Improvement and Evaluation of a Mathematical Model for Fertilization Calcium Waves in *Caenorhabditis elegans*

MOMOKO IMAKUBO^{1, 2, 3} JUN TAKAYAMA³ SHUICHI ONAMI^{1, 2, 3 a)}

Abstract: Ca^{2+} waves propagate through the oocyte during fertilization, activate the oocyte and induce embryonic development. Ca^{2+} -induced Ca^{2+} -release (CICR) is a mechanism of Ca^{2+} wave formation. We previously quantified the Ca^{2+} waves in the nematode *Caenorhabditis elegans* by using high-speed imaging and image analysis. We found that the waves consist of a rapid local rise at the point of sperm entry and a slow global wave. We demonstrated that the Nagumo model, which models the CICR by a reaction–diffusion equation, can produce a similar biphasic waveform. However, the model cannot represent the observed gradual decrease in maximum Ca^{2+} concentration with increasing distance from the point of sperm entry. In this study, we introduced a linear monotonically decrease in maximum Ca^{2+} concentration with increasing distance from the point of sperm entry and a biphasic waveform simultaneously.

Keywords: calcium wave, reaction-diffusion model, computer simulation, fertilization

¹ Department of Computational Science, Graduate School of System Informatics, Kobe University, Kobe, Hyogo 657-8501, Japan

² Laboratory for Developmental Dynamics, RIKEN Center for Biosystems

Dynamics Research, Kobe, Hyogo 650-0047, Japan 3 Laboratory for Developmental Dynamics, RIKEN Quantitative Biology Center, Kobe, Hyogo 650-0047, Japan

a) sonami@riken.jp