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Abstract: Once malware has infected a system, it may lie dormant (or asleep) to control resource consumption speeds,
remain undetected until the time of an attack, and thwart dynamic analysis. Because of their aggressive and abnormal
use of sleep behavior, malware programs are expected to exhibit traits that distinguish them from other programs.
However, the details of the sleep behavior of real malware are not sufficiently understood, and the diversity of sleep
behavior among different malware samples or families is also unclear. In this paper, we discuss the characteristic sleep
behavior of recent malware and explore the potential for applying the features of sleep behavior to malware classifi-
cation. Specifically, we demonstrate that a wide variety of sleeps are executed by a set of malware samples and that
sleeps are a promising source of features for distinguishing between different malware samples. Furthermore, we show
that applying a learning algorithm to sleep behavior information can result in high classification accuracy and present
several examples of typical and rare sleep behaviors observed in the execution of real malware.
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1. Introduction

Malware programs may execute sleeps, both for similar rea-
sons as normal programs (such as waiting for an event), and
for reasons that are specific to malware (such as evading se-
curity systems). For example, malware can leverage a long
sleep to avoid being detected or cause a time-out in a dynamic
analysis performed by a security system. In addition, malware
can sometimes infer the existence of an analysis system, such
as a sandbox or a hypervisor, by measuring the difference in
the system time before and after sleep. Various studies have
found that modern malware execute anti-analysis operations—
operations that are carried out by the malware to evade being
analyzed [4], [5], [6], [9], [12], [13], [23], [26], [30], [33], [40].
One of the most frequently observed anti-analysis operations is
to go to sleep [4], [6], [26], [33], and many analysis or protection
systems are equipped with mechanisms to counteract obstructive
sleeps executed by malware [17], [27], [29], [35].

Considering the aggressive and abnormal use of the sleep func-
tion by malware, we can expect the sleep behaviors of malware
programs to be more characterizable than those of normal pro-
grams. However, the sleep behaviors of real malware have not
been comprehensively studied and are not fully understood. The
diversity of sleep behaviors across different malware samples or
families also remains unclear. Consequently, techniques for ac-
curately estimating the intent underlying individual sleep execu-
tions is still at its developmental stage. Such a technology can be
valuable, for example, to accelerate dynamic analysis by skipping
analysis-hindering sleeps and executing other sleeps precisely.
However, to the best of our knowledge, no state-of-the-art analy-
sis technology can distinguish between these two types of sleeps
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with reasonable accuracy.
The accurate detection and classification of sophisticated mod-

ern malware has long been a significant challenge, and methods
that improve accuracy are constantly required. A deeper under-
standing of the sleep behavior of malware is likely to aid our
comprehension of the sophisticated and complicated anti-analysis
operations used by modern malware and can therefore lead to
new techniques for malware detection or classification. While
the aspects of program behavior examined by traditional detec-
tion or classification techniques, such as file I/O and registry key
accesses, provide important clues into potentially malicious pro-
grams, the understanding of the sleep behaviors of such programs
can be significant for the exploration of new clues, and to inte-
grate the resulting findings into existing techniques.

In this paper, we describe the characteristic sleep behavior of
recently collected malware and classify malware samples based
on these characteristics. The goal of this study is to highlight the
diversity of sleep behavior and its potential for malware classifi-
cation. To this end, we first extracted information on API calls re-
lated to sleeps from the logs of the FFRI Dataset 2016 [21], which
is a dataset of dynamic analysis logs of Windows malware. We
then defined a set of features that are expected to prove effective
for classification of malware and calculated the feature values of
each malware sample using the extracted information. Example
features include the maximum amount of time to sleep, number of
calls to a sleep function, earliest call positions of a sleep function,
and types of API functions called just before or after sleeps. This
paper summarizes the feature values, which we believe uncover
the quantitative trends of sleeps executed by recent malware. We
hypothesize that the diversity among samples within the same
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malware family is smaller than that among samples from different
malware families. Thus, the similarity of sleep behaviors can be
leveraged effectively for malware classification. We supplied four
widely used learning algorithms (support vector machine (SVM),
random forest (RF), naive bayes (NB), and C5.0) with the fea-
ture values and malware family names and set up the algorithms
to create models for classifying malware samples using only the
feature values based on sleep behavior. Then, we measured the
precision and recall of the classification achieved by the models
in cross-validation tests. Our results show that RF was the best
of the algorithms in our experiments, achieving 83.3% precision
and 74.8% recall using only sleep-related information.

Although many studies have quantitatively investigated the
anti-analysis operations executed by malware [5], [6], [9], [12],
[13], [33], to the best of our knowledge, no study has yet exam-
ined the sleep behaviors of malware programs. Furthermore, no
study has attempted to classify malware samples through exten-
sive use of sleep information. Therefore, the novelty of this study
is twofold: (i) this is the first time that sleep behavior has been
used as a malware classification tool; (ii) promising classification
results based on the extensive use of sleep information are pre-
sented.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly describes the FFRI Dataset, and Section 3 intro-
duces background knowledge on sleep behavior concerned with
our study. Section 4 summarizes the measured feature values and
the classification results given by the learning algorithms. Sec-
tion 5 discusses some areas that require further attention, and
Section 6 describes related studies. Finally, Section 7 summa-
rizes this paper and briefly presents directions for future work.

2. The FFRI Dataset

The FFRI Dataset [21] contains dynamic malware analysis logs
obtained by FFRI, Inc., using Cuckoo Sandbox [17]. In this study,
we use the latest version (FFRI Dataset 2016) and choose logs
collected on Windows 10 (x64). The dataset contains the analysis
results of 8,243 malware samples collected from January–March
2016. All were judged as malware by more than 10 anti-malware
products. Each sample was executed for up to 90 s, and any mal-
ware process was terminated after 90 s had elapsed. The exe-
cution environment provided a network connection for the sam-
ples, and some of them successfully communicated with external
hosts. Table 1 presents some basic information of the dataset
used in this study. The dataset contains API call sequences of
benign processes of lbass.exe, and we first excluded such se-
quences from the dataset.

Table 1 Basic information on FFRI Dataset 2016 Windows 10 (x64).

Number of malware samples 8,243

Number of API functions used by
288

the entire set of malware samples

Number of API functions used
by one malware sample

Maximum: 140
Average: 47.5
Minimum: 0

Number of API calls invoked
by one malware sample

Maximum: 83,444
Average: 4,569
Minimum: 0

3. Sleeps

3.1 API Functions for Sleeps
Windows operating systems provide multiple API functions

for sleeps. Among them, NtDelayExecution is the only one
recorded in FFRI Dataset 2016. Sleep and SleepEx are higher-
level API functions for sleeps, and are not recorded. These
functions invoke NtDelayExecution, the arguments of which
are recorded by Cuckoo Sandbox. One of the arguments is the
amount of time to sleep (or simply sleep time) in milliseconds (the
resolution). A sleep time of zero can be set, and zero millisecond
sleeps are mainly used for voluntary thread context switches.

This study does not deal with sleeps that are virtually achieved
with another method. For example, if malware repeatedly calls a
time measurement function GetSystemTimeAsFileTime until a
predetermined amount of time has elapsed, it can sleep for that
amount of time. Calls to an I/O-related API function with a time-
out argument can also be used as a virtual sleep. Time-consuming
computations or a combination of timers and wait operations can
also be substituted for sleep, depending on the circumstances and
demands [43]. It is not straightforward to determine whether a
given API call sequence is for sleeps or for another purpose.
Considering such sleeps significantly complicates the analysis of
sleep behavior and obscures the findings. Understanding obvious
sleeps is sufficiently challenging, and this study focuses on these
clearer instances as the first step toward long-term research goals.

3.2 Purposes of Sleep
The major purposes of sleep operations for malware are listed

as follows. The first and second purposes are not specific to mal-
ware in that they are also relevant for general software, whereas
the others are specific to malware.
Control of resource consumption speeds Programs can sleep

to yield resources to other processes or threads. These sleeps
suppress an increase in CPU load or network load, and sup-
port malware in avoiding detection and preventing a de-
nial of service because of a high load. In some call se-
quences in the dataset, multiple name resolution requests
to DNS servers are executed at 1-s intervals. In other se-
quences, multiple NtGetContextThread calls are repeat-
edly invoked to obtain the status of another thread at inter-
vals of 10 ms. The malware may wish to obtain the status
to determine whether the execution of the thread is desir-
able. In other sequences, multiple GetFileAttributesW
calls to a non-existent file are repeatedly invoked at 5-s in-
tervals. The malware may be synchronizing with other pro-
cesses or threads based on the existence of the file.

Execution control and synchronization of threads A thread
can control the execution of other threads or synchro-
nize with other threads by suspending and resuming
the threads at certain intervals. In some call sequences,
a main thread repeatedly executes a sequence of in-
voking NtSuspendThread, NtDelayExecution, and
NtResumeThread for another thread. The combination of
NtSuspendThread and NtResumeThread forces the thread
to alternate between sleep and execution, and the times
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Table 2 Features of sleep behavior.

