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Abstract: IoT-based energy management is an important technology to reduce energy consumption in the
building by controlling HVAC and lighting through IoT by providing network functions to those equipment.
In order to enable such IoT device management in a building, the location of IoT devices is fundamental in-
formation. However, the manual location identification effort for a number of IoT devices in a whole building
consume labour-intensive and time-consuming. Bluetooth Low Energy (BLE) is one of most popular network
modules for IoT devices because it can provide the cost-effective and easy-deployment network. Fortunately,
the signal propagation of BLE can be used to generate the signal fingerprint to estimate their locations. In
this paper, the IoT devices are equipped the BLE module individually and we can estimate the location of
BLEs instead of the location of IoT devices directly. We propose a survey mechanism to collect the signal
propagation and consider the change in signal strength of every BLE for localization of BLE modules. Our
method requires the floorplan and physical location of IoT devices. We request one tester to carry the smart-
phone and walk around the building for collecting the signal strength of every BLEs. After that our method
matches the BLEs to the physical locations. We conducted the experiment in the real world environment
and our matching method acquired 80% accuracy.

1. Introduction

Since smart building technologies are becoming more in-

novative, they are expected to provide energy efficiency and

resident comfort simultaneously using information and com-

munication technologies. Such technologies commonly em-

phasize the environmental features such as temperature in-

door and outdoor, the wind flows to control the tempera-

ture in each area in the building individually. To improve

energy-efficiency, some researchers apply data prediction in

control strategy. For example, Oldewurtel et.al deal uncer-

tain weather forecast data with the Stochastic Model Pre-

dictive Control (SMPC) [1]. Moreover, Harle and Hopper

investigate the benefit of localization of human to power

management systems [2] thus Energy management systems

can manage both energy consumption and comfort of occu-

pant simultaneously depending on the presence of humans

[3].

In order to provide such services, HVACs have network

modules for easier and more efficient management and con-

trol, and wireless technologies have a certain advantage over

wired networks. Among a considerable number of wireless

technologies, BLE-based wireless technology is one of the
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most appropriate solutions to connect HVAC to networks

because of its cost-effective and easy-to-deploy characteris-

tics.

However, regardless of wired/wireless, in order to control

HVACs, we have to map their network addresses (IDs) with

the physical locations, which needs ignorable labour cost.

In particular, there will be tens of thousands of HVAC in a

large building, and manual mapping work is almost impossi-

ble and unrealistic as construction-site administrators might

spend a huge amount of time to make such mapping records

and verify each of them. Let us assume the situation in a

hotel and an office building which contain a numerous num-

ber of small rooms where each room has one or more HVACs

inside. Unfortunately, some rooms may not be allowed to

access due to privacy and administrative reasons (privileged

access policy and/or confidential space), and the configura-

tor may just be allowed to move on only public hallways.

Consequently, the configurator spends a long time but can-

not identify the HVACs in the privileged areas.

In this paper, we propose semi-automatic position estima-

tion that links BLE IDs and their physical positions, which

contributes greatly to the reduction of management cost.

We assume only one tester having a smartphone to collect

RSSI and let him/her walk along a route calculated from a

given building plan with HVAC location information. Our

method leverages the trend (increasing/steady/decreasing)

of RSSI change during walking to estimate the relative posi-

tions between the tester and each HVAC. As collecting more
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samples on different routes, more information about relative

locations between each HVAC is obtained. Consequently,

the estimation accuracy increases. We conducted an experi-

ment where BLE devices were deployed on the ceiling of our

laboratory room, and their locations were estimated on the

given floorplan with BLE locations without BLE IDs. The

result shows that our method can match more than 80% of

BLE devices with their correct locations.

Our main contributions can be summarized as follows:

• Our method can match the BLE equipped IoT devices

to the 80% correct locations even when they are placed

near each other, i.e. the minimum distance between

BLEs is about 2 meters.

• Our method does not require the tester to stop for col-

lecting data. Thus the tester can finish his/her job even

in a large building within one day survey.

• Our method can match the BLEs to their locations

without need of labeled data and supervised techniques.

• We validated our method in real-world experiment.

