
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

MAX-MIN Ant System with Memory
Considering New Solution Importance

Takashi Isozaki1,a) Satoshi Hasegawa2,b) Hajime Anada1,c)

Received: June 23, 2017, Accepted: March 6, 2018

Abstract: Ant colony optimization (ACO) is a well-known swarm intelligence algorithm, with a population-based
approach inspired by the foraging strategies of real ants. ACO has been applied to various combinatorial optimiza-
tion problems belonging to non-deterministic polynomial-time hard (NP-hard) combinational problems. Of these, the
traveling salesman problem (TSP) is one of the most important problems in the fields of technology and science.
ACO algorithms provide promising results; however, they cannot compete with front-line algorithms when solving the
TSP. In such situations, we consider that the Max-Min Ant System (MMAS) is fundamental and expansive in ACO
algorithms. Therefore, we constructed a new algorithm by introducing three elements to the MMAS: individual ant
memories initialized using the nearest neighbor method to memorize a good solution, New Solution Importance, and
a local search procedure. Finally, we confirmed the effectiveness of the proposed algorithm by comparing it to other
ACO algorithms using several benchmark problems.

Keywords: traveling salesman problem (TSP), ant colony optimization (ACO), Max-Min Ant System (MMAS)

1. Introduction

Ant colony optimization (ACO) [1], [2], [3], [4], [5], [6], [7],
[8], [9], [10] is a well-known metaheuristic swarm-intelligence-
based algorithm, with a population-based approach inspired by
the foraging strategies of real ants. ACO has been applied to vari-
ous non-deterministic polynomial-time hard (NP-hard) combina-
tional problems. Of these, the traveling salesman problem (TSP)
is one of the most important problems in the fields of technol-
ogy and science because it is widely applicable and academically
interesting. Several researchers have studied the algorithms of
this problem. ACO algorithms provide promising results; how-
ever, they cannot compete with front-line algorithms, because
their convergence time is very long and the success rates of their
optimal solutions are very low for practical purposes. Therefore,
many groups of various fields have focused on improving ACO
algorithms.

In such situations, we consider that the Max-Min Ant System
(MMAS) [6] is fundamental and expansive in ACO algorithms.
The MMAS’s weakness is its long convergence time. There are
two possible causes of this weakness: (1) although some ants
find good paths, most of these ants cannot find good solutions
owing to their subsequent inappropriate path selections and (2)
although some ants find good solutions, no ant searches around
these solutions owing to a lack of additional pheromones. These

1 Systems Information Engineering, Graduate School of Engineering,
Tokyo City University, Setagaya, Tokyo 158–8557, Japan

2 Big Data Department Analyst Team, DMM.com Labo, Minato, Tokyo
106–6224, Japan

a) g1581802@gmail.com
b) android.acmos@gmail.com
c) h-anada@tcu.ac.jp

are common problems with ACO algorithms. On the other hand,
Ant Colony Optimization with Memory (AS with Memory) [10]
is an interesting algorithm and its application to the TSP should
be considered. In this study, the memories of individual ants are
introduced into the ant system (AS). These memories assume a
role to include good paths among the paths newly found by an
ant and the paths of the best solution found in the last iteration.
These memories correct the first cause of the long convergence
times mentioned above. As a result, including a memory in AS
algorithm considerably improves AS.

Therefore, we constructed a new algorithm by introducing
three elements to the MMAS: an individual ant memory initial-
ized with the solution using the nearest neighbor method (NNM)
to memorize a good solution, New Solution Importance, and a lo-
cal search procedure. Finally, we confirmed the effectiveness of
our algorithm via a comparison with two other ACO algorithms,
MMAS and AS with Memory, using benchmark problems taken
from the TSPLIB [11].

This study is organized as follows. In Section 2, we introduce
three ACO algorithms. In Section 3, we explain the proposed al-
gorithm. In Section 4, we show the experimental results obtained
for the TSP. Finally, in Section 5, we briefly describe the discus-
sion and conclusions of this study.