ID Name Definition

(1) maxtime Maximum sleep time provided to NtDelayExecution
(2) mintime Minimum sleep time provided to NtDelayExecution
(3) avetime Average sleep time provided to NtDelayExecution
(4) modetime Mode of sleep times provided to NtDelayExecution
(5) ntimekinds Number of distinct sleep times provided to NtDelayExecution
(6) maxchunktime Maximum of compound sleep times provided in a chunk
(7) minchunktime Minimum of compound sleep times provided in a chunk
(8) avechunktime Average of compound sleep times provided in a chunk
(9) modechunktime Mode of compound sleep times provided in a chunk
(10) nchunktimekinds Number of distinct compound sleep times provided in a chunk
(11) ncalls Number of NtDelayExecution calls
(12) nprocs Number of processes that call NtDelayExecution
(13) nthreads Number of threads that call NtDelayExecution
(14) nchunks Number of chunks
(15) maxchunksize Maximum chunk size
(16) unroundedratio Ratio of NtDelayExecution calls to which unrounded (nonzero last digit) sleep times are provided
(17) earliestsleep Earliest call position of NtDelayExecution in a call sequence among all threads
(18) maxsleepratio Maximum ratio of NtDelayExecution calls in a call sequence among all threads
(19) ninterrupts Number of NtDelayExecution calls interrupted by asynchronous procedure calls
(20) nsleepsatend Number of threads that execute NtDelayExecution at the end of the call sequence
(21) progression Whether a set of sleep times include an arithmetic sequence composed of at least ten numbers
(22) communication Whether a communication-related API (e.g., gethostbyname) is called just before or after a chunk
(23) window Whether a window-related API (e.g., GetForegroundWindow) is called just before or after a chunk
(24) thread Whether a thread-related API (e.g., NtSuspendThread) is called just before or after a chunk
(25) fileattr Whether a fileattr-related API (e.g., GetFileAttributesW) is called just before or after a chunk

provided to the NtDelayExecution calls work as the “time
slices” provided to the thread. In addition, execution of
extremely long sleeps can also be used to effectively wait
for an event.

Delitescence Malware can hide itself with a long sleep until
some condition triggers the start of its activity. Some mal-
ware avoid early detection by simply executing a long sleep,
and others execute a sleep in a polling loop, waiting for a
trigger to start an activity. The time bomb is a well-known
instance of malware delitescence. A recent example of mal-
ware that executes a long sleep is the KeRanger ransomware,
which first sleeps for three days and then executes its encryp-
tion routine [42].

Time-out of dynamic analysis Malware can execute a long
sleep to cause dynamic analysis to time-out. A time limit,
typically from a few minutes to several tens of minutes, is
often imposed on the duration of the analysis of the mal-
ware. Malware can evade the analysis of its critical program
parts by sleeping for an amount of time exceeding the time
limit. A recent example is the Neutrino POS-terminal trojan,
which executes a random-time sleep before it starts its ma-
licious routine, possibly to evade sandboxes [50]. Some call
sequences in the dataset seem to be directed toward delites-
cence or a time-out. In addition, the dataset contains a record
of sleeps that were skipped by the anti-sleep mechanism of
Cuckoo Sandbox. This mechanism skips some of the sleeps
attempted within the first 5 s of a process execution.
The purposes and typical operations of delitescence and
time-out of dynamic analysis are similar. Hence, they can
be identified identically. However, they can also be regarded
as distinct from the viewpoint of the expected durations of
sleep and the finishing triggers for the sleeps. The durations

of sleep required for delitescence are usually in the order of
days, whereas those for time-outs are in the order of min-
utes. Sleeps for delitescence can be ended with various trig-
gers including network communication, whereas triggers for
time-out are simpler, such as the passage of a certain amount
of time.

Detection of analysis systems Malware can detect time-
distorting operations executed by a dynamic analysis
system, such as sleep skips, by comparing the specified
sleep time and the actual time elapsed during the sleep [26].

4. Measurement

4.1 Calculation of Feature Values
4.1.1 Methods

Out of 8,243 malware samples, we selected 1,234 target
samples whose execution involves a process-wise cumulative
sleep time greater than or equal to 60 s. Cumulative sleep
time is the sum of sleep times provided to an argument of
NtDelayExecution. We consider that these samples are likely
to make more effective use of sleep than others.

Table 2 presents the features defined in this study. These fea-
tures were selected because, through an elaborate reading of call
sequences close to NtDelayExecution, we conjectured that dif-
ferent malware families are likely to exhibit diverse values for
these features.

We now explain several of these features. We refer to consec-
utive NtDelayExecution calls in each thread’s API calls as a
chunk of sleeps, or simply, a chunk. The size of a chunk is the
number of NtDelayExecution calls contained in the chunk. An
isolated NtDelayExecution call is regarded as a chunk of size
one. Figure 1 shows an example of call sequences in the dataset
that contain chunks. There are four chunks in this example: sizes
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Table 3 Feature values through all target malware samples.

Max Average Min

Maximum sleep time in each sample (ms) 2,728,163,227 6,654,420.6 5

Maximum sleep time in each sample (except extreme samples) (ms) 65,000 21,986.5 5

Minimum sleep time in each sample (ms) 240,000 13,738.4 0

Minimum sleep time in each sample (except extreme samples) (ms) 65,000 13,381.9 0

Average sleep time in each sample (ms) 1,364,201,613 2,396,366.5 5

Average sleep time in each sample (except extreme samples) (ms) 65,000 15,316.1 5

Average compound sleep time in each chunk in each sample (ms) 2,728,403,227 4,995,263.0 15

Average compound sleep time in each chunk in each sample (except extreme samples) (ms) 88,347 20,557.9 15

Maximum chunk size in each sample 15,118 504.8 1

Number of distinct sleep times in each sample 138 9.0 1

Number of NtDelayExecution calls in each sample 15,118 600.8 1

Number of chunks in each sample 5,184 60.2 1

Average of all sleep times in all samples (ms) 11,229.1

Average of all sleep times in all samples (except extreme samples) (ms) 189.8

Total number of distinct sleep times in all samples 2,636

Total number of NtDelayExecution calls in all samples 741,440

Total number of chunks in all samples 74,295

Fig. 1 API call sequence containing chunks.

1, 5, 4, and 1. Large chunks appear for various reasons. For ex-
ample, some malware use a sequence of short sleeps in order to
effectively execute a long sleep, because some analysis systems
skip the executions of long sleeps. We introduce the “unrounde-
dratio” feature because, in the dataset, a large number of samples
adhere to unrounded sleep times only and many other samples
adhere to rounded sleep times only. We introduce the “earliest-
sleep,” “maxsleepratio,” and “nsleepsatend” features because we
expect these to characterize specific malware purposes such as
delaying analysis, hiding until triggered, and attempting timing-
based sandbox detection. We introduce the “ninterrupts” feature
because interrupted sleeps can be related to some specific mal-
ware operations. The “progression” feature is used because some
malware samples invoke NtDelayExecution with successively
increasing sleep times, such as 0, 3, 6, . . . , 42, and 45 ms. We in-
troduce the “communication,” “window,” “thread,” and “fileattr”
features because they provide essential hints regarding the pur-
pose of the sleeps.

Table 4 Top 10 sleep times in terms of frequency of occurrences.

Sleep time # of occurrences # of samples # of families

50 ms 410,032 395 13
5 ms 149,714 32 7

10 ms 28,128 421 18
1 ms 22,220 46 8

25 ms 19,787 15 4
1,000 ms 17,548 566 28

100 ms 11,835 64 13
12 ms 10,233 64 7

5,000 ms 7,588 593 28
0 ms 6,547 128 24

4.1.2 Results
Table 3 summarizes the feature values calculated from the

logs of all target samples. The columns Max, Average, and
Min indicate the maximum, average, and minimum values, re-
spectively, calculated using the feature values of malware sam-
ples. We calculated two versions of values for several features.
The first version of the values was computed without any adjust-
ment, whereas for the second version of the values, we elimi-
nated the call sequences of three extreme samples that contain
NtDelayExecution calls with sleep times of 2,728,163,227 ms
(approximately 31 days), because these are much larger than the
other times.

The results show that the sleep times range widely from 0
to 2,728,163,227 ms, with numerous distinct sleep times used
(2,636 distinct values). The average of all sleep times in all sam-
ples except the extreme samples is 190.4 ms. Although the tar-
get samples were selected because of their long cumulative sleep
times, long sleeps such as a few seconds are not dominant in the
samples. However, there remains a possibility that many sam-
ples achieve substantively long sleeps by forming chunks of large
sizes. One sample uses 138 distinct sleep times. The maximum
chunk size is 15,118, with one sample continuously invoking a
significantly large number of NtDelayExecution calls.