2. Related work

2.1 Anchor Localization in Indoor Environment

RSSI-based Wi-Fi localization is one of most popular tech-

niques to track Wi-Fi devices (e.g. smartphones) in indoor

environment. The multilateration mathematical method re-

lies on the estimated distance between the Wi-Fi device

holder and surrounding APs based on signal propagation

model [4]. However, this technique requires well-known

points as anchor nodes in the building to pursue good accu-

racy. The manual calibration effort to find the anchor loca-

tions for indoor localization system is a major problem for

deploying and relocating the system in the large building due

to its time-consuming aspect. Hence, some researchers lever-

age the signal propagation to find the location of anchors by

calculating the distance between Wi-Fi devices with known

positions and each anchor [5], [6]. More concretely, the au-

thors of [5] propose the zero-calibration localization system

which can estimate the location of anchors, but they do not

provide accuracy in the localization of anchors. Thus our

method can compare to the work in [6] as shown in Table 1.

However, in indoor environment, RSSI values fluctuate even

Table 1: Comparison of Localization of AP/BLE
Floor
plan

Walking
path

Device
loca-
tion

Location
Error

Accuracy

proposed
method

given given given – 80–90%

ZHUANG
et. al [6]

given given not
given

4.91-
9.77m

–

without obstacle between sender and receiver [7], and the

location estimation error in the method [6] is greater than

the shortest distance between two HVACs. Consequently,

we cannot apply the location estimation of WiFi devices to

estimate the location of BLE devices directly.

2.2 Pedestrian Dead Reckoning (PDR)

An alternative technique for Indoor Localization is Pedes-

trian Dead Reckoning (PDR), which estimates the trajec-

tory of human by using the sensors embedded in smart-

phones [8], [9]. However, the data from those sensors have

much noise, which causes accumulating errors in localiza-

tion [8], [9]. In order to reduce the effect of noise, some

researchers estimate the trajectory of human by using a

step counter and a head direction as the proposed works in

[8], [9], but the accumulating error still exists. In our pro-

posed method, the fine-grained localization of human is not

necessary because we assume that the tester understands the

given walking path based on the floorplan, and follows the

instructed walking path correctly. Hence the step counter is

enough to roughly estimate the location on the given path.

Turn detection can also be used to correct errors if the given

path has turns.

3. Methodology

Since we attempt to match the BLE device IDs to the

physical locations, we need floorplan information and the

device locations on the floorplan. We assume every large

building has its floorplan information. When the building’s

owner has a plan to install HVACs, they must design the

location of HVACs before installation. Thus, our system

knows the places of BLE equipped HVACs. Another funda-

mental information is the walkable paths, and we assume the

floorplan information also provides that information. If the

floorplan information does not provide the walkable paths,

it can be generated by some indoor floorplans construction

methods [10], [11].

Our method requests the tester to survey the RSSI of each

BLE around the building to generate the matching likeli-

hood of each pair of BLE device and physical location. We

leverage the approximate point in triangulation test [12] for

generating that likelihood. In order to accomplish it, we

firstly generate the smallest non-overlapped triangles from

all physical locations. After that, we generate the walking

path that is a part of the walkable paths to pass as many tri-

angles as possible. Note that, the walking path is composed

of a path segment, and each path segment is used for a sin-

gle triangle. In this paper, we focus on a method to match

each BLE ID to one of the physical locations. Therefore the

automatic calculation of walking path is out of scope, but

we are now studying on this issue.

When the tester walks, a carried smartphone with our

application collects the RSSI values in the format <

li, rssi1,i, rssi2,i, ..., rssin,i > where li is the location of

the tester identified by our PDR method explained later,

and rssin,i is the RSSI from BLE ID n at location li. Fi-

nally, we propose the reverse of APIT test to match the

BLE IDs to BLE device physical locations in the floorplan.

There are two problems with collecting the RSSI in our ex-

periment. The first problem is fluctuation of RSSI values in

each BLE device. The second problem is the accumulation

of PDR errors. To overcome those two problems, we propose
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a Roughly-Controlled PDR which works as follows.

3.1 Roughly-Controlled Pedestrian Dead Reck-

oning

In order to help the walk easily, the walking path should

be the path which is frequently used and such a path that

reaches some locations such as alcove and corner should be

excluded. Our method divides the walking path into many

short paths and our application on the smartphone gives

the start and end points for each of them to the tester.

The tester has to walk following our instruction until she/he

reaches the end of the last short path.

When the tester reaches and stops at the end point of each

short path, our application calculates the linear regression

model using the measured RSSI values during walking on

the path by Equations (1) – (3) below. We define the linear

regression formula ˆrssij,i = aj,1 ∗ xi + aj,0 where ˆrssij,i is

an expected RSSI of BLE ID j at location li, xi is the walk-

ing distance between the start point and location li, aj,1 is

the slope of the linear regression model and aj,0 is the offset

of the linear regression model. x is the average of xi from

the start point to end point, and rssij,∗ is the average RSSI

from BLE ID j during walking from the starting point to li.

aj,1 =

∑n
i=1(xi − x̄)(rssij,i − rssij,∗)∑n

i=1(xi − x̄)2
(1)

aj,0 = rssij,∗ − aj,1 ∗ x̄ (2)

MSEj =

∑n
i=1(rssij,i − ˆrssij,i)

2

n
(3)

In case that the signal strength propagated from BLE de-

vices is insufficient and unreliable, i.e., the mean square

error of the calculated linear regression model (MSEj) is

greater than a given threshold β0, our application requests

the tester to walk on the same path again. The walking

procedure can be summarized as below:

( 1 ) Application gives Tester a short path with start and

stop points in the floor map on smartphone screen.

( 2 ) Tester touches the start button in Application, and then

walks until he/she reaches the stop point.

( 3 ) Tester touches the stop button, and then Application

calculates the 3 equations (1)–(3).

( a ) If MSE is greater than an acceptable error, Appli-

cation requests Tester to go back to the start point.

( b ) If MSE is lower than an acceptable error, Applica-

tion gives Tester a new short path with new start

and stop points.

( 4 ) Tester performs Steps 1)-3) until finishing every short

path in the walking path.

In Figure 1a, there are fluctuations in RSSI while the

tester walks to collect data, but the patterns are similar.

After we collect more data where the tester walks multiple

times on the same short path, the average RSSI becomes

smooth as shown in Figure 1b.

Because our application gives the short path to the tester,

we know the total walking distance for each given path, thus

we can estimate the location of the tester by counting the
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(a) Signal strength of one device during walking 3 times.

(b) Average of RSSI of one device.

Fig. 1: Signal strength collected during walking.

walking steps of the tester. Furthermore, the variables in

step size and walking speed will be solved by this mecha-

nism.

3.2 Reverse of Approximate Point in Triangula-

tion

In the APIT test, the location of a wireless device can be

estimated to be in the triangle of 3 closest anchors by using

3 strongest RSSIs. When the device moves, a moving di-

rection can also be estimated by detecting an upward trend

and downward trend of RSSI from surrounding anchors [12].

Hence, we can compare the trend of collected RSSIs with the

estimated trend of RSSIs for each tuple of three stationary

BLE devices that compose a triangle where the tester walks

to pass.

To deal with a large building case where there are many

rooms, the triangles may contain the BLE placed in differ-

ent rooms. This situation may make it difficult to estimate

the node is in the triangle containing the BLE place in a

different room due to signal reduction by walls. Hence, we
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(a) RSSI of BLE placed in the experimental room.
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(b) RSSI of BLE placed outside the experimental room.

Fig. 2: RSSI collected data of BLE placed in the experimen-

tal room and outside

investigated the signal propagation from the BLE placed in

an adjacent room. According to Fig. 2, the signal strength

from BLE placed in the adjacent room as in Fig. 2b is weaker

than the signal strength from BLE placed in the same room

as in Fig. 2a even though we walk close to the wall or the

door. Therefore, we will create the triangles that contain

only same room locations and we match the BLE IDs and

BLE locations for each room individually.

According to the RSSI collection method in Section 3.1,

the tester may walk on the same path many times to make

data smooth. Fortunately, the tester can collect the RSSI

data while he/she walks back to the start point to reduce

the number of times to walk for collecting data. For exam-

ple, the data collected by walking the same direction as in

the line ”3 times” and ”5 times” of Fig. 2 are similar to the

data collected by walking in the mixed direction as in the

line ”3 times*” and ”5 times*” of Fig. 2.

Although we do not mention the walking path genera-

tion, this paper gives some idea to generate the suitable

path segment for our algorithm. Note that the given short

paths are not the path segments. Since we have to gener-

ate the path segments which fit to each triangle individu-

ally, the path segment can overlap with or separate from

each other. In order to select start and stop points of

a path segment for triangle individually, we consider the

path segment, firstly, should pass inside the smallest trian-

gle and far from another triangle because we can identify

which triangle the tester walks through easily. We define

P = {p1, p2, ..., pn}, S = {s1, s2, ..., sm} and δ ∈ ∆ be the

set of n path segment, the set of m BLE locations and the

set of triangle, respectively. Each triangle δ is consists of the

3 BLE locations, δ = {sa, sb, sc}, and each path segment pi

contains the path element pi,j where j = {1, 2, .., z}. We

also define dsk,pi,j be the distance from BLE locations sk
to the path element pi,j . We consider a path segment pi is

suitable for the triangle δ if the path segment satisfies the

condition in Equation 4 where S′ = S − δ is a set of BLE

outside triangle δ.

max
∀sk∈δ

∑n
i=1 dsk,pi,j

n
< min

∀sk∈S′

∑n
i=1 dsk,pi,j

n
(4)

pj

dsb,lz,pj

dsb,l1,pj

sa

sb

sc

sd

se

!"#$%&'()&*+

,)#-#$%&'()&*+

./*$&0'()&*+

Fig. 3: Path segment

By looking at Figure 3, we mention on the path segment

that passes the smallest triangle as δ = (sa, sb, sc), there-

fore we assume when the tester walk passing the triangle

δ the smartphone may perceive the top 3 strongest signals

from sa, sb and sc while the signal strength from sd and se

may not be strong enough to affect our estimation method.

Our method also mentions on the expectation in the trend

of the signal strength of BLE in triangle. We leverage the

phenomenon of signal that becomes stronger when the re-

ceiver comes closer to the transmitter and becomes weaker

when the receiver leaves the transmitter. In this approach,

we create the path segments to classify the trend of RSSI

from 3 BLE in triangle into 3 classes. The slope of RSSI

from Equation 1 is supposed to be steady when tester walks

close to the BLE then walks far away from that BLE, be

rising when tester walks close to the BLE, and be dropping

when tester leaves the BLE. Since it is difficult to distin-

guish the locations of BLEs with the same trend of RSSIs,

the trend of RSSIs from the top 3 strongest BLEs should

contain the steady trend, the upward trend and the down-

ward trend for classification. In particular, we can expect
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the trend of RSSI from BLE by considering the change of dis-

tance between path segment and the BLE location. Hence,

the trend of RSSI from BLE s ∈ δ will be steady when the

path segment pi satisfies the condition in Equation 5, be

upward when the path segment pi satisfies the condition in

Equation 6, downward when the path segment pi satisfies

the condition in Equation 7.

n∑
i=2

(ds∈δ,li,pj
− dsa,li−1,pj

) ≈ 0 (5)

n∑
i=2

(ds∈δ,li,pj
− dsa,li−1,pj

) < 0 (6)

n∑
i=2

(ds∈δ,li,pj
− dsa,li−1,pj

) > 0 (7)

Aside from the path segment creation, we should mention

which triangles we consider. In particular, some BLEs are

members in many triangle as in Fig. 4. Thus, we need to

select some triangle to be used in our method, and every

BLE is in the selected triangle. For example in Fig. 4, we

can estimate the location of every BLE unless we use only

the triangles δ1 and δ4. A simple approach is to count the

number of the triangle containing a BLE for each BLE indi-

vidually. After that, we remove the triangle in which two or

more BLEs have the highest counters while maintaining ev-

ery BLE to has the counter over 0. We repeat this removing

step until we cannot remove the triangle.

�1�1

!"#$%&'()"*+

�2

�3 �4

Fig. 4: Triangulation selection

Our method considers the similarity between the expec-

tation models and the real measurements on the same path

segment. For each path segment, we identify which BLEs

forming triangle by selecting top-k strongest RSSIs. Hence,

we calculate the average of collected RSSIs for each BLE de-

vice, then we select the k BLE devices whose average RSSI

values are highest. For example, the average signal strength

from the BLEs in the triangle (BLE id: 3,5 and 9) are higher

than the average signal strength of BLE id:7 placed near the

considered triangle as in Fig. 5.

After that, we calculate the likelihood of the BLE loca-

tions of triangle and the selected k BLE devices. The likeli-

hood function LH(sj , li), which means the probability that

BLE device sj is placed in BLE location li, is supposed to

be a function as that of Fig. 6(a) when the BLE location

satisfies Equation 6, be a function as that of Fig. 6(b) when

the BLE location satisfies Equation 5, be a function as that

0 10 20 30 40

!8
0
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0

!5
0

!4
0

Walking Distance (m)

R
SS

I (
dB

)

BLE id:3
BLE id:5
BLE id:7
BLE id:9

Fig. 5: Triangulation selection

Fig. 6: Signal strength collected during walking

of Fig. 6(c) when the BLE location satisfies Equation 7.

For each likelihood function, the x-axis is the slope clas-

sification which identifies it to the upward trend when

aj,1 > α1, to the steady trend when −α1 < aj,1 < α1,

and to the downward trend when aj,1 < −α1 as in the Fig.

7.

!"
#$%&'()*+',&-(. "&(/
0'+1&(). 2',3

!"
#$%&'()*+',&-(. "&(/#$%&'()*+',&-(. "&(/#
0'+1&(). 2',3

!"#$#%&'()&*$'(+$(,--.

/0#%&'()&*$'(+$(,--.

-)*%'1()&*$'(+$(,--.

Fig. 7: Signal strength collected during walking

After calculating the likelihood for all path segment com-

pletely, we estimate the BLE ID j to be placed in location

li by finding the largest value of likelihood as equation (8).

argmax
i

LH(sj , li) (8)

In summary, the whole method can be summarized in the

following steps:

( 1 ) We received the floor plans with the interior design and

device locations from the building manager, and ana-

lyze that floor plan to create the walking path and the

triangle.

( 2 ) We generate the path segments and the expectation

trend of RSSI change by equation (4)–(7).
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( 3 ) We separate the path segment and give it to the tester

for collecting the RSSI data. Note that, the tester may

walk over one time depending on the result of equation

3 for each of the short paths individually.

( 4 ) We calculate the linear model of the measured data from

Equation 1 and 2 for each path segment.

( 5 ) We compares the expected trend of RSSI change in step

2 and the slope of measured RSSI in step 4 to calculate

the likelihood between BLE id and BLE location by

likelihood function as in Fig. 6.

( 6 ) Finally, we match the BLE id to the BLE locations us-

ing equation 8.

4. Experiment

The experiment is conducted in a laboratory room whose

size is 10.6 x 17.79 square meters, and we manually generate

the walking path and path segments whose distance are 45

meters and 4 meters respectively. We deploy 10 BLE BT 4.1

devices as in Fig. 8c, and deploy 9 BLE BT 4.1 devices as

in Fig. 8d. We develop an android application to collect the

signal strength of BLE using RSSI data. Accomplishing the

RSSI collection, we request the tester to carry the NEXUS6P

and walk on the walking path 5 times in clockwise direction

and 5 times in counterclockwise direction. Note that, the

experiment was conducted in an uncontrolled environment,

i.e. other members also did their normal activities during

collection. In addition, the floor plan, BLE location with

triangle and walking path in this experiment are shown in

Figure 8c. We assume the antenna will be on the surface

of the devices such as lightning and HVAC, i.e. ceiling air

vent as in Fig. 8a. Consequently, we place BLE on the ceil-

ing(Fig. 8b) to simulate the situation as our assumption.

4.1 Parameter Selection

In order to perform our algorithm, parameters k and α1

are necessary. For parameter k, we consider the BLEs which

are suitable to be located in the triangle for each path seg-

ment. Since RSSI of BLE is unstable, we may be unable

to apply k = 3 and get the accurate result. Therefore, we

use the RSSI collection from the experiment as in the Fig.

8c and vary parameter k to investigate the effect of k to

the matching accuracy. In the experiment, we measure the

percentage of selected BLEs that are correct as “coverage”.

Table 2: The experiment to find the parameter k

Round MSE
Coverage

k = 3 k = 4
1 1.71 85% 100%
2 0.83 85% 100%
3 0.62 90% 100%
4 0.46 90% 100%
5 0.35 90% 100%

The result in Table 2 demonstrates the coverage is 100%

when k = 4. This means all of the correct BLE devices are

selected. However, one invalid BLE device is also involved

(a) Air vent where the antenna
can be attached on the surface

(b) BLE module is placed on the
ceiling

��
�����	
�����	���	�
�����	
����

(c) The experimental floor plan with 10 BLE loca-
tions and walking path.

入口

(d) The experimental floor plan with 9 BLE loca-
tions.

Fig. 8: Experiment setup

in the likelihood calculation, which may make the accuracy

lower. Consequently, we use k = 3 where the coverages

are at least 85%, and less invalid BLEs are involved in the

likelihood calculation.

α1 is the threshold for classifying slope of the linear model

of RSSI. We apply two types of techniques to set threshold

α1; one is called dynamic that uses standard deviations (std)

and another is called fixed that uses predefined values that

are independent of the measurement.

Table 3: The experiment to find the threshold α1

Method α1 correct

Dynamic
std 52%

0.5*std 73%

Fixed
0.05 71.6%
0.1 71.6%
0.15 73%
0.2 73%

Table 3 shows the percentage of correct classification.

It shows that using half of the standard deviation as α1

achieves better result than the normal std. Although some

fixed values also achieved similar values, we need more in-

vestigation to choose the best values.
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4.2 Matching Result

Based on the results in the previous section, we experi-

ment on the matching accuracy with variables k = 3 and

α1 = 0.5 ∗ std. We compare the accuracy, the ratio of cor-

rect matching places to the total number of locations. In

Table 4, accuracy when walking 1 to 5 rounds is shown.

Table 4: Matching Accuracy
Round Accuracy(Fig. 8c) Accuracy(Fig. 8d)

1 70% 78%
2 70% 78%
3 80% 89%
4 80% 89%
5 80% 89%

Our method captures 80% accuracy. According to Table

2, the performance of BLE selection affected the accuracy

of matching. When the tester walked to collect the RSSI

3 times, 90% of correct BLE devices are selected, and the

accuracy of localization was improved. Unfortunately, the

accuracies cannot be 100% even when we walk more than 5

times because the average RSSI data become smooth after

the tester walk 3 times.

4.3 Robustness

The result where BLEs are installed in the same room

is satisfiable. However, the signal can propagate through

the wall. Therefore we conduct the experiment to confirm

our approach can match the BLE IDs to the BLE locations

for each room individually. Specifically, we deploy 7 BLEs

inside the experiment room and 3 BLEs close to the wall

outside the experiment room as in Fig. 9.

入口

Fig. 9: The experimental floor plan with 7 BLE locations

inside and 3 BLE locations outside.

We found our method can match the BLE IDs to BLE

locations with the same accuracy as the experiment in Fig.

8d. Moreover, our method did not select the BLE located

outside experiment room when the tester walks on the path

segment which is close to those BLEs.

5. Discussion

We found the walking path affected the accuracy of our

method. The reason is the path segment must pass inside

the triangle as long as possible because we can spend more

time on that triangle and can select the 3 BLEs by top-

3 strongest RSSI method correctly. Particularly, when we

walk close to one side of triangle, we may pick up some in-

valid BLE devices to be located in the triangle. For example,

the BLE at the top right of Figure 8c, is located a little bit

far from the walking path, and there are partitions located

between that BLE and the walking path. In this situation,

when the tester walks on the path segment which passes

the triangular where that BLE is involved, the RSSI of that

BLE is not high enough to be selected, and accordingly, the

result becomes wrong in that location.

6. Conclusion

In this paper, we have presented the semi-automatic BLE

localization. The experimental result in a single room has

shown our method captured an acceptable result. We are

now tailoring our method to work for larger areas. In partic-

ular, we will collect the data on the floor-level experiment to

observe the patterns and behaviour of RSSI from the BLE

in different ceiling pattern such as an open ceiling. will also

consider the interior design which hinders the signal prop-

agation to generate the walking path and path segments.

Especially, there will be a material of the wall used to sep-

arate two rooms that does not reduce the signal strength

too much (maybe glass and acrylic), and we can apply our

algorithms as those rooms are the same room. Moreover,

the automatic route generation is significant in our method

because the manual route generation causes the burden on

the prerequisite task, and the routes where the tester can

pass most BLE devices are crucial.
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