slower(0) ≤ sexact(0)
and p satisfies Re(p) = 0, then the given triplet (T,T, p) is judged
as excessive anonymization.

Although computing sexact(r) seems difficult in general, we
know how to compute sexact(r) when r = 0. To compute sexact(0),
we introduce the symmetric matrix D whose elements are defined
as follows:

[Djk] =

⎧⎪⎪⎨⎪⎪⎩
d(T j,Tk) if j � k

∞ otherwise.

For example, D becomes

c© 2018 Information Processing Society of Japan
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D =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∞ 4 7 6
4 ∞ 3 2
7 3 ∞ 5
6 2 5 ∞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, p(1) = 2, and D1,2 = d(T1,T2) = 4 is the distance between
T1 and Tp(1). Hence, when

p(1) = 2, p(2) = 3, p(3) = 4, p(4) = 1,

d(T,T, p) = d(T1,Tp(1)) + · · · + d(T4,Tp(4))

= 4 + 3 + 5 + 6 = 18.

The minimum is sexact(0), which is the instance of the assignment
problem that can be solved using the Hungarian algorithm with a
time complexity of O(n3).
Remark 3. Although in Section 4.2 we showed how to compute

slower(r), we were unable to find an efficient algorithm which com-

putes sexact(r) unless r = 0. We believe this belongs to an NP-hard

problem, but do not know how to prove it.

Application to the dataset of PWS CUP 2016: By setting
T = TC400, and d = dJ as the input, the Hungarian algorithm
outputs

sexact(TC400, 0) = minp s.t.Re(p)≤0(d(TC400, TC400, p))

= 356.395595858

> 0.89 × 400.

Hence, our system can reject the shift-type excessive anonymiza-
tion by setting t = 0.89 × 400 ≥ slower(TC400, 0) = 0.8748 × 400,
as an example.
4.3.2 Random-type Excessive Anonymization

With excessive anonymization, choosing p randomly is useful
for making the re-identification difficult:

Algorithm 1: Random-type excessive anonymization� �
Input: T
Step 1. Choose random permutation p

Step 2. Output (T,T, p) as (T,T′, p)
� �
In this subsection, we estimate the number of fixed points when
p is chosen randomly. More precisely, we estimate

q∗(l) = Pr
p∈RPerm

[Re(p) ≤ l],

where Perm is a set of all the permutations on {1, . . . , n}. Here,
because the number of fixed points is equal to or less than l with
probability q∗(l), if threshold t is chosen such that sexact(l) > t,
then with a probability at least q∗(l), the output generated by the
above algorithm will be rejected by the system.

For the estimation of q∗(l), the corollary below is useful:
Corollary 1. If the permutation p on {1, . . . , n} is chosen ran-

domly, then the probability that the number of fixed points will be

exactly k is

Pr
p∈RPerm

[Re(p) = k] =
1
k!

n−k∑
i=0

−1i

i!
. (9)

Proof. The proof depends on the following theorem:
Theorem 2 (Extracted from Proposition 3.5 in Ref. [2]). The

number of permutations p on {1, . . . , n̂} such that Re(p) = 0 is

n̂∑
i=0

(−1)i

⎛⎜⎜⎜⎜⎝ n̂

i

⎞⎟⎟⎟⎟⎠ (n̂ − i)! = n̂!
n̂∑

i=0

(−1)i

i!
.

Hence, the number of permutations p such that Re(p) = k is

⎛⎜⎜⎜⎜⎝ n

n − k

⎞⎟⎟⎟⎟⎠ (n − k)!
n−k∑
i=0

(−1)i

i!
=

n!
k!

n−k∑
i=0

(−1)i

i!
. (10)

The corollary follows because the number of permutations is
n!. �

With this corollary, q∗(l) can be computed as

q∗(l) = Pr
p∈RPerm

[Re(p) ≤ l] =
l∑

k=0

Pr
p∈RPerm

[Re(p) = k], (11)

where each Prp∈RPerm[Re(p) = k] can be computed using Eq. (9).
Application to the dataset of PWS CUP 2016: By setting
T = TC400 (n = 400), d = dJ , and l = 19, Eq. (11) is computed
concretely as *3

q∗(19) = Pr
p∈RPerm

[Re(p) ≤ 19]