2. ACO

The basic procedure of ACO algorithms is as follows. They
initialize the pheromone amounts on all the paths in Step (1) and
iterate the three steps (Steps (2)–(4)) for a specified number of
iterations:
(1) The pheromone amounts on all paths are initialized.
(2) All ants are placed in a randomly selected city.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

(3) Each ant creates its own solution according to the pheromone
amounts and the heuristic information. The subsequent city
j following city i at iteration t for ant k is determined by the
probability Pk

i j(t)

Pk
i j(t) =

⎧⎪⎪⎨⎪⎪⎩
[τi j(t)]α[ηi j]β∑

l∈N′ [τil(t)]α[ηil]β
if j ∈ N′

0 otherwise
(1)

ηi j =
1

di j

where τi, j(t) is the pheromone amount of path(i, j) at itera-
tion t, α and β are the parameters that determine the relative
importance of the pheromone amount and the heuristic in-
formation, respectively. N′ is the set of cities that ant k has
not yet visited and di j is the distance between city i and city
j. By repeatedly using this probability, all ants find their own
solution.

(4) The pheromone amounts are updated.
Multiple algorithms [7], [8], [9], [10] related to ACO have been

proposed to improve previous solutions. We consider that the
MMAS is fundamental and expansive in ACO algorithms. More-
over the AS with Memory is also an interesting ACO algorithm.
While describing the following algorithms, we will explain some
points relevant to the abovementioned ACO procedure.

2.1 AS
AS [1] was constructed in 1996 by Dorigo et al. as the first

ACO algorithm. In Step (1) of the ACO procedure, pheromone
amounts on all paths are initialized to a small constant value. In
Step (4) of the ACO procedure, the pheromone amounts on each
path are updated using the following equation:

τi j(t + 1) = ρτi j(t) +
M∑

k=1

Δτk
i j(t) (2)

Δτk
i j(t) =

⎧⎪⎪⎨⎪⎪⎩
Q
Lk

if path(i, j) belongs to TOURk

0 otherwise

where ρ is the evaporation rate, M is the number of ants, TOURk

is the solution found by ant k, Q is a quantity of pheromone laid
by an ant per tour, and Lk is the length of the TOURk. In this
algorithm, all ants add pheromones according to their solutions.

2.2 MMAS
The MMAS [6] was constructed in 2000 by T. Stützle et al.

This algorithm is different from AS only in Steps (1) and (4) of
the ACO procedure. In Step (4), pheromone amounts on each
path are updated using the following equation:

τi j(t + 1) = [ρτi j(t) + Δτi j(t)]
τmax(t)
τmin(t) (3)

Δτi j(t) =

⎧⎪⎪⎨⎪⎪⎩
1

LIB(t) if path(i, j) belongs to TOURIB

0 otherwise

[x]a
b =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a if x > a

b if x < b

x otherwise

where τmax(t) is the upper bound, τmin(t) is the lower bound in it-
eration t, TOURIB is the best solution in iteration t (the iteration-
best solution) and LIB(t) is the length of TOURIB in iteration t.

τmax(t), τmin(t) are defined as follows:

τmax(t) =
1

(1 − ρ)LGB(t)
(4)

τmin(t) =
(1 − N√

0.05)τmax(t)

(N/2 − 1)
N√

0.05
(5)

where N is the number of cities; and LGB(t) is the length of the
best solution until iteration t (the global-best solution). In Step
(1) of the ACO procedure, the initial pheromone amounts on all
paths are 1/(ρLNN), where LNN is the tour length found via NNM.
In this algorithm, only the ant that has the iteration-best solution
in each iteration can add pheromones.

2.3 AS with Memory
AS with Memory [10] was constructed in 2012 by Wang et al.

This algorithm is different from AS only in the use of memory,
which all ants have in Step (3) of the ACO procedure in the fol-
lowing manner.
• Each ant’s memory is initialized with the last iteration-best

solution. The first city in the memory of each ant is the
starting city for the ant. During the first iteration, each ant’s
memory is neither initialized nor used.

• Each ant selects its next city using Eq. (1). If this city is
different from the next city in an ant’s memory, then these
cities in the memory are swapped. All ants create their own
solution by iterating this procedure until the solution in their
memory is shorter than the iteration best solution in the last
iteration or they visit all the cities.

After all the ants create their solutions, the pheromone amounts
on all the paths are updated in the same manner as updated in
AS (cf. Eq. (2)) and all their memories are overwritten with the
iteration-best solution. This algorithm assumes a role to include
good paths among the paths newly found by an ant and the paths
of the iteration-best solution. This algorithm delivers a superior
performance compared to AS due to its shorter convergence time
and better success rate of the optimal solution.

This algorithm is the AS introducing the memory. All solu-
tions on the memories are not initialized at 0th iteration and but
are overwritten with the iteration-best solution after each itera-
tion.