We investigated the distribution of sleep times. Table 4 lists the
top 10 sleep times (in terms of frequency of occurrence) observed
in the target sample logs. The number of 50 ms sleeps is by far the
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largest, although 5,000 ms sleeps are used by the largest number
of malware samples. Sleeps of 1,000 ms and 5,000 ms are used
by the largest number of malware families, whereas 5 ms, 1 ms,
and 25 ms sleeps are frequently used by a relatively smaller num-
ber of malware samples or families. The use of 0 ms is not rare
and can be observed in many malware families. Overall, rounded
and small numbers such as 1, 5, 10, and 50 occur frequently.

4.2 Classification of Samples
4.2.1 Methods

We classified malware samples based on the feature values out-
lined above. The training data are vectors of feature values and
their labeling results, which associate each vector with the mal-
ware name determined by an anti-malware product. Although the
dataset contains the labeling results of many anti-virus products,
we chose a Microsoft product because of its global dominance.
We refer to the classification of samples according to Microsoft’s
anti-malware software, along with the names it uses to identify
the malware, as the Microsoft classification.

Many subsets of the investigated malware set have mal-
ware names from the same family in Microsoft’s malware
naming scheme [31]. For example, the set contains Tro-
jan:Win32/Matsnu.M and Trojan:Win32/Matsnu.O samples, both
of which are from the Trojan:Win32/Matsnu family. In this
scheme, the malware names are composed of different name
parts, referred to as type, platform, family, variant, and informa-
tion. In this study, we regard combinations of type, platform, and
family as malware (family) names, and consider samples with the
same malware name to be variants from the same family.

Among the abovementioned 1,234 samples, 147 were not de-
termined as malware by the Microsoft product. Hence, we ex-
clude these samples and use the remaining 1,087 in the study. The
number of samples belonging to each malware family is listed in
Table 5.

We randomly selected one sample from each malware family.
Table 6 presents the feature values of some of the randomly se-
lected representative samples, and Table 7 summarizes the fea-
ture values of all 1,087 samples used. The top rows in the tables
indicate the identification numbers of features and the leftmost
column in Table 6 indicates the identification numbers of malware
samples. The word “true” in the tables in this paper indicates the
satisfaction of the corresponding condition, whereas the single
period indicates that the condition was not satisfied. The Aver-
age’ and Max’ rows in Table 7 indicate the values calculated ex-
cluding the extreme samples described in Section 4.1.2. The vari-
ations in the values in the tables suggest that the sleep behavior
of the samples is significantly diverse. Nevertheless, distinguish-
ing between some pairs of samples using only these feature val-
ues is a difficult task. For example, all feature values of samples
12 and 13 coincide. The feature values of all 1,087 samples are
available at https://www.dropbox.com/s/1fc4w5ni1adp3gt/sleep
feature values 1087.csv?dl=0.

Next, we created classification models with four learning algo-
rithms: SVM, RF, NB, and C5.0. SVM [8], [16] represents input
data as points in space and creates a hyperplane to divide them
into two classes, maximizing the distances between the points

Table 5 Number of samples from each malware family.

Malware name # of samples

TrojanSpy:Win32/Ursnif 281
Worm:Win32/Gamarue 178
Trojan:Win32/Dynamer 147
TrojanDropper:Win32/Rovnix 74
Trojan:Win32/Skeeyah 70
Ransom:Win32/Crowti 40
Trojan:Win32/Tinba 40
Ransom:Win32/Teerac 30
Ransom:Win32/Isda 26
PWS:Win32/Fareit 25
Trojan:Win32/Bagsu 24
Trojan:Win32/Avkill 14
Trojan:Win32/Matsnu 14
TrojanDownloader:Win32/Dofoil 10
TrojanSpy:Win32/Skeeyah 10
Trojan:Win32/Bulta 8
VirTool:Win32/CeeInject 8
Backdoor:Win32/Fynloski 6
Backdoor:Win32/Qakbot 6
TrojanDownloader:Win32/Banload 6
5 malware families 3 each
13 malware families 2 each
29 malware families 1 each

Sum 1,087

and the hyperplane. The hyperplane then works as the classi-
fier of unknown data. An advantage of SVM is its significantly
high classification ability. RF [10] creates multiple decision trees
based on randomly sampled data. When it classifies unknown
data, it integrates the outputs from the trees and makes a decision
based on the integrated value. An advantage of RF is that it has
a mechanism to reduce the impact of overfitting. NB [18], [38]
computes a set of conditional probabilities that relate the occur-
rence probabilities of the input data and that of their classes, and
then creates a probabilistic classifier based on the values. Al-
though NB has the advantage of being simple and fast, its classi-
fication ability tends to be lower than that of advanced algorithms
such as SVM. C5.0 [36], [37] creates a decision tree using the
difference between the information entropy computed before and
after the introduction of a potential branch. An advantage of C5.0
is that it generates an intuitively understandable output.

The inputs to the algorithms are vectors of feature values ex-
tended with malware (family) names. We provided 1,087 feature
vectors, each of which has 25 feature values and one malware
name. The code for model creation and testing uses the R lan-
guage, with the kernlab package to implement the SVM, e1071
to implement RF and NB, and C50 to implement C5.0.

We evaluated the resulting classification models with cross-
validation tests in which we provided feature vectors to each algo-
rithm and had them label the samples represented by the vectors.
In the tests, we first excluded all malware families that contained
fewer than 10 samples, because these sets are too small for cross-
validation tests. The number of excluded samples was 104. We
then randomly partitioned the remaining 983 samples into four
subsets and conducted fourfold cross-validation. In each subtest,
three subsets were used as training data and the remaining subset
was used as test data. Finally, we had the models label samples in
the test data with the names of samples in the training data. The
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Table 6 Feature values of samples selected randomly from each malware family.

Malware name (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 TrojanDownloader:Win32/Banload 61,000 3,000 14,600.0 3,000 2 61,000 3,000 14,600.0 3,000 2
2 TrojanDropper:Win32/Rovnix 60,000 60,000 60,000.0 60,000 1 60,000 60,000 60,000.0 60,000 1
3 VirTool:Win32/CeeInject 60,000 60,000 60,000.0 60,000 1 60,000 60,000 60,000.0 60,000 1
4 Trojan:Win32/Bulta 60,000 60,000 60,000.0 60,000 1 60,000 60,000 60,000.0 60,000 1
5 Worm:Win32/Gamarue 60,000 15,000 37,500.0 60,000 2 60,000 15,000 37,500.0 60,000 2
6 TrojanDownloader:Win32/Dofoil 30,000 100 607.8 100 4 60,000 250 10,687.5 6,000 4
7 Backdoor:Win32/Qakbot 30,000 10 1,191.7 10 4 30,000 10 1,214.6 10 5
8 Trojan:Win32/Matsnu 24,000 4 236.0 12 11 83,000 11 7,809.1 5,000 15
9 Backdoor:Win32/Dodiw 20,000 0 866.5 300 11 20,000 0 866.5 300 11

10 TrojanSpy:Win32/Skeeyah 10,000 10,000 10,000.0 10,000 1 10,000 10,000 10,000.0 10,000 1
11 Trojan:Win32/Tinba 10,000 1 144.2 1 9 60,000 24 1,939.0 24 8
12 Ransom:Win32/Crowti 10,000 0 7,888.9 10,000 3 10,000 0 7,888.9 10,000 3
13 Trojan:Win32/Bagsu 10,000 0 7,888.9 10,000 3 10,000 0 7,888.9 10,000 3
14 PWS:Win32/Fareit 5,000 5,000 5,000.0 5,000 1 5,000 5,000 5,000.0 5,000 1
15 TrojanDownloader:Win32/Zemot 5,000 250 4,736.1 5,000 2 5,000 250 4,736.1 5,000 2
16 Ransom:Win32/Isda 5,000 100 2,869.6 5,000 2 5,000 1,000 4,714.3 5,000 2
17 Trojan:Win32/Dynamer 5,000 10 2,524.2 5,000 6 5,000 10 2,524.2 5,000 6
18 Trojan:Win32/Avkill 5,000 10 1,038.1 1,000 3 76,000 10 20,502.5 76,000 4
19 TrojanSpy:Win32/Ursnif 5,000 10 138.9 50 6 60,100 10 2,665.6 1,000 7
20 Trojan:Win32/Skeeyah 5,000 10 119.1 50 5 66,000 10 4,609.1 5,000 5
21 Ransom:Win32/Teerac 5,000 0 4,458.3 5,000 3 5,000 0 4,458.3 5,000 3
22 Backdoor:Win32/Kasidet 5,000 0 1,647.5 5,000 18 5,000 10 4,248.9 5,000 3
23 Backdoor:Win32/Fynloski 500 10 330.1 200 3 500 10 330.1 200 3
24 Ransom:Win32/Troldesh 100 100 100.0 100 1 78,700 78,700 78,700.0 78,700 1
25 Trojan:Win32/MultiInjector 25 25 25.0 25 1 70,500 70,500 70,500.0 70,500 1

