
Electronic Preprint for Journal of Information Processing Vol.26

Regular Paper

Development of a Web-based Front-end Environment to
Aid Programming Lectures on Unix-like Systems

Syunji Yazaki1,a) Hideaki Tsuchiya1,b) Hiroaki Ishihata2,c)

Received: August 16, 2017, Accepted: February 1, 2018

Abstract: In this paper, we describe the details of the design and implementation of our Front-end Environment for
Hands-on Activities (FEHA), which is a web-based programming environment. FEHA provides a programming envi-
ronment on the web and utilizes existing Unix-like systems that equip a specialized programming environment as the
build and runtime platform. FEHA controls the existing systems by using Secure SHell (SSH) and Rsync without any
modification of the existing systems. We discuss a case study of FEHA in which it was applied to actual programming
lectures at a university. In the lectures, 70% of the students completed registrations to use FEHA in about 3 min. In
addition, they could understand how to use the FEHA and started submitting codes within several minutes after the
registration. The case study shows that FEHA is able to provide a specialized programming environment for more than
100 students with a small amount of effort from the instructor and system administrator.

Keywords: programming education, web-based programming

1. Introduction

Education for special-purpose computing technologies is
needed in recent computing industry, and the number of peo-
ple becoming technicians is increasing [1]. Parallel process-
ing, General-Purpose computing on Graphics Processing Units
(GPGPU), and hardware design are examples of these specialized
technologies.

Instructors providing programming lectures need to catch up
with the state-of-the-art technologies that meet both industrial re-
quirements and academic values. Web-based learning systems
have been utilized to improve learning efficiency [2], [3], [4], [5].
Learners access learning content prepared by instructors by using
their own web browser. Some systems provide not only a pro-
gramming environment but also a comprehensive learning envi-
ronment [6], [7]. Such systems are called Learning Management
Systems (LMSs). Nowadays, LMSs are used to provide world-
wide educational services called Massive Open Online Courses
(MOOCs) [2], [8], [9]. MOOCs play an important role in provid-
ing a learning opportunity for everyone.

There are some difficulties in constructing a programming en-
vironment for teaching specialized technologies on LMSs. Or-
dinary software and hardware products are usually provided as
out-of-box packages. However, most software and hardware for
specialized technologies are not provided as such packages. The
system administrator needs to build, install, and set them up with
concise options referring to a desired programming environment.

1 The University of Electro-Communications, Chofu, Tokyo 182–8585,
Japan

2 Tokyo University of Technology, Hachioji, Tokyo 192–0982, Japan
a) yazaki.syunji@uec.ac.jp
b) hideaki@cc.uec.ac.jp
c) ishihata@stf.teu.ac.jp

It requires significant knowledge and technology-related expe-
rience. In some cases, the instructor and system administrator
might need additional development on the LMSs to associate such
specialized software and hardware with the LMSs.

With this background, we proposed a pluggable web-based
programming environment named Front-end Environment for
Hands-on Activities (FEHA) [10]. FEHA works as a front-end
of existing Unix-like computing systems that equip a specialized
programming environment. FEHA does not make any modifi-
cation to the existing systems. Instead, it utilizes two common
tools, Secure SHell (SSH) and Rsync, to control the existing sys-
tems. These tools are installed on most Unix-like systems by de-
fault. FEHA also provides a minimum coding environment that
includes an editor and buttons to specify some abstracted build
and runtime options. FEHA helps instructors to provide lectures
using the state-of-the-art technologies without any complex set-
tings.

In this paper, we will provide a more detailed design concept
and an extended implementation of FEHA than the previous pa-
per [10]. In addition, we provide a case study in which FEHA
was applied to actual lectures at a university.

The rest of this paper is organized as follows. We will intro-
duce the related works and typical programming environment for
computer science in Sections 2 and 3. On this basis, we will ex-
plain the purpose of system development in Section 4. Then, we
will discuss about the system design and technological challenges
for the implementation of FEHA in Sections 5 and 6. Next, we
will discuss a case study of applying FEHA to actual lectures at a
university in Section 7. Finally, we state the conclusions in Sec-
tion 8.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

2. Related Works

2.1 Web-based SSH Client
There have been several web-based SSH clients such as Web-

SSH2 [11] and KeyBox [12]. These web applications provide an
interactive Command Line Interface (CLI) on web browsers by
using WebSocket technology. Users can access Unix-like systems
that have an SSH server and then use programming environments
prepared on the system through the web-based CLI without any
installation of designated SSH client software.