3. MMAS with Memory Considering New So-
lution Importance

We constructed a new algorithm to solve the TSP by introduc-
ing the following three elements to the MMAS:
• Individual ant memories initialized with the solution found

via NNM
• New Solution Importance
• A local search procedure

3.1 Introduction of Memory to the MMAS
For all the past ACO algorithms, although some ants find new

good paths, they are unable to use them because of inappropriate
selections of the subsequent paths. The MMAS suffers a similar
defect.

On the other hand, the AS with Memory is an interesting algo-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 1 Concordance rates between the solution with NNM and optimal solutions.

Problem kroA100 eil51 att48 kroC100 lin105 tsp225 lin318

Concordance Rate 79.00% 76.47% 68.75% 72.00% 75.24% 78.67% 71.70%

rithm. The memory in this algorithm plays a key role exploiting
the good paths that some ants discover. The memory assumes
the role to include good paths among the paths newly found by
an ant and the paths of the iteration-best solution. This mem-
ory helps AS to deliver a superior performance. However, the
AS with Memory algorithm does not exploit its memory advan-
tage well because the solution in the memory in early steps is
not good. Therefore, we introduced a memory that is initialized
with a solution found via NNM because NNM solutions for most
TSP instances have paths that are the same as those in optimal
solutions as shown in Table 1. The problems in Table 1 have
been taken from the TSPLIB and have been used to compare al-
gorithms later in this study.

In addition, in the case of the MMAS, only the ant that has
the iteration-best solution can add pheromones. Then, in this al-
gorithm, all ants research solutions around the iteration-best so-
lution. Therefore, we introduce the memory which is overwrit-
ten with a global-best solution in each iteration instead of the
iteration-best solution to include the good paths of these solu-
tions.

3.2 New Solution Importance
In previous ACO algorithms, although some ants find new

good solutions, no ant searches around these solutions owing
to a lack of additional pheromones compared to the pheromone
amounts of the past global-best solutions. Therefore, we intro-
duced New Solution Importance. We modified Eq. (3) as follows:

τi j(t + 1) = [ρτi j(t) + Δτi j(t)]
τmax(t)
τmin(t) (6)

Δτi j(t) =

⎧⎪⎪⎨⎪⎪⎩
Q × Ii j(t)

LIB(t) if path(i, j) belongs to TOURIB

0 otherwise

Ii j(t) =

⎧⎪⎪⎨⎪⎪⎩
τGB

max(t)
τi j(t)

if LIB(t) < LGB(t − 1)

1 otherwise
(7)

where τGB
max(t) is the maximum pheromone amount of the path of

the global-best solution in iteration t. Updating the pheromone
amounts using this equation leads to sufficient pheromone
amounts on each path of the new solution compared to the those
on the paths of past global-best solutions.

3.3 Local Search
At each step, the proposed algorithm checks all the neighbor-

hood solutions that are obtained by swapping the adjacent cities
of the solution in the memory (the global-best solution) and mem-
orizes the best solution of them. The number of all neighborhood
solutions is equal to the number of cities.

3.4 Calculation Cost
Taking into account the procedures of the Memory, NSI, and

the local search, the calculation cost of each iteration of the pro-
posed algorithm is slightly more than that of the other algorithms
such as the MMAS and the AS with Memory.

3.5 Procedure for the Proposed Algorithm
The procedure for the proposed algorithm is as follows. First, it

initializes the pheromone amounts on all paths in the same man-
ner as initialized in the MMAS. Second, each ant memory is
initialized with the solution found via NNM. The first city in the
memory is the starting city of the ant. Then, it iterates the next
six steps for a specified number of iterations.
(1) All ants are placed in random cities and set the first city in

the memory of each ant as this city.
(2) All the neighborhood solutions that are obtained by swap-

ping the adjacent cities of the solution in the memory and
the best solution is retained only if the memory is updated
using the new global-best solution.

(3) Each ant creates its own solution in the same manner as that
used in the AS with Memory algorithm.

(4) τmin and τmax are updated using Eqs. (4) and (5), respectively.
(5) The pheromone amount on each path is updated using

Eq. (6).
(6) All solutions on the memories are overwritten with either the

global-best solution of this iteration or the solution found via
NNM, whichever of the two is a shorter solution.

4. Experimental Results

In this study, we tested our algorithm using symmetric the TSP.
All the TSPs used in this study are taken from the benchmark
TSPLIB.