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)

1 5 1 2 5 1 0% 40 1% 0 0 . . . . .
2 1 1 1 1 1 0% 153 0% 0 0 . . . . .
3 1 1 1 1 1 0% 411 0% 0 0 . . . . .
4 1 1 1 1 1 0% 410 0% 0 0 . . . . .
5 2 1 1 2 1 0% 133 0% 0 0 . . . . true
6 211 2 4 12 100 0% 4 40% 1 0 . . . . .
7 53 3 5 52 2 0% 18 8% 0 0 . . . . .
8 695 3 5 21 187 27% 2 99% 1 0 . true . true true
9 307 1 6 307 1 0% 3 46% 0 1 . true true . true

10 7 1 1 7 1 0% 430 1% 0 0 . true . . .
11 1,170 4 11 87 60 22% 2 49% 0 0 . true . true .
12 9 3 3 9 1 0% 163 1% 0 0 . true . . .
13 9 3 3 9 1 0% 163 1% 0 0 . true . . .
14 13 1 1 13 1 0% 2,009 1% 0 0 . true . . .
15 18 1 3 18 1 0% 27 3% 1 0 . true . . .
16 23 2 2 14 10 0% 10 10% 0 0 . . . . .
17 36 2 7 36 1 0% 1 48% 2 0 . true . true true
18 79 1 2 4 76 0% 34 34% 0 0 . . . . .
19 1,267 2 7 66 1,202 0% 1 100% 1 0 . true . true true
20 1,354 2 5 35 1,320 0% 1 100% 0 0 . true . true true
21 18 2 3 18 1 0% 126 3% 1 0 . true . . .
22 49 2 2 19 16 78% 1 9% 0 0 true true true . .
23 694 3 4 694 1 0% 1 33% 0 0 . true true . .
24 787 1 1 1 787 0% 300 72% 0 0 . . . . .
25 2,820 1 1 1 2,820 100% 60 98% 0 0 . . . . .

final precision and recall values were calculated by taking the av-
erage of the four values obtained in the subtests. If the diversity
of sleep behavior among variants in the same malware family is
small and the diversity among samples from different families is
large, then the models are likely to assign the correct names to
most samples.

The classification models are evaluated with micro-averages
and macro-averages of the precision and recall values. Here, pre-

cision is defined as the proportion of samples assigned the correct

malware names in each subset. Recall is defined as the proportion
of samples assigned the correct malware names in each subset
created by the Microsoft classification. Micro-averages of pre-
cision and recall are calculated using the sum of the number of
samples in each subset of the classification results, whereas the
macro-averages of precision and recall are the average values for
each subset. For the tests, the micro-average of precision and the
micro-average of recall are always the same.

We calculate both micro-averages and macro-averages because
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Table 7 Summary of feature values of target malware samples determined as malware by the anti-
malware product.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Average 2,532,442.9 14,095.1 209,145.2 17,107.4 8.6 2,558,460.3 15,797.8 648,208.3 2,534,410.4 4.0
Average’ 22,653.9 14,108.1 16,097.5 17,123.2 8.6 48,695.4 15,812.3 20,774.5 24,623.3 4.0
Median 10,000 10 1,750.2 1,000 4 60,000 11 5,000.0 5,000 4
Mode 5,000 10 60,000.0 50 1 60,000 10 60,000.0 5,000 1
Max 2,728,163,227 65,000 209,858,879.0 65,000 138 2,728,163,227 88,000 682,041,356.8 2,728,163,227 41
Max’ 65,000 65,000 65,000.0 65,000 138 88,694 88,000 88,347.0 88,694 41
Min 5 0 5.0 0 1 57 0 52.4 0 1

(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25)

Average 558.2 1.6 3.9 52.0 470.2 11% 201.6 47% 0.2 0.1
Average’ 558.7 1.6 3.9 52.1 470.6 11% 201.8 47% 0.2 0.1
Median 74 2 3 16 2 0% 7 36% 0 0
Mode 1 1 1 1 1 0% 1 100% 0 0
Max 15,015 5 102 1,485 15,015 100% 18,313 100% 2 29
Max’ 15,015 5 102 1,485 15,015 100% 18,313 100% 2 29
Min 1 1 1 1 1 0% 1 0% 0 0
True / False 6 / 1,081 572 / 515 58 / 1,029 516 / 571 390 / 697

Fig. 2 Results of cross-validation tests.

we intend to clarify the effect on results caused by the differ-
ence in the numbers of samples in each malware family. Because
the number of samples in each malware family is not uniform,
we consider not only the proportion of correct answers obtained
through the classification of all samples but also the proportion of
correct answers in each of the resulting sample sets and in each
of the Microsoft classification sample sets. The macro-averages
of precision and recall provide an indication of these proportions.
4.2.2 Results

The cross-validation test results are presented in Fig. 2. The
micro-averages of precision and recall exceeded 80% when using
any of SVM, RF, and C5.0. These results indicate that the sleep
behavior of malware samples is sufficiently diverse to distinguish
between many of them, and that the sleep behavior of a malware
sample is considerably correlated with that of its family. We be-
lieve that the precision and recall values resulting from these al-
gorithms indicate the strong potential for using sleep behavior
in malware classification. In contrast, NB provided the poorest
values; the micro-average and macro-average of precision were
less than 60% and the macro-average of recall was approximately
64%. RF was the best algorithm in terms of all measures. When
using RF, the micro-average of precision, macro-average of pre-
cision, and macro-average of recall were 83.3%, 80.0%, 74.8%,

respectively.
Table 8 shows the details of the classification from the four al-

gorithms. The indexes from (a) to (o), both in the top row and
in the leftmost column, represent different malware, the names of
which are indicated in the leftmost column. The top row indi-
cates the malware based on the Microsoft classification, whereas
the leftmost column indicates decisions by the corresponding al-
gorithm. In other words, each column contains the classification
decisions of the algorithm for the specific malware represented by
that column, and each row contains the breakdown of actual mal-
ware samples that the algorithm labels with the specific malware
name written in the leftmost cell of the row.

SVM, RF, and C5.0 could correctly label most samples of
Ursnif, Gamarue, Rovnix, Crowti, and Tinba. This successful
labeling greatly raises the micro-average of precision and re-
call because the dataset contains many samples of these mal-
ware families. By contrast, among such large malware families,
these algorithms incorrectly labeled many samples of Dynamer
and Skeeyah. They incorrectly identified Dynamer as Ursnif
or Skeeyah, and incorrectly identified Skeeyah as Ursnif or Dy-
namer. We speculate that many samples of Ursnif, Dynamer, and
Skeeyah have similar sleep behavior. In addition, NB provided
wrong labeling to many of the Gamarue samples; it incorrectly
identified 140 of 178 Gamarue samples as Rovnix. This classi-
fication error significantly lowers the micro-average of precision
and recall of NB. NB also incorrectly classified many samples
belonging to small families. All algorithms fared poorly in la-
beling Bagsu, providing incorrect classifications for most Bagsu
samples. It is important for future work to scrutinize the API call
sequences of the samples that were incorrectly labeled by the al-
gorithms, and to compare them with the sequence of the malware
families that the samples were incorrectly classified as.

Next, we present the results of the tests in which we varied the
threshold of cumulative sleep time to select target samples. The
purpose of these tests is to identify the effect of the threshold on
classification results. Table 9 shows the number of samples clas-
sified in the tests, and Fig. 3 shows the results. Overall, the effect
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Table 8 Classification of each malware family.