=

19∑
k=0

Pr
p∈RPerm

[Re(p) = k]

≈ 1 − 1
262
,

where l = 19 is chosen such that q∗(19) is close enough to 1. In
our case, we choose > 1 − 260 or > 1 − 250. Therefore, if we
set the threshold t such that t < slower(TC400, 19), then our sys-
tem can reject the random-type excessive anonymization with a
probability of at least q∗(19).
4.3.3 Multi Random-type Excessive Anonymization

In PWS CUP 2016, as the utility evaluation, there is ut-cmae2.
(Please see Ref. [4] for the detail.) To obtain a high score, em-
ploying excessive anonymization that takes this utility evaluation
into account is one of the best strategies if there is no mechanism
to reject it. In this section, we estimate the threshold t to defeat
this excessive anonymization.

First let us consider the subsets S1, . . . , Sc ⊂ {1, . . . , n} such that

{1, . . . , n} = ∪1≤k≤cSk,

∀k, j, s.t. k � j, Sk ∩ S j = ∅.

In addition, let us denote the procedure for choosing the permu-
tation on S j randomly as p j ∈R Perm(S j). Then, our next target is
estimating the threshold for rejecting the output of the following
algorithm.

Algorithm 2: Multi-random-type excessive anonymization� �
Input: T, S1, . . . .Sc

(For PWS CUP 2016, each Si is the subset of {1, . . . , n}
based on gender and nationality, which results in c =

47.)
Step 1. For every 1 ≤ j ≤ c, choose random permuta-

tion p j ∈R Perm(S j)
Step 2. Output (T,T, p) such that p(x) = p j(x) if x ∈ S j

� �
*3 This is the result of Python2.7 using Decimal, NumPy packages.
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Let us denote the probability that the output p generated by
Algorithm 2 satisfies Re(p) ≤ l by

q∗(l) = Pr
(p1 ,...,pc)∈R(Perm(S1),...,Perm(Sc))

[Re(p) ≤ l],

where p(x) = p j(x) if x ∈ S j. If t is chosen such that sexact(l) > t,
then with a probability at least q∗(l), the triplet generated by the
above algorithm will be rejected.

We can compute q∗(l) using the probability generating func-
tion. To do so, we firstly define q jk as

q jk = Pr
p j∈RPerm(S j)

[Re(p j) = k], |S j| = Nj,

and then focus on the following probability generating function:

G(x) =
∏

1≤ j≤c

(
q j0 + q j1x + q j2x2 + · · · + q jN j x

N j
)
.

Then, let us consider the expansion of G(x). The coefficient of
the degree k term of the expanded G(x) becomes

Pr[Re(p) = k],

where each q jk can be computed using Corollary 1. Thus, to com-
pute q∗(l), we firstly expand the equation as

q∗(l) =
l∑

k=0

Pr
(p1 ,...,pc)∈R(Perm(S1),...,Perm(Sc))

[Re(p) = k] (12)

and then compute each Pr[Re(p) = k] using the probability gen-
erating function.
Application to the dataset of PWS CUP 2016: By setting
T = TC400 (n = 400), and l = 99, Eq. (12) is computed con-
cretely as

q∗(99) =
99∑

k=0

Pr
(p1 ,...,pc)∈R(Perm(S1),...,Perm(Sc))

[Re(p) = k]

≈ 1 − 1
251
,

where the concrete value of N1, . . . ,Nc can be computed from
Ref. [4]. Also l = 99 is chosen such that q∗(99) > 1−260 or 1−250.
Therefore, by setting the threshold t as t < slower(TC400, 99),
with probability at least q∗(l), the multi-random-type excessive
anonymization will be rejected.
Summary of Section 4.1, 4.2 and 4.3: To reject shift-type,
random-type, and multi-random-type excessive anonymization
using our system from PWS CUP 2016, it is sufficient to choose t

satisfying t < slower(TC400, 99). As a concrete value, we can find

t = 0.64 × 400 < slower(TC400, 99) (13)

from Table 1.