2.2 Tutoring System
The use of tutoring systems is a better way for novice learners

to learn a particular programming language [2]. Tutoring systems
provide step-by-step tutorials that prevent learners from making
arbitrary codes. By following the tutorial, learners can easily
acquire fundamental programming skills. However, the learner
needs to move on to other programming platforms to learn more
complex and practical techniques.

2.3 Assistant Application
Glassman et al. proposed OverCode, which collects solutions

submitted by students and then provides similar solutions to in-
structors. The instructors can obtain sophisticated solutions from
the collection and use them for better teaching [13].

Another system records the learning activities [14]. This sys-
tem records the events during a programming assignment, and
these records are used to find learners who require a longer time
to solve problems.

Wang et al. developed AutoLEP [15], which provides auto-
matic syntactic and structural checking to help novice learners.
Wei et al. proposed a technique to classify programs for hint gen-
eration [16]. In this technique, the programs are represented as a
linkage graph to summarize the data flow in the programs. The
graph helps teachers to understand the fundamental approach in
the program created by the student. Paolo et al. developed a hint
system for programming lectures [17]. The hint system displays
a series of hints according to the requests from a student.

2.4 Web-based Programming Environment
Some systems that support programming lectures have been

developed. Blackboard [7] and Moodle [6] are typical LMSs for
MOOCs. Moodle is an open-source project that can be cus-
tomized and extended by communities all over the world.

Further, plug-ins for Moodle are provided by many Moodle
users. Virtual Programming Lab (VPL) [3] is a plug-in that sup-
ports programming exercises. VPL has a feature called “Jail,”
which provides a sandbox environment to run programs created
by the learners safely. VPL also provides a web-based integrated
development environment.

WebGPU [4] has been used in a MOOC for GPGPU pro-
gramming lectures. WebGPU is designed to provide Graphics
Processing Unit (GPU) resources to learners, and it supports
general GPGPU-related technologies such as the Compute Uni-
fied Device Architecture (CUDA), Open Computing Language
(OpenCL), and Open ACCelerator (OpenACC). It does not sup-

port other technologies since this system focuses on GPGPU.
A computer cluster system designed for teaching parallel and

distributed computing has been developed [5]. This system pro-
vides a web interface to manage source code and compile it. The
built code can be submitted and run on the cluster.

3. Programming Environment on Unix-like
Systems for Science and Technology

3.1 Computational Resource and Management
Software and hardware resources based on specialized tech-

nologies are limited. Therefore, the instructor must consider a
way to share the limited resources among the learners for pro-
gramming lectures.

Some particular types of resources such as GPU cores, Cen-
tral Processing Unit (CPU) cores, memory bandwidth, network
bandwidth, or reconfigurable logic gates are provided by dedi-
cated devices. A GPU board, a Many Integrated Cores (MIC)
board, High-Bandwidth Memory (HBM), high-performance in-
terconnects, and a Field Programmable Gate Array (FPGA) board
are typical examples.

These kinds of resources can be accessed from laboratories,
computer centers, or supercomputing systems via resource man-
agement systems. A batch job system is a resource management
system that is commonly used. SLURM, Torque, and OpenPBS
are typical implementations of a batch job system.

A batch job system mainly provides two features to share com-
puting resources among multiple concurrent users: job schedul-
ing and queuing. The users submit jobs to a queue, which is
associated with machines that provide particular computational
resources. The jobs also include requests for the amount of com-
putational resources. Once the jobs are received, they are kept in
the queues. Then the system schedules the allocation of jobs on
the basis of the requested resources and the remaining computa-
tional resources on the corresponding machines. If the requested
amount of computational resources can be assigned to a job, the
job will be allocated to run on the corresponding machines under
the restriction of the allocated computational resources.

To use a batch job system, the user needs to describe a job as
a script. The batch job script is a general Shell script with the
annotations of a request for the queue and the amount of compu-
tational resources. Thus, the user can invoke any program in the
batch job script. The annotation does not affect the behavior of
the program; therefore, the batch job script can be run as a simple
Shell script if the system allows it.

Batch job systems have been the de-facto standard for the man-
agement of computational resources. Therefore, the instructors
need to support the use of a batch job system for lectures. Writing
batch job scripts will not be a concern for professional software
developers because they already have the skills to write them.
However, the use of a batch job system can become a barrier for
programming lectures because for the learners, it is difficult to
write job scripts with a reasonable request for resources.