(a) SVM

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) Sum
(a) TrojanSpy:Win32/Ursnif 278 0 31 0 12 0 0 0 0 0 0 0 0 0 0 321
(b) Worm:Win32/Gamarue 0 165 5 4 8 0 0 0 0 0 13 0 0 0 1 196
(c) Trojan:Win32/Dynamer 3 7 80 0 14 1 1 0 1 7 4 1 0 5 6 130
(d) TrojanDropper:Win32/Rovnix 0 1 1 70 5 0 0 0 0 0 0 0 0 0 0 77
(e) Trojan:Win32/Skeeyah 0 1 19 0 22 0 0 0 0 2 0 0 0 0 3 47
(f) Ransom:Win32/Crowti 0 0 1 0 0 39 0 0 0 0 1 0 0 0 0 41
(g) Trojan:Win32/Tinba 0 0 0 0 5 0 39 0 0 0 2 0 0 0 0 46
(h) Ransom:Win32/Teerac 0 0 2 0 1 0 0 30 0 0 1 0 0 2 0 36
(i) Ransom:Win32/Isda 0 3 1 0 2 0 0 0 24 0 2 1 0 2 0 35
(j) PWS:Win32/Fareit 0 0 2 0 0 0 0 0 0 16 0 0 0 0 0 18
(k) Trojan:Win32/Bagsu 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 2
(l) Trojan:Win32/Avkill 0 0 1 0 1 0 0 0 0 0 0 12 0 0 0 14
(m) Trojan:Win32/Matsnu 0 0 3 0 0 0 0 0 0 0 0 0 14 0 0 17
(n) TrojanDownloader:Win32/Dofoil 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 3
(o) TrojanSpy:Win32/Skeeyah 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum 281 178 147 74 70 40 40 30 26 25 24 14 14 10 10 983

(b) RF

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) Sum
(a) TrojanSpy:Win32/Ursnif 274 0 27 0 12 0 0 0 0 0 0 0 0 0 1 314
(b) Worm:Win32/Gamarue 0 171 6 0 8 0 0 0 1 0 15 0 0 0 0 201
(c) Trojan:Win32/Dynamer 7 1 87 0 10 0 1 0 1 2 1 0 1 2 4 117
(d) TrojanDropper:Win32/Rovnix 0 0 1 74 5 0 0 0 0 0 0 0 0 0 0 80
(e) Trojan:Win32/Skeeyah 0 1 15 0 27 0 2 0 0 2 1 2 0 0 3 53
(f) Ransom:Win32/Crowti 0 0 2 0 1 40 0 0 0 0 1 0 0 0 0 44
(g) Trojan:Win32/Tinba 0 0 0 0 3 0 37 0 0 0 2 0 0 0 0 42
(h) Ransom:Win32/Teerac 0 0 1 0 0 0 0 30 0 0 1 0 0 0 0 32
(i) Ransom:Win32/Isda 0 3 0 0 1 0 0 0 23 0 2 0 0 0 0 29
(j) PWS:Win32/Fareit 0 0 1 0 2 0 0 0 0 21 0 0 0 0 0 24
(k) Trojan:Win32/Bagsu 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 3
(l) Trojan:Win32/Avkill 0 0 0 0 1 0 0 0 0 0 0 12 0 0 0 13
(m) Trojan:Win32/Matsnu 0 0 3 0 0 0 0 0 0 0 0 0 13 0 0 16
(n) TrojanDownloader:Win32/Dofoil 0 0 2 0 0 0 0 0 0 0 1 0 0 8 0 11
(o) TrojanSpy:Win32/Skeeyah 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 4
Sum 281 178 147 74 70 40 40 30 26 25 24 14 14 10 10 983

(c) NB

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) Sum
(a) TrojanSpy:Win32/Ursnif 279 0 32 0 12 0 0 0 0 0 0 0 0 0 0 323
(b) Worm:Win32/Gamarue 0 31 2 0 3 0 0 0 0 0 3 0 0 0 0 39
(c) Trojan:Win32/Dynamer 0 0 28 0 2 0 0 0 0 0 0 0 0 1 0 31
(d) TrojanDropper:Win32/Rovnix 0 140 7 72 13 0 0 0 0 0 11 0 0 0 0 243
(e) Trojan:Win32/Skeeyah 0 0 11 0 0 0 0 0 0 1 0 0 0 0 0 12
(f) Ransom:Win32/Crowti 0 0 4 0 0 39 0 0 0 0 1 0 0 0 0 44
(g) Trojan:Win32/Tinba 0 0 1 0 5 0 39 0 0 0 2 0 0 0 0 47
(h) Ransom:Win32/Teerac 0 1 2 0 4 1 0 30 13 7 1 0 0 0 0 59
(i) Ransom:Win32/Isda 0 2 0 0 0 0 0 0 13 8 2 0 0 0 0 25
(j) PWS:Win32/Fareit 0 0 13 1 6 0 0 0 0 7 0 0 0 0 1 28
(k) Trojan:Win32/Bagsu 0 3 4 0 1 0 0 0 0 0 1 0 0 0 3 12
(l) Trojan:Win32/Avkill 0 0 1 0 4 0 0 0 0 1 0 14 0 0 1 21
(m) Trojan:Win32/Matsnu 0 0 3 0 1 0 0 0 0 0 0 0 14 0 0 18
(n) TrojanDownloader:Win32/Dofoil 0 1 11 1 3 0 1 0 0 0 2 0 0 9 0 28
(o) TrojanSpy:Win32/Skeeyah 2 0 28 0 16 0 0 0 0 1 1 0 0 0 5 53
Sum 281 178 147 74 70 40 40 30 26 25 24 14 14 10 10 983

(d) C5.0

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l) (m) (n) (o) Sum
(a) TrojanSpy:Win32/Ursnif 277 0 28 0 10 0 0 0 0 0 0 0 0 0 1 316
(b) Worm:Win32/Gamarue 0 169 6 0 8 0 0 0 0 0 15 0 0 0 0 198
(c) Trojan:Win32/Dynamer 4 1 80 1 17 0 1 0 0 1 1 0 2 3 6 117
(d) TrojanDropper:Win32/Rovnix 0 0 2 73 5 0 0 0 0 0 0 0 0 0 0 80
(e) Trojan:Win32/Skeeyah 0 2 13 0 18 0 0 0 1 3 0 0 0 0 2 39
(f) Ransom:Win32/Crowti 0 0 1 0 0 40 0 0 0 0 1 0 0 0 1 43
(g) Trojan:Win32/Tinba 0 0 0 0 5 0 39 0 0 0 2 0 0 0 0 46
(h) Ransom:Win32/Teerac 0 0 3 0 0 0 0 30 0 0 1 0 0 0 0 34
(i) Ransom:Win32/Isda 0 3 1 0 2 0 0 0 25 0 2 0 0 0 0 33
(j) PWS:Win32/Fareit 0 0 4 0 2 0 0 0 0 20 0 0 0 0 0 26
(k) Trojan:Win32/Bagsu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(l) Trojan:Win32/Avkill 0 0 0 0 1 0 0 0 0 1 1 14 0 0 0 17
(m) Trojan:Win32/Matsnu 0 0 3 0 0 0 0 0 0 0 0 0 12 0 0 15
(n) TrojanDownloader:Win32/Dofoil 0 0 3 0 0 0 0 0 0 0 1 0 0 7 0 11
(o) TrojanSpy:Win32/Skeeyah 0 3 3 0 2 0 0 0 0 0 0 0 0 0 0 8
Sum 281 178 147 74 70 40 40 30 26 25 24 14 14 10 10 983
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Table 9 Number of samples classified.

Threshold 10 20 30 40 50 60
# of samples 1,764 1,600 1,375 1,149 1,068 983

Threshold 70 80 90 100 110 120
# of samples 637 543 456 442 427 413

Fig. 3 Effects of varying the threshold of cumulative sleep time.

of varying the threshold tends to be large when the threshold is
small, while the values tend to become stable when the thresh-
old is large, particularly for thresholds larger than 90 s. Another
trend is that the values gradually become better with increases
in the threshold. Naturally, when the threshold becomes larger,
the classification becomes easier because a large threshold causes
target samples to include only extreme cases in terms of sleep be-

havior. We believe that a threshold of 60 s is a reasonable choice
to limit the parameter space and conduct further tests in which
other parameters are varied.
4.2.3 Comparison with Existing Method

We compared the ability to classify malware based on sleep-
related information with an existing method that also learns
past API call sequences and makes a judgment on unknown se-
quences. We chose the N-gram method as the comparison coun-
terpart because it is well known, and a significant body of re-
search has reported its effectiveness in malware classification and
detection [2], [11], [41], [47], [48]. This method is also com-
posed of a training phase and a classification phase. In the train-
ing phase, it creates a set of N-grams out of a given API call
sequence. N-grams are subsequences of the original sequence
whose lengths are N. A feature vector, consisting of bits, each
of which is associated with a distinct N-gram created from all
samples used in the training phase, is associated with each mal-
ware sample. A bit is set to 1 if the associated N-gram is found
in the set of N-grams of the malware sample, and 0 otherwise.
This method provides learning algorithms with pairs of a feature
vector and its malware name in the Microsoft classification as the
training data. It then creates models to label feature vectors with
malware names. In the classification phase, it labels unknown
feature vectors with predicted malware names using the models.
As done in experiments described in previous work [25], we com-
bine consecutive calls of the same API function into one call.

In addition to the sleep-based method and the N-gram-based
one, we implemented a third method, which is the integration of
these two methods. This method associates each malware sample
with a feature vector that is a concatenation of the feature vector
of the sleep-based method and the feature vector of the N-gram
method.

As described in Section 1, we do not intend to substitute sleep
behavior alone for rich information sources such as file I/O and
registry key accesses. Instead, we consider that it is critical to
integrate the findings of sleep studies with existing methods. Be-
cause a sandbox can easily monitor resource accesses, malware
developers have sufficient motivation to suppress or disguise them
for evasion. Therefore, we consider that exploring new clues for
malware classification and detection is extremely important. We
introduce the integration method as an example of methods that
integrate sleep information with well-established sources of in-
formation for malware detection.