4.4 Threshold Causing Anonymization Shortage
By setting a small threshold, we can reduce the chance of ex-

cessive anonymization. However, if the threshold is too small
there might be no secure anonymization. In this section, we esti-
mate such t.

To obtain the intuition regarding this, let us map each Ti to a
high dimensional space as shown in Fig. 7. For example, if each
record is anonymized so as to not go beyond the circle in Fig. 7,

Fig. 7 Anonymization shortage due to the small threshold.

an adversary can re-identify each i using Algorithm 3.

Algorithm 3� �
Input: T, T′

Step 1. For 1 ≤ k ≤ n, find k j = argmin jd(T j,T′k)
Step 2. Output (k1, . . . , kn)

� �
This is because the nearest anonymized record of T j is always
T′p(i).

More formally, let us denote the radius of circle as t′ = t
n . To

estimate t′, we consider the minimum distance

Min = min j,k s.t. j�kd(T j,Tk).

That is, if t′ satisfies Min > 2t′, then any two circles do not
cross each other, as shown in Fig. 7, and thus every record Ti

becomes re-identified through Algorithm 3. Therefore, t′ must
satisfy Min < 2t′ at least.
Application to the dataset of PWS CUP 2016: The minimum
distance of TC400 used in PWS CUP 2016 is

Min = min j,k s.t. j�kdJ(TC400 j, TC400k) ≈ 0.713362. (14)

Hence, t′ must satisfy

t′ > Min/2 ≈ 0.357.

Summarizing the results based on Eq. (13), the threshold t can be
chosen from within the following range:

0.357 × 400 < t ≤ 0.64 × 400 ≈ slower(TC400, 100). (15)

5. The Use Case: PWS CUP 2016

The dataset employed in PWS CUP 2016 [1] has many at-
tributes: invoice numbers, stock codes, customer IDs, invoice
dates and etc. To employ our proposal in PWS CUP 2016, only
customer IDs and stock codes are used, which means we regard
Ti as a set of gifts (stock codes) bought by customer i. Moreover,
the distance is measured by the Jaccard distance. As we have
noted, to prevent the shift-type, the random-type, and the multi-
random-type excessive anonymizations, it is sufficient to chose
the threshold 0.64 ∗ 400. We now demonstrate that this is true
by computer simulation. Figures 8, 9 and 10 show the frequency
of d(T,T, p)/400 during 10,000 trials in the setting of PWS CUP
2016, which is larger than 0.64 of Eq. (15) as we have expected.

It is easy to see that our proposal in this paper successfully re-
jects all the powerful excessive swaps introduced in Section 2.1.
Next, we are going to explain some of the proper anonymization
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Fig. 8 Measuring d(T,T, p)/400 with the shift-type excessive swap, where
p is chosen random such that Re(p) = 0.

Fig. 9 Measuring d(T,T, p)/400 with the random-type excessive swap.

Fig. 10 Measuring d(T,T, p)/400 with the multi-random-type excessive
swap.

methods still work. The candidacies of the anonymization meth-
ods for PWS CUP 2016 some of the authors of this paper consid-
ered were (i) the pseudonymization, and (ii) the perturbation on
the attribute “date.” Since we have only used the stock codes for
the measure of the excessive swaps, the participants can employ
(i) and (ii) without any penalty. Moreover, the participants can
employ any anonymization method without a penalty if the stock
codes are not modified too much.

6. Conclusion

In this paper, we explored an excessive anonymization. Our
contributions to this topic are methods for constructing the dis-
tance function and choosing the threshold. As we explained in
Section 2, Approach II does not reject all excessive anonymiza-
tion because a certain number of swap operations are allowed.
However, the number of swap operations can be controlled
through this approach. For PWS CUP 2016, Approach II to-
gether with “average” was in fact employed. In the competition,
the Jaccard distance is employed, threshold t becomes 0.7 × 400,
which is slightly larger than the inequality in Eq. (15).

Finally, we emphasize that the proposed method is not only
applied to the excessive anonymization problem in PWS CUP
2016 to derive the threshold but also applied to the excessive
anonymization problem in other similar settings.
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