4.1 Setting Parameter Values
For implementing the MMAS [6] and the AS with Mem-

ory [10] algorithms, we used the same parameter values as those
used in each study for each algorithm in the following compu-
tational experiments. For the proposed algorithm, we used the
same parameter values (M = number of cities of each problem,
α = 1, β = 2, and ρ = 0.98) as used for the MMAS algorithm, ex-
cluding the parameter Q. According to a preliminary experiment
using kroA100 taken from the TSPLIB, we used Q = 0.1 in the
following computational experiments.

4.2 Experimental Results
In this section, we present the computational results of three

algorithms, i.e., the MMAS, the AS with Memory, and the
proposed algorithm, using seven problems, namely kroA100,
eil51, att48, kroC100, lin105, tsp225, and lin318 taken from the
TSPLIB. The tour lengths of the optimal solutions of these prob-
lems are 21282, 426, 33522, 20749, 14379, 3916, and 42029,
respectively.

First, we present a graph illustrating the global-best solution
of each iteration in the three algorithms for the kroA100 prob-
lem (Fig. 1). This graph shows the average of 100 experiments.
Graphs representing the other problems showed a similar behav-
ior.

Second, Table 2 illustrates the performance at the 1,000th it-

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 2 Results at the 1,000th iteration for the kroA100(21282) problem. “+” means introduction, “(u)”
means uninitialized, “(i)” means initialized with NNM, “LS” means Local Search, and “NSI”
means New Solution Importance. “AS+Memory(u)” means the AS with memory. These results
are the average of 200 experiments.

MMAS AS+Memory(u) MMAS+Memory(u) MMAS+Memory(i)

Success Rate of Optimal Solution 13.0% 5.50% 54.0% 56.5%
Error Rate 0.543% 1.20% 0.186% 0.0528%
Standard Deviation of Solutions 120 191 81.9 19.1

MMAS+Memory(i)+LS MMAS +Memory(i)+NSI Proposed Method

66.5% 89.0% 91.0%
0.0512% 0.0419% 0.0277%
16.6 12.1 8.73

Table 3 Results at the 1,000th iteration for the eil51(426) problem. “+” means introduction, “(u)” means
uninitialized, “(i)” means initialized with NNM, and “NSI” means New Solution Importance.
These results are the average of 200 experiments.

MMAS MMAS+Memory(u) MMAS+Memory(i) MMAS +Memory(i)+NSI Proposed Method

Success Rate of Optimal Solution 55.0% 83.0% 92.5% 94.0% 94.5%
Error Rate 1.20% 0.982% 0.892% 0.909% 0.879%
Standard Deviation of Solutions 1.07 0.916 0.705 0.716 0.646

Table 4 Results at the 1,000th iteration for the att48(33522) problem. “+” means introduction, “(u)”
means uninitialized, “(i)” means initialized with NNM, and “NSI” means New Solution Impor-
tance. These results are the average of 200 experiments.

MMAS MMAS+Memory(u) MMAS+Memory(i) MMAS +Memory(i)+NSI Proposed Method

Success Rate of Optimal Solution 52.5% 68.0% 78.0% 80.0% 82.5%
Error Rate 0.212% 0.145% 0.0887% 0.0854% 0.0493%
Standard Deviation of Solutions 114 75.1 67.0 67.9 44.6

Table 5 Results at the 1,000th iteration for the kroC100(20749) problem. “+” means introduction, “(u)”
means uninitialized, “(i)” means initialized with NNM, and “NSI” means New Solution Impor-
tance. These results are the average of 200 experiments.

MMAS MMAS+Memory(u) MMAS+Memory(i) MMAS +Memory(i)+NSI Proposed Method

Success Rate of Optimal Solution 9.50% 27.5% 35.5% 63.5% 65.0%
Error Rate 0.782% 0.667% 0.665% 0.192% 0.176%
Standard Deviation of Solutions 109 127 156 75.8 67.3

Table 6 Results at the 1,000th iteration for the lin105(14379) problem. “+” means introduction, “(u)”
means uninitialized, “(i)” means initialized with NNM, and “NSI” means New Solution Impor-
tance. These results are the average of 200 experiments.

MMAS MMAS+Memory(u) MMAS+Memory(i) MMAS +Memory(i)+NSI Proposed Method

Success Rate of Optimal Solution 69.5% 55.0% 59.5% 84.5% 85.5%
Error Rate 0.157% 0.289% 0.305 0.109% 0.104%
Standard Deviation of Solutions 41.6 67.5 54.4 37.7 37.1

Fig. 1 Computational results for kroA100 using three different algorithms.

eration for the kroA100 problem that compares the seven algo-
rithms. Tables 3–6 illustrate the performance at the 1,000th iter-
ation for the eil51, att48, kroC100, and lin105 problems, respec-
tively. Tables 7 and 8 illustrate the performance at the 2,000th
iteration for the tsp225 problem and at the 3,000th iteration for

the lin318 problem, respectively, to compare the five algorithms.
Error Rate in these tables is defined as the average of ER:

ER =
LGB − LOPT

LOPT
(8)

where LGB is a global-best solution at the last iteration and LOPT

is an optimal solution.
“+” means introduction, “(u)” means uninitialized,

“(i)” means initialized with NNM, “LS” means Local
Search, and “NSI” means New Solution Importance, e.g.,
“MMAS+Memory(i)+NSI” means an algorithm that intro-
duces the Memory initialized with NNM and the NSI; and,
“AS+Memory(u)” in Table 2 means the AS with Memory.

Memory(u) means that all solutions on the memories are not
initialized at the 0th iteration and are overwritten with the global-
best solution after each iteration. Memory(i) means that all so-
lutions on the memories are initialized with NNM at the 0th it-
eration and are overwritten with either the global-best solution of

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 7 Results at the 2,000th iteration for the tsp225(3916) problem. “+” means introduction, “(u)”
means uninitialized, “(i)” means initialized with NNM, and “NSI” means New Solution Impor-
tance. These results are the average of 50 experiments.

MMAS MMAS+Memory(u) MMAS+Memory(i) MMAS +Memory(i)+NSI Proposed Method

Success Rate of Optimal Solution 0.0% 0.0% 6.0% 2.0% 6.0%
Error Rate 1.03% 1.71% 0.499% 0.504% 0.250%
Standard Deviation of Solutions 17.4 39.1 13.4 7.00 6.25

Table 8 Results at the 3,000th iteration for the lin318(42029) problem. “+” means introduction, “(u)”
means uninitialized, “(i)” means initialized with NNM, and “NSI” means New Solution Impor-
tance. These results are the average of 25 experiments.

MMAS MMAS+Memory(u) MMAS+Memory(i) MMAS +Memory(i)+NSI Proposed Method

Success Rate of Optimal Solution 0.0% 0.0% 0.0% 0.0% 0.0%
Error Rate 1.63% 2.45% 1.82% 1.02% 0.919%
Standard Deviation of Solutions 203 332 131 232 239

the iteration or the solution found via NNM, whichever of the two
solutions is shorter.

Tables 2–6 show the average values of 200 experiments. Ta-
bles 7 and 8 show the average of 50 and 25 experiments, respec-
tively.

Statistically significant differences (p < 0.05) were observed
in pairwise comparisons of the error rate among the algorithms
without pairwise comparison between the MMAS+Memory(i)
and the MMAS+Memory(i)+NSI in the case of tsp225 problem
as well as between the MMAS+Memory(i)+NSI and the pro-
posed algorithm in the case of lin318 problem.

Considering the calculation costs of each algorithm, it is evi-
dent from Fig. 1 that the convergence time of the proposed algo-
rithm is as short as that of the AS with Memory and much shorter
than that of the MMAS.

The reason for the slower convergence time of the proposed
method than that of the AS with Memory is the element NSI’s
dispersal of pheromone distribution. According to Fig. 1, the per-
formance of the AS with Memory seems to be better than that of
the proposed method. However it is evident from Table 2 that the
performance of the proposed method was much better than that
of the AS with Memory.

We can see that all of the introduced elements contributed to-
ward improving the two types of results, i.e., the success rate of
the optimal solutions and the error rate. These results indicate
that all the improvements in the proposed algorithm are effective
and that our algorithm delivered a superior performance.

5. Discussion and Conclusions

In this study, we constructed a new algorithm by introducing
three elements to the MMAS, which include a memory initial-
ized with NNM, New Solution Importance, and a local search
procedure.

With the introduction of memory to the proposed algorithm, if
an ant finds a good path, the ant can make good use of it, leading
to shorter convergence time.

The success rate of the optimal solution of the MMAS with
Memory(i) is better than that of the MMAS with Memory(u)
without not only in the case of the lin318 problem but in the case
of all other problems used in this study. In addition, the error rate
of the MMAS with Memory(i) is better than that of the MMAS
with Memory(u) in all the cases.