We compared the abovementioned three methods in cross-
validation tests, whose configuration is the same as the first test
(60 s threshold and 983 samples). We varied the value of N be-
tween one, two, and three. In this paper, however, we present
the results obtained when N was set to three, because the over-
all trends were the same for the three configurations. Figure 4
shows the comparison of the three methods. The labels “Sleep
only,” “N-gram only,” and “Sleep + N-gram” in the figures rep-
resent the sleep-based, N-gram, and integrated methods, respec-
tively. The difference in precision and recall values between the
methods was small in SVM, RF, and C5.0. When using NB,
the N-gram method and integration method performed signifi-
cantly worse than the sleep method. We cannot determine the
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Fig. 4 Comparison with the N-gram method.

best method from these results alone because no method con-
sistently outperformed the others. The sleep-based method was
the best in some cases, the N-gram-based method was the best
in some cases, and the integration method was best in the other
cases. We emphasize here that the sleep-based method could ex-
ceed an existing method in certain cases, and that the integration
of sleep information into an existing method could also improve
the classification ability in certain cases. In addition, sleep infor-
mation alone provided classification ability comparable to a set
of N-grams that includes all subsequences of a whole API call
sequence.
4.2.4 Reasons for Classification Errors

The classification errors are caused by a complex combination

of reasons, and for now we refrain from identifying the primary
reason. Instead, we would like to mention that one probable rea-
son is that sleep behavior differs significantly between some sam-
ples within the same malware family. We explain this with an
example. Table 10 lists the partial feature values of 15 out of
147 Trojan:Win32/Dynamer samples. Although all have the same
malware name, their feature values are quite diverse. Moreover,
these samples behave differently in terms of accessed files, reg-
istry keys, and network addresses. For example, no pair of sam-
ples reads the same set of registry keys in the execution of the
main process. It is arguable whether it is reasonable and/or ben-
eficial to classify these samples into the same family. However,
prudent judgment is required on this matter, because there may
be a class of malware that prepares multiple patterns of operation
and randomly chooses one of them at runtime.

More validation is needed to understand whether it is appro-
priate to completely trust the labeling assigned by the Microsoft
product and consider this the ground truth. In terms of API
call sequences, samples that behave quite similarly have differ-
ent malware names, and the sleep behavior of samples with the
same malware name differs significantly. The same phenomena
can be observed in the labeling given by other anti-malware prod-
ucts, and we have not found one whose labeling seems entirely
reasonable.

In addition, there is considerable dispersion between the
labeling assigned by different products. For example, a
Symantec product further classifies 281 samples of Tro-
janSpy:Win32/Ursnif into seven families. The selection and/or
composition of “ground-truth data” from multiple anti-malware
products is an essential problem that has been extensively stud-
ied [3], [28], [39].
4.2.5 Case Study: C5.0 Decision Trees

Finally, we briefly explain which features were regarded as ef-
fective by the learning algorithms. We adopt C5.0 as a sample
case. C5.0 creates decision trees for classification, and these pro-
vide a clue as to the relative importance of each feature.

Figure 5 shows the decision tree displayed by the C5.0 pro-
gram using the whole training data (1,087 vectors of feature val-
ues). Equality and inequality expressions in the figure are branch
conditions. When classifying samples, the user follows the tree
from the root node to a leaf node, branching according to the con-
ditions. Each leaf node is associated with an abbreviated malware
name, which is assigned to samples classified into the leaf. The
numbers in the parentheses after the malware names represent the
result of the training-data test, which the C5.0 program performs
by default. In the test, C5.0 first creates a tree from the given
training data, and then classifies the training data, providing the
data again to the resulting tree. The training-data test supports
users to estimate how precisely the tree can classify data that are
similar to the training data. The numbers on the left-hand side in
the parentheses indicate the number of samples classified into the
corresponding leaf, whereas the numbers on the right-hand side
indicate the number of incorrectly classified samples. The deci-
sion tree in Fig. 5 classifies the given samples into 34 malware
families using 22 features. It does not classify samples into the
remaining 33 malware families that are not associated with any
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Table 10 Feature values of some Trojan:Win32/Dynamer!ac samples.

(1) (2) (3) (4) (5) (11) (13) (14) (15) (16) (17) (18) (19) (22) (23) (24) (25)

2,728,163,227 0 209,858,879 20 4 13 2 4 9 0.25 1 0.16 1 . . true .
60,000 60,000 60,000 60,000 1 1 1 1 1 0 669 0 0 . . . .
60,000 60 189.4 60 6 1,009 4 1,009 1 0 2 0.5 0 true true . true
30,000 2,000 24,400 30,000 2 5 3 5 1 0 67 0.01 0 . . . true
30,000 0 1,334.6 0 88 147 6 62 41 0.91 1 1 0 . . true .
25,000 2,500 3,365.4 2,500 2 26 1 26 1 0 342 0.02 0 true . . .
20,000 4 267.3 100 11 601 5 21 135 0.18 2 0.99 1 true . true true
14,835 6 1,011.7 12 91 217 5 12 124 0.9 2 0.9 0 true . true .
10,000 1,000 3,185.2 1,000 4 27 2 27 1 0 17 0.33 0 . true true .

5,000 50 128.5 50 4 1,485 4 1,485 1 0 17 0.05 1 true . . .
3,000 3,000 3,000 3,000 1 27 1 27 1 0 7,034 0 0 . . . .
3,000 0 119.3 0 3 1,433 102 590 4 0 1 0.24 0 true . true .

600 100 342.7 100 3 199 2 6 100 0 38 0.82 0 . . . .
181 181 181 181 1 465 1 465 1 1 169 0.42 0 . true . .

5 5 5 5 1 14,986 1 1 14,986 1 188 0.99 0 . . . .

� �
ntimekinds > 4:
:...nprocs <= 2:
: :...maxsleepratio <= 0.46:
: : :...progression > 0:
: : : :...nthreads <= 4: Kasidet (3)
: : : : nthreads > 4: Neurevt (3/2)
: : : progression <= 0: ... (omitted)
: : maxsleepratio > 0.46:
: : :...unroundedratio > 0.5:
: : :...thread <= 0: Necurs (3/1)
: : : thread > 0: Dynamer (64/6)
: : unroundedratio <= 0.5:
: : :...fileattr <= 0: TrojanSkeeyah (4/2)
: : fileattr > 0: ... (omitted)
: nprocs > 2:
: :...nthreads > 9: Tinba (47/8)
: nthreads <= 9:
: :...unroundedratio > 0.25: Matsnu (15/1)
: unroundedratio <= 0.25:
: :...maxchunktime > 38360: Dynamer (6/1)
: maxchunktime <= 38360: ... (omitted)
ntimekinds <= 4:
:...maxtime > 37000:

:...earliestsleep > 195: Gamarue (176/39)
: earliestsleep <= 195:
: :...minchunktime > 30000: Rovnix (68/7)
: minchunktime <= 30000: ... (omitted)
: :...maxsleepratio > 0.19: Rovnix (15/2)
: maxsleepratio <= 0.19: ... (omitted)
maxtime <= 37000:
:...nprocs > 1:

:...nprocs > 2:
: :...mintime <= 5: Crowti (16/5)
: : mintime > 5: ... (omitted)
: nprocs <= 2: ... (omitted)
nprocs <= 1:
:...maxsleepratio <= 0.02:

:...maxchunksize > 16: Avkill (5/1)
: maxchunksize <= 16: ... (omitted)
maxsleepratio > 0.02: ... (omitted)

� �
Fig. 5 Decision tree created by C5.0 algorithm (the output is partially omit-

ted, and the format is partially modified).

leaf node.
We measured the usage proportion of each feature for the tree

in Fig. 5 and four decision trees created from partial training data
in the cross-validation test. In the four subtests of the cross-
validation test, three quarters of the data for the test are provided
to the C5.0 algorithm to create a decision tree. Table 11 lists
those features whose usage proportions for the tree in Fig. 5 are
more than 10%. The top row indicates the training data used to
create the decision tree. Partial data 1, 2, 3, and 4 indicate train-
ing data used in each subtest of the cross-validation test. The C5.0
algorithm judges these feature values as being effective for clas-

sification. As is obvious from the values in the table, the usage
of features strongly depends on the given data and differs signif-
icantly between trees. However, we can still find several features
that are used to some extent in all trees. Such features are nprocs,
maxsleepratio, maxtime, fileattr, and earliestsleep, which exhibit
proportions higher than 10% in all trees.

It cannot be concluded from these results that the usage trends
presented here are universal. The FFRI Dataset is not large and
the numbers of samples of each malware family vary signifi-
cantly. Hence, we expect readers to be aware of the dependency
on the FFRI Dataset and the potential impacts caused by the bias
in the numbers of samples. In future work, it would be impor-
tant to conduct further measurements with a larger sample set and
evaluate the generality of the obtained results.