3.2 Development Tools and Library Management
Software development and the runtime environment depend on

many kinds of development tools and libraries. In many cases, the

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

version of the software matters as well. The dependencies some-
times have complex structures. For instance, the GNU Compiler
Collection (GCC), which provides commonly used programming
environments packaged on CentOS Linux release 7.3, recursively
depends on 55 software packages. Further, each dependent soft-
ware package has its own dependencies.

Most of the development tools and libraries using specialized
technologies are aggressively developed and updated. For prac-
tical software development, developers need to select the proper
combination of development tools and libraries for the targeted
platforms on which the developed software runs.

Software called “Environment modules” [18] or its alternative
implementations [19] have been used to manage the combination
of tools and libraries. This software has the capability to switch
between different combinations of software without logoff/login
or reboot operations. This feature can be utilized to prepare the
environment for programming lectures with various types of spe-
cialized technologies.

4. Purpose of System Development

Typically, for delivering a programming lecture, the instructor
follows an actual software development process. Figure 1 illus-
trates a use case of the software development process. The sys-
tem administrator prepares and maintains a development platform
consisting of the required hardware and software. The engineer
sets up personal environments for code, build, and execute pro-
grams. The engineer and system administrator can sometimes be
the same person.

In a programming lecture, the learner practices programming
by following a procedure similar to that of actual software de-
velopment, as shown in Fig. 2. However, in contrast with actual
development, the learner should work on setting up the personal
environment with the instructor.

We observed two factors that possibly degrade the efficiency of
teaching and learning. The first is that learners need to take care
of their personal settings. The instructor also needs to prepare an
account for each learner. If there are several hundreds of learners
in a lecture, the instructor requires a long time for preparing ac-
counts for all learners. It is also important that the instructor and

Fig. 1 Use case of software development by an engineer. The engineer takes
care of the personal environment themselves.

learner keep the same personal settings to avoid unexpected trou-
bles during programming lectures. However, adjusting the per-
sonal environment for a lecture requires a large amount of time
since the personal environment varies depending on each user’s
activities.

The second is that learners also need to build source code and
run the program with concise options for compilation and execu-
tion. It is better to experience all of the procedures of software
development during the lecture as much as possible. However,
building and running programs based on complex technologies
requires complex designations through the options, which are
tightly associated with the hardware and software configurations.
For instance, some of the following options are required to build
and run a parallel program using the Message Passing Interface
(MPI), which produces interprocess communications: a particu-
lar compiler, a level of code optimization, a network architecture,
an algorithm of communication, and the affinity of the CPUs. In
addition, most development environments on Unix-like systems
are assumed to be used through a CLI because they are remotely
located to be shared and accessed via SSH. Acquiring skills to
develop software with a CLI is important for engineering educa-
tion. However, using a CLI for a programming lecture sometimes
becomes a barrier for novice learners. Because learners need to
understand how to access and use development environments by a
CLI in advance of lectures. Thus, more simple interfaces to build
and run programs is needed especially for novice programming
learners.

We designed FEHA to resolve these problems. Figure 3 (a)
shows a use case of programming practice with FEHA, which
we aim to achieve. FEHA basically takes care of two things:
specifying concise options for building and executing programs
and unifying the personal environment and providing the unified
environment to all learners. With this support, the learner can
focus on coding and checking the result in contrast to the use
case shown in Fig. 2. In addition, the instructor can control the
personal environments of all learners through FEHA. In compen-
sation, additional use cases regarding the setup and maintenance
of FEHA are needed.

Fig. 2 Use case of programming practice. The learner follows the same flow
of software development. The instructor takes care of the learner’s
personal environment.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 3 Use case of programming practice with FEHA. (a) FEHA provides features to code and submit
programs without complicated build and runtime options. This feature allows the learner to focus
on coding activity to experience various technologies easily. The learner also can register them-
selves to FEHA. This self-registration feature helps the instructor to prepare accounts for many
learners. The instructor and administrator need to set up and maintain FEHA. (b) The system
administrator creates a single account for FEHA on the back-end. FEHA builds and runs the
programs submitted by all FEHA users with this account.

On the back-end, as shown in Fig. 3 (b), the instructor and sys-
tem administrator need to prepare a single account that builds and
runs the programs submitted by all FEHA users.