Therefore, on average, the MMAS introducing Memory(i) ob-
tains a better solution than the MMAS introducing Memory(u).

In the later stages of the MMAS experimental calculations,
several paths reached the pheromone trail upper limit and nearly
all the other paths reached the pheromone trail lower limit. In
these situations, if one ant finds a new solution, all ants are
scarcely able to search around the solution in following itera-
tions because there are numerous pheromones on the paths of
past global-best solutions. Therefore, we introduced New Solu-
tion Importance, which enabled us to obtain higher success rates
of the optimal solutions.

Tables 2–8 show that the proposed algorithm has the following
three favorable features:
• It has the maximum success rate of the optimal solution

without the lin318 problem
• It has the smallest error rate of solution among all algorithms

in this paper.
• Taking into account the ratio of the MMAS’s error rate to

that of the proposed algorithm, the standard deviation of
the solution of proposed algorithm is larger than that of the
MMAS. This fact shows the potential of the proposed algo-
rithm for solving the TSP.

Therefore, we conclude that all the three elements as well as our
proposed algorithm are effective.

Our algorithm has many parameters. In terms of future
prospects, we will study the method to determine these param-
eters.

Acknowledgments The authors would like to thank Enago
(www.enago.jp) for the English language review.

References

[1] Dorigo, M., Maniezzo, V. and Colorni, A.: Ant system: Optimization
by a colony of cooperating agents, IEEE Trans. Systems, Man, and
Cybernetics, Part B: Cybernetics, Vol.26, No.1, pp.29–41 (1996).

[2] Dorigo, M. and Gambardella, L.M.: Ant colony system: A coopera-
tive learning approach to the traveling salesman problem, IEEE Trans-
actions on Evolutionary Computation, Vol.1, No.1, pp.53–66 (1997).

[3] Dorigo, M. and Stützle, T.: Comparison of Ant System with Its Ex-
tensions, Ant Colony Optimization, pp.91–92, The MIT Press, Mas-
sachusetts (2004).

[4] Stützle, T. and Hoos, H.H.: MAX-MIN ant system and local search
for the traveling salesman problem, Evolutionary Computation, IEEE
International Conference, pp.309–314 (1997).

[5] Dorigo, M. and Stützle, T.: ACO plus Local Search, Ant Colony Opti-
mization, pp.92–93, The MIT Press, Massachusetts (2004).

[6] Stützle, T. and Hoos, H.H.: Max-Min ant system, Future Generation

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Computer Systems, Vol.16, No.8, pp.889–914 (2000).
[7] Bullnheimer, B., Hartl, R.F. and Strauß, C.: A new rank based version

of the ant system - A computational study, Central European Journal
of Operations Research and Economics, Vol.7, pp.25–38 (1997).

[8] Hlaing, Z.C. and Khine, M.A.: Solving traveling salesman problem by
using improved ant colony optimization algorithm, International Jour-
nal of Information and Education Technology, Vol.1, No.5, pp.404–
409 (2011).

[9] Liu, G. and Xiong, J.: Ant colony algorithm based on dynamic adap-
tive pheromone updating and its simulation, 2013 6th International
Symposium on Computational Intelligence and Design, pp.221–223
(2013).

[10] Wang, R-L., Zhao, L-Q. and Zhou, X-F.: Ant colony optimization
with memory and its application to traveling salesman problem, IEICE
Transactions on Fundamentals of Electronics, Communications and
Computer Sciences, Vol.E95-A, No.3, pp.639–645 (2012).

[11] TSPLIB, http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

Takashi Isozaki received his B.S. degree
in Engineering from Tokyo City Uni-
versity, Tokyo, Japan, in 2015. Since
2015, he is currently enrolled in Graduate
School of Engineering, Tokyo City Uni-
versity. His major research interests in-
clude approximation algorithms of com-
binatorial optimization.

Satoshi Hasegawa received his B.E de-
gree from Musashi Institute of Technol-
ogy in March 2009. He worked on com-
plex systems and swarm intelligence. In
2016, he joined DMM.com Labo, where
he worked as a data scientist. His current
work interests include complex networks,
machine learning algorithms, and swarm

intelligence.

Hajime Anada received his doctorate in
physics from Kobe University, Japan in
1993. He is an associate professor at
Graduate School of Engineering, Tokyo
City University. His research interests in-
clude complex systems.

c© 2018 Information Processing Society of Japan