4.3 Knowledge Obtained from Individual API Call Se-
quences

4.3.1 Purposes of Sleep
We surmise that many malware samples executed sleeps to

avoid an excessive load increase. One type of behavior observed
in many samples is sleeping for a while (typically from several
milliseconds to several seconds) between repeated operations.
For example, many samples slept between successive queries to
a single DNS server. In addition, many samples also slept be-
tween the resumption and suspension of another thread, between
successive scans of a process list, and between successive checks
of file attributes. For example, Figure 6 shows a part of the call
sequence of a Trojan:Win32/Tinba.F sample, which sleeps for a
second between every 401 DNS queries.

Some malware threads simply repeat the invocation of
NtDelayExecution and do not execute any other operation.
Many others sleep for a long time at the early stage of their exe-
cution. Some others sleep for several seconds between multiple
acquisition of the cursor position and foreground window. We
surmise that the purpose of sleeps in these threads is not load
reduction, but rather some malware-specific aim such as anti-
analysis and delitescence. A part of the sleeps may be to detect an
analysis or sandbox system through user behavior measurement
or a combination of sleeps and elapsed-time measurement. Obvi-
ously, further research is needed to clarify the purpose of sleeps in
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Table 11 Usage proportions of features in decision trees.

Whole training data Partial data 1 Partial data 2 Partial data 3 Partial data 4

(5) ntimekinds 100.0% 15.3% 5.3% 32.1% 100.0%
(12) nprocs 72.3% 58.9% 53.1% 53.3% 70.2%
(18) maxsleepratio 63.1% 11.7% 17.3% 16.9% 17.6%
(1) maxtime 52.4% 43.5% 52.0% 50.4% 51.6%
(16) unroundratio 42.3% 0% 0% 2.2% 4.6%
(25) fileattr 32.2% 73.9% 55.7% 42.4% 42.2%
(17) earliestsleep 31.9% 26.2% 40.7% 100.0% 34.0%
(15) maxchunksize 17.4% 35.8% 5.4% 0% 4.5%
(2) mintime 15.7% 3.0% 36.6% 0% 16.9%
(14) nchunks 15.3% 0% 0.7% 0% 0%
(7) minchunktime 11.5% 0% 20.9% 12.6% 12.4%

� �
gethostbyname("eeqognneyyeu.in") = WSAHOST_NOT_FOUND

gethostbyname("eeqognneyyeu.ru") = WSAHOST_NOT_FOUND

NtDelayExecution(1000) = 0

gethostbyname("g0jdy3826yenz63om.cc")

= WSAHOST_NOT_FOUND

gethostbyname("ijjnehxchgde.com") = WSAHOST_NOT_FOUND

gethostbyname("ijjnehxchgde.net") = WSAHOST_NOT_FOUND

... (396 calls of gethostbyname)
gethostbyname("eeqognneyyeu.in") = WSAHOST_NOT_FOUND

gethostbyname("eeqognneyyeu.ru") = WSAHOST_NOT_FOUND

NtDelayExecution(1000) = 0

gethostbyname("g0jdy3826yenz63om.cc")

= WSAHOST_NOT_FOUND

gethostbyname("ijjnehxchgde.com") = WSAHOST_NOT_FOUND

gethostbyname("ijjnehxchgde.net") = WSAHOST_NOT_FOUND
� �

Fig. 6 Sleeps between DNS queries.

more detail. Unfortunately, doing this with just the FFRI Dataset
is difficult because the dataset does not contain logs of instruction
executions or executable programs.
4.3.2 Choice of Sleep Times

The preference for sleep times varies among the malware. Be-
cause NtDelayExecution calls with unrounded sleep times con-
stitute only a small proportion of all NtDelayExecution calls
for most malware samples, such invocations stand out somewhat.

Some malware sleep for a fixed amount of time, whereas
other programs sleep for different amounts of time. Some mal-
ware gradually increase their sleep time by small increments,
whereas others sleep for various seemingly random times. Fig-
ure 7 shows a part of the call sequence of a sample labeled Back-
door:Win32/Kasidet.C by Microsoft. The sample logs contain a
chunk with sleep times of multiples of three beginning from zero.
The same chunk appears in the logs of the other three Kasidet
samples, one Neurevt sample, and one Skeeyah sample.

Figure 8 shows a part of the call sequence of a sample la-
beled TrojanDownloader:Win32/Silcon!rfn by Microsoft, which
includes a chunk composed of seemingly random sleep times
within a small range. This chunk appears in the logs of many
other samples.

We found that sleep times were strongly related to their lo-
cations in call sequences. Inherent sleep times or inherent
types of sleep times clump in different parts of an API call se-
quence. For example, the Silcon sample described above seems
to have several types of sleep times that appear in clumps, includ-
ing (1) 28–96 ms random sleeps between NtResumeThread and
NtSuspendThread, (2) a chunk of 125–248 ms random sleeps,
(3) a chunk of 1,012–2,915 ms random sleeps lasting until the

� �
NtQueryDirectoryFile("C:\\Windows", ...) = 0

NtQueryDirectoryFile("C:\\Windows", ...)

= STATUS_NO_MORE_FILES

NtClose(...) = 0

NtDelayExecution(0) = STATUS_NO_YIELD_PERFORMED

NtDelayExecution(3) = 0

NtDelayExecution(6) = 0

... (10 calls of NtDelayExecution with arithmetic sequence numbers)
NtDelayExecution(39) = 0

NtDelayExecution(42) = 0

NtDelayExecution(45) = 0

CreateDirectoryW("C:\\...\\Roaming\\alFSVWJB\\") = 1
� �

Fig. 7 Sequence of sleeps with arithmetic sequence times.

� �
NtResumeThread(...) = 0

NtClose(...) = 0

NtClose(...) = 0

NtDelayExecution(162) = 0

NtDelayExecution(148) = 0

NtDelayExecution(135) = 0

NtDelayExecution(205) = 0

... (24 calls of NtDelayExecution with seemingly random times)
NtDelayExecution(233) = 0

NtDelayExecution(215) = 0

NtDelayExecution(153) = 0

NtDelayExecution(224) = 0

CreateThread(...) = ...
� �

Fig. 8 Sequence of sleeps with seemingly random times.

analysis time-out, (4) a chunk of 4,133–11,913 ms random sleeps
lasting until the analysis time-out, (5) a 5-ms sleep as the only
API call by a certain thread, and (6) 0-ms sleeps after call se-
quences for DNS communication. It is likely that the types of
sleep times are related to the execution phases of a program. Al-
though it seems interesting to extend this study by taking exe-
cution phases into account, we expect that this will be another
challenging task.
4.3.3 Use of Many Sleeping Threads

Characteristic sleep behavior was observed in the call se-
quences of several Trojan:Win32/Skeeyah.A!rfn samples. The
samples provide a string including “Themida Professional
... (c)2010 Oreans Technologies” to an API call argument,
and are expected to be protected by the Themida Protector [32].
Themida transforms a given binary program into another binary
program that behaves in the same way, but executes many sophis-
ticated protection operations. Below, we describe the behavior of
one of the samples in detail. The sample creates one child pro-
cess. The parent process is composed of 30 threads, 26 of which
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call NtDelayExecution. The child process is composed of 27
threads, 25 of which call NtDelayExecution. In the execution
of 41 of the 30 + 27 = 57 threads, the call sequence is composed
of only NtDelayExecution, and most of the sleep times are 0 or
2,001 ms. The sample calls timeGetTime, which returns the cur-
rent system time, immediately before and after CreateThread
calls for thread creation. We expect that this sample is attempt-
ing to detect an analysis system using time information. How-
ever, we have not obtained any direct evidence. Although such
“aggressive” sleeps complicate sleep-conscious static or dynamic
analyses, we consider that this actually facilitates malware clas-
sification and detection because of its inherent characteristic.

5. Discussion

5.1 Awareness of Sleep Behavior Analysis
If a security mechanism using sleep behavior is implemented

for malware detection or classification, the malware creator may
become aware of the mechanism and attempt to evade it by craft-
ing stealthy sleeps. The problem of attackers’ being aware of
protection-side mechanisms is not specific to malware classifica-
tion using sleep behavior, but is a universal and traditional issue
in the field of malware classification or detection [7], [14], [22],
[34], [46], [49]. In this work, we would like to concentrate on
clarifying what the current state-of-the-art can achieve and rotate
the cycle of attack and protection technology.

5.2 Origin of Sleeps
Not all malware behaviors are caused by the source program

itself; some are instead often caused by supportive software. A
considerable proportion of modern malware are protected with a
packer, which introduces additional behavior to the malware’s ex-
ecution. In addition, reusable code such as libraries and malware
creation kits are widely used to develop malware. For example,
among the 1,234 samples, we found that at least 12 samples are
likely to be protected by Themida [32] and at least 12 other sam-
ples by VMProtect [44]. In terms of sleep behavior, it is vital to
consider whether the sleep behavior is caused by the main mal-
ware program or by supportive software. The origin of the sleep
behavior has not been considered in this study, because it is diffi-
cult to obtain or estimate such information from the dataset alone.
As a result, this study may capture both the features attributed to
the main malware program itself and those attributed to support-
ive software.

We examined the classification of the Themida and VMProtect
samples. Five of the Themida samples and two of the VMProtect
samples were excluded because they were not labeled in the Mi-
crosoft classification. Another Themida sample was further ex-
cluded from the cross-validation tests because of the number of
samples in the family. The sleep-based method described in Sec-
tion 4.2.1 with the RF algorithm correctly classified two of the
remaining six Themida samples and all of the remaining 10 VM-
Protect samples. However, we have not identified how strongly
the behavior of these packers affected this result.

We must carefully consider whether to ignore sleeps initiated
by supportive software, because the choice of supportive software
is likely to be closely related to the malware family. Therefore,

� �
static long winMutex_lock = 0;

static int winMutexInit(void){

/* The first to increment to 1 does actual

initialization */

if( InterlockedCompareExchange(&winMutex_lock, 1, 0)

==0 ){

...

winMutex_isInit = 1;

}else{

/* Someone else is in the process of initing the

static mutexes */

while( !winMutex_isInit ){

Sleep(1);

}

}

return SQLITE_OK;

}
� �

Fig. 9 Example of sleep calls in a loop.

� �
VOID timing_sleep_loop (UINT delay)

{

...

int delay_divided = delay / 1000;

...

for (int i = 0; i < 1000; i++) {

Sleep(delay_divided);

}

...

}
� �
Fig. 10 Division of a long sleep into many short sleeps in an anti-sandbox

operation.

it is not certain at present whether the values of the classifica-
tion obtained in our measurement would rise or fall if we could
successfully ignore sleeps initiated by supportive software. We
believe that identification of packers is as important and essential
as identification of malware families. In future work, it is neces-
sary to extend the analysis by taking the origin information into
consideration based on the binaries of malware programs.

5.3 Reasons for Consecutive Short Sleeps
Table 3 shows that the target samples called

NtDelayExecution 600.8 times on average and generated
60.2 chunks on average. Although the numbers may seem
abnormally large, we are aware of sufficient reasons for them
being large. A major reason is that NtDelayExecution is often
called in a loop body. Typical purposes of such calls include
waiting for a short period between operations that poll events
such as network communication, termination of services, process
spawns, lock releases, and file handle releases. Sleeps in a
loop constitute a chunk if the polling operations do not cause
other API calls. Another typical purpose is throttling program
execution to avoid excessive loads. These usages of sleeps are
also found abundantly among benign software. An example is
shown in Fig. 9, which shows a source code fragment of Firefox
in which a sleep API function is repeatedly called between
polling operations. In the program part, Firefox waits for another
thread to initialize mutexes, executing 1 ms sleeps repeatedly
between checks.

Malware have additional reasons to execute short sleeps in a
loop. Figure 10 is a slightly modified source code fragment of
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Al-Khaser [1], which is a sandbox detection tool that executes
numerous anti-sandbox operations. The code attempts to detect
a sandbox by executing long sleeps and observing whether the
sleeps are actually executed or skipped. As shown in the code,
a long sleep is achieved with 1,000 consecutive short sleeps. A
comment in the source code describes that such division can in-
duce sandboxes to refrain from skipping sleeps because skipping
can lead to race conditions and short sleeps are just negligible.
Using such divisions in sleep periods, malware can conceal long
sleeps and appear relatively harmless to sandboxes.

Although this study has not thoroughly investigated the pur-
pose of each sleep, it is an important aspect to be studied, and
future investigations on this can be expected to provide fruitful
insights.

6. Related Studies

Many sandbox systems are equipped with countermeasures
against anti-analysis sleep behavior [17], [27], [29], [35]. These
sandboxes execute “anti-anti-analysis” operations such as skip-
ping sleeps by malware and controlling the speed of virtual
time. Such systems reduce the effects of anti-analysis operations,
whereas our study attempted to better understand the sleep be-
havior and explore a classification technology for malware that
aggressively leverages the sleep behavior diversity.

There have been many studies on malware classification tech-
niques in which a similarity or distance between the behavior of
multiple malware samples is defined and leveraged for classifica-
tion. Fujino et al. [19] proposed a method of malware classifica-
tion targeted at the API call sequences in the FFRI Dataset. Their
method first identifies an API call topic of each subset of malware
samples, which is the information on API calls that frequently oc-
cur in the call sequences of the subset. Unknown malware sam-
ples are then classified according to the distance between the call
sequence of the sample and the API call topic of each subset.
Wagener et al. [45] classified malware samples based on a simi-
larity between API call sequences calculated with a Hellinger dis-
tance matrix. Their method regards each API function as a sym-
bol, and does not use information about the specification of each
API function or the function arguments. Apel et al. [2] compared
multiple schemes to define the distances between the behavior of
malware samples. These studies differ from the present research
in that they do not leverage the knowledge of the specification of
individual API functions. Our study focuses on a specific API
function for sleeps, and attempts to clarify various characteristics
of behavior related to this function. The aforementioned studies
are complementary to the work reported in this paper.

Gao et al. [20] conducted pioneering work on the notion of
the behavioral distance between multiple system call sequences.
Their work dealt with anomalous sequences of system calls that
are mainly caused by software faults or attacks against benign
programs. In contrast to our study, they did not investigate the
behavioral distances between different malware samples.

Kolosnjaji et al. [25] classified malware samples through the
deep learning of sequences of Windows API calls invoked by
malware. Their method characterizes malware behavior with N-
grams of call sequences composed of function name information.

In addition, their method does not make use of knowledge in
specifications for individual API functions.

Oyama [33] uncovered the proportion of malware samples ex-
ecuting anti-analysis operations and the trends of anti-analysis
operations executed by a set of modern malware. Several other
studies [5], [9], [12], [13] have also reported the proportion of
malware samples that execute anti-analysis operations and cate-
gorized the operation types. In contrast to our study, these ap-
proaches only provide a bird’s-eye view of trends in various anti-
analysis operations and do not investigate the behavior of individ-
ual operations executed by malware.

Crandall et al. [15] proposed a system for building the
“timetable” of malware behavior and identifying code fragments
of time-dependent behavior. This system manipulates the time
information observed by the malware in a virtual machine. The
system enables malware analysts to recognize code fragments ex-
ecuted after a given amount of time without actually waiting for
the passage of time. Their study develops a useful method for
analyzing time-related operations executed by malware, whereas
our study highlights the detailed temporal trends.

Hasten [24] is a dynamic analysis system that reduces the ef-
fect of anti-analysis operations to delay the execution of the mal-
ware itself. Although this aspect is similar to our study, Has-
ten primarily targets execution-delaying operations realized by
the repeated execution of dummy operations such as dummy API
calls, and does not target execution-delaying operations realized
by sleeps.

7. Summary and Future Work

This paper reported the results of an investigation on the char-
acteristics of malware sleep behavior. A wide variety of feature
values were extracted, and we determined that sleep behavior is
a promising source of features for distinguishing between differ-
ent malware samples. We also classified malware samples that
cumulatively sleep for a long time, based on their sleep behavior
using four learning algorithms. The best algorithm, RF, achieved
83.3% micro-average precision, 80.0% macro-average precision,
and 74.8% macro-average recall in a cross-validation test. Fur-
ther, we presented a classification case study using C5.0, the re-
sults of which revealed that the features that were frequently used
in the decision trees were (1) the number of processes, (2) the
maximum ratio of NtDelayExecution calls in a call sequence,
(3) the maximum sleep time, (4) whether a fileattr-related API
function is called before or after a sleep call, and (5) earliest call
position of NtDelayExecution. However, we also find that the
choice of features is affected by training data, and we do not con-
clude that these features are the most useful in every case.

There are several directions for future work. First, it is nec-
essary to further investigate the behavior of those samples for
which the learning algorithms failed to assign the correct mal-
ware names, and clarify the reason for these incorrect determi-
nations. Second, it is also desirable to identify or estimate the
purpose of many sleep calls, because we do not yet fully un-
derstand why individual sleep calls are used at certain times by
malware. We believe that more accurate knowledge of these pur-
poses will improve the design of the feature set. Finally, it would
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be interesting to extend this study by taking into account stealth
sleeps achieved without NtDelayExecution, such as a combina-
tion of time measurement and dummy operations. We anticipate
that finding stealth sleeps from API call sequences is a challeng-
ing task that will require a novel technique.
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Editor’s Recommendation
This paper examines sleep behavior of malware and proposes

a classifier based on the sleep features. While there have been
many papers on malware analysis, the approach solely focusing
on the sleep behavior is unique, and the experimental results are
well discussed and promising. The paper has clear novelty and
practicality, and thus is selected as a recommended paper.
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