5. System Design

5.1 Design Principle
On the basis of the discussion in Section 4, we implemented

FEHA with the following policies:
• Utilize an existing programming environment on Unix-like

systems
• Do not require any additional software installation on the ex-

isting systems
• Utilize the mechanism of computational resource manage-

ment and environment switching on existing systems
• Use the minimum set of tools that are commonly installed

on most Unix-like systems to control them from FEHA
• Use a local user account on each existing system as a refer-

ence of the personal environments distributed to all learners
These policies provide originality to FEHA compared to other

web-based programming environments. That is, FEHA can work
as a pluggable environment for programming lectures that can
work on most existing Unix-like systems. In addition, FEHA
does not require additional administration for existing Unix-like
systems, except for the creation of one local user. These charac-
teristics allow instructors to arrange a new lecture to learn a state-
of-the-art technology quickly. Further, the instructor just needs
to put FEHA onto a Unix-like system that has a programming
environment related to the new technology to prepare the lecture.

In addition, we implemented following features to support pro-
gramming lectures:
• A self-registration feature
• A feature providing code samples and templates that present

outlines of learning programming code to the learners
• A feature to specify complex options to build and run by a

summarized user interface
The self-registration feature allows users to register by them-

selves. We assume that FEHA will be used in a lecture that
includes several hundreds of students. In this situation, making
FEHA accounts for all users by the instructor or system admin-
istrator requires a large amount of time. Code samples and tem-
plates are provided to support lectures. The difference between
the sample codes and the code templates is that the samples are
codes that are ready to run without modification, whereas the tem-
plates are pieces of code that must be modified. A learner can run
the samples for experiencing the use of FEHA and program ex-
ecution without coding as a quick start. Then, the instructor can
utilize the templates to teach coding techniques. A summarized
user interface equips some forms and buttons to allow learners to
specify complex options for building and running by a simplified
interface.

5.2 Configuration
Figure 4 shows an overview of the FEHA configuration. A

host that contains an instance of FEHA is represented as the
FEHA host, while existing Unix-like systems that will be con-
trolled by FEHA are described as the back-end. Existing Unix-
like systems can be simple machines or computer clusters that
have one or more login nodes. We assumed that the FEHA host
is separated from the back-end; however, the back-end can be a
FEHA host if the system administrator allows it.

The solid and dashed arrows represent data and control flows,
respectively. As we described in the design policy, FEHA con-
trols the back-end by using a minimum set of tools. We choose
the “ssh” and “rsync” commands as the tools. “ssh” provides the
SSH session to invoke any allowed Unix command on the FEHA
host and back-end. “rsync” incrementally synchronizes files be-
tween the FEHA host and back-end. The file synchronization
runs over the SSH session created by “ssh.”

FEHA consists of a web User Interface (UI), controller, and
database. The web UI provides a programming environment to
the learner and also shows the summarized execution results of
the submitted programs. The controller controls all processes

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 4 Construction of FEHA. The learner interacts with FEHA via the web UI. FEHA utilizes the
environment switcher and batch job system prepared on the back-end. FEHA proceeds with the
program execution request in the left-to-right direction.

done by the FEHA. The database stores all information regarding
the creation, submission, and execution of programs.

On the back-end side, FEHA assumes that the back-end has a
build and runtime environment switcher and a batch job system,
as described in Section 3. FEHA can also build and run programs
without these features if the back-end does not have them. In that
case, FEHA just uses the default environment to build and run the
programs without computational resource management.

The FEHA host and back-end have local and remote data
stores, respectively. The data stores are actual directories on each
file system, which contain the source file, batch job script, ex-
ecutable, and result files. The stored files are also recorded as
history in the database.

5.3 Implementation Details
We implemented FEHA by using Node.js with Express and

MongoDB. Node.js and Express are a JavaScript runtime envi-
ronment and web framework, respectively. Express provides an
Application Programming Interface (API) to construct a web ser-
vice. This is known to be an efficient architecture [20], [21]. We
also used MongoDB, which implements the document-oriented
data store as the database.

Express running on Node.js provides a web UI for the learners
as a web server. The learners code programs and submit them to
the web server as a HyperText Transfer Protocol (HTTP) request.
The submitted code and options for building and running are sent
with this request as HTTP parameters.

We defined designated HTTP endpoints by using Express to
receive some types of requests. The requests are mainly catego-
rized into “Submit C/C++ program,” “Submit Verilog program,”
“Submit MIPS Assembly program,” and “Get result.” When an
endpoint received a request, the corresponding procedure imple-
mented on Node.js proceeds. When Node.js receives a “Submit
C/C++ program,” “Submit Verilog program,” or “Submit MIPS
Assembly program” request, Node.js extracts the submitted code
and options for building and running from HTTP parameters.
Then Node.js proceeds with the program submission procedure
described in Section 5.4 according to the extracted information.
For a “Get result” request, Node.js retrieves submission records

including the execution results. Then, Node.js summarizes the
records and places the summary on the web UI. Node.js ensures
access control to accept these requests according to the user’s per-
missions.

In the procedures, Node.js invokes external “ssh” and “rsync”
commands. External commands generally cause a longer la-
tency because the process waits for the completion of the com-
mands. However, given the nature of Node.js, these external com-
mands are issued asynchronously. This nonblocking mechanism
of Node.js allows FEHA to process many requests effectively.

5.4 Program Execution Procedures
The main task of FEHA is to execute programs submitted by

learners. FEHA roughly proceeds with a program execution re-
quest in the left-to-right direction in Fig. 4. The detailed process
is as follows:
(1) Program submission

(a) Create the local data store if it does not exist.
(b) Generate a source file and batch job script on the ba-

sis of the user input. The source file contains submitted
code. The job script is automatically generated accord-
ing to the options specified by the user.

(c) Store the source and script in the database.
(d) Create the remote data store if it does not exist.
(e) Synchronize the data stores to transfer the files to the

back-end.
(f) Build the source file at the back-end to generate the ex-

ecutable.
(g) Synchronize the data stores to transfer the executable to

the FEHA host.
(h) Store the executable in the database. If the build fails,

FEHA records and retires to proceed with the request.
(i) Submit the job and wait for job allocation and execu-

tion, which are done by the batch job system. The
batch job system puts the result files into the remote
data store.

(2) Result acquisition
(a) Synchronize the data stores to pull the result files into

the local data store and then store them in the database.

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 5 Coding environment of FEHA. Learners input a code from the screen
and submit it with the build and runtime options.

(b) Display an abstracted result of program execution.
According to the learner’s request, program submission and result
acquisition can occur individually.

For building and running programs, FEHA dynamically
switches the development and runtime environment by using En-
vironment Modules or Lmod described in Section 3.2. This
makes FEHA adaptable to various programming technologies
with small modifications of its implementation.

FEHA runs a submitted program by using one of two batch
job systems: Torque or SLURM. The batch job system ensures
the execution order of the submitted program and the fairness of
resource assignment on behalf of FEHA. On the other hand, in-
teractive or real-time applications cannot be run through FEHA.

5.5 Coding Environment
FEHA provides a coding environment that consists of an ed-

itor, a sample or template, and options buttons for building and
running programs. Figure 5 shows an example of the coding en-
vironment. For simplicity, FEHA allows the learners to input a
code in a single file from this screen and submit it. If some addi-
tional files to be compiled with submitted codes are needed, the
instructor can add them in the common settings of FEHA for the
lecture.

Figure 6 shows an example of screen displaying the history of
submissions and their details. The history of execution is shown
on the left side as a list. The right side displays the details of each
result. FEHA shows messages from the standard output and er-
ror on building and execution. FEHA also shows additional data
when a program generates it. If the additional data includes text-
based vector graphics, FEHA tries to show it as a Scalable Vector
Graphics (SVG) image. Some results can be visualized by using
this feature.

5.6 Supported Programming Activities and Technologies
FEHA supports the following activities.

Fig. 6 An example screen displaying the results. The history is shown on
the left side. The details of each result are displayed on the right side.

C/C++ programming Fundamental C/C++ programming
with GCC-compatible compilers.

Thread programming with C/C++ Thread-based parallel
C/C++ programming with POSIX Thread (Pthread) and
Open Multi-Processing (OpenMP).

MPI-based distributed parallel programming with C/C++
Distributed C/C++ parallel programming with MPI libraries
on Ethernet and Infiniband.

GPGPU parallel programming with C/C++ CUDA and
OpenACC programming with the CUDA Toolkit and PGI
Compiler.

C programming for learning MIPS assembly C program-
ming to learn MIPS assembly codes with the MIPS SDE
toolchain.

Verilog HDL programming for RTL simulation Verilog
Hardware Description Language (Verilog HDL) program-
ming for Register Transfer Level (RTL) circuit simulation
with Icarus Verilog. Programmers can specify input signals
for simulation and check the result via a visualized signal
chart graph.

Verilog HDL programming for logic synthesis Verilog HDL
programming for logic synthesis with Yosys. Programmers
can check a visualized net list graphs generated by Yosys.

If some lectures require new technology, the following devel-
opment actions are mainly required.
(1) Design and add a new submission form that has simplified

build and runtime options in a separate tab on FEHA’s web UI.
(2) Add an HTTP endpoint to accept requests regarding the new

technology.
(3) Implement a build and run procedure and associate it with

the new endpoint.

6. Technological Challenges on Implementa-
tion

6.1 Implementing a Usable System for Novice Programming
Learners

Since we designed FEHA for novice programming learners,
the system should be usable for such learners. Once we per-
formed a preliminary implementation of FEHA, we conducted a
usability test by using Web Usability Scale (WUS) questionnaires
developed by Nakagawa et al. [22].

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

We have shown the evaluation results in our previous pa-
per [10]. Thus, we briefly summarize the results here. The WUS
consists of 21 questions in seven factors: “Favorability,” “Use-
fulness,” “Reliability,” “Layout,” “Operability,” “Visibility,” and
“Responsibility.” Subjects (students) rate each question on a scale
of 1 (poor) to 5 (good). We applied the WUS for two thread pro-
gramming lectures to teach Pthread and OpenMP technologies,
where 108 and 116 students respectively attended each lecture.
We received 66 and 51 valid answers from the students.

Looking at the results, all factors graded as 3.1∼3.5 on aver-
age. From the results, we confirmed that FEHA is designed as a
useful system for most of the students.

6.2 Runtime Security
The availability of learning systems is one important concern

during lectures. As we explained in Section 5.1, FEHA uses a lo-
cal user account at the back-end to run the programs submitted by
all learners working on FEHA. That is, the local account plays the
role of a single proxy user shared by all learners. This means that
a failure encountered by one learner may affect all other learners.

The learners who run programs through FEHA cannot exceed
the restrictions set to the local user at the back-end. In most Unix-
like systems, the system administrators do not grant any privi-
lege to general users that are not administrators, and they usually
restrict the computational resources and file access for general
users. The runtime security of FEHA completely relies on the
restrictions imposed for the proxy user at the back-end.

On the other hand, the back-end restriction does not expect that
a single general user is shared by multiple programmers. There-
fore, FEHA must take care of this and give appropriate restric-
tions to all learners. Examples of risks are as follows:
(1) A program goes into an infinite loop and blocks the programs

submitted by other learners.
(2) A program exhausts computational resources.
(3) A learner might remove the files generated by other learners.
These risks may occur accidentally or intentionally.

We utilized the restriction features present in the batch job sys-
tem and Unix shell. Since FEHA generates a batch job script for
every submission, FEHA can add any option to restrict the re-
sources for a job. In addition, as explained in Section 3.1, the
batch job script is actually a simple shell script. Thus, FEHA can
also add resource restrictions provided by the “limit” or “ulimit”
commands that are built into the shells.

Other systems [3], [4] employ a sandbox, container, or virtual
machine approach. However, these approaches require particu-
lar software, and it cannot be guaranteed that the back-end has
such software. Therefore, we did not employ these approaches
according to the design policy at this time.

Table 1 summarizes the restrictions done by FEHA. FEHA
restricts computational resources by referring permissions set to
the local account on the back-end and for the use of the batch job
system. FEHA also restricts access to file contents by using an
access control feature provided by the database.

Concerning file content protection, FEHA guarantees repro-
ducibility for all submitted programs. Files submitted by one
FEHA user are potentially broken by another FEHA user’s pro-

Table 1 List of restrictions for job execution.

Restricted by Restrictions
Back-end account Number of processes, number of threads, memory

size, file size, CPU time, and so on.
Batch job system All restrictions listed the above and job execution

time.
Database in FEHA Modifying contents of program source, batch job

script, execution result, and so on.

gram because FEHA shares a single account on the back-end for
all FEHA users. This problem comes from the nature of the file
access permission mechanism of UNIX-like systems. To take
care of this problem, FEHA stores a submitted source file and
generated batch job script in the database before synchronization,
as described in the submission process described in Section 5.4.
Since the database restricts the modification of the file contents
stored in the database, as indicated in Table 1, each FEHA user
can reload their past submitted codes from the database and re-
submit them on FEHA’s UI to reproduce the same result.

7. Case Study

7.1 Lecture Outline
As a case study, we applied FEHA to a computer architecture

class at a university. This class was opened for third-year under-
graduate students.

The first and second lectures were on 14th and 21st July 2017,
respectively. About 160 students attended both lectures. In the
lectures, we taught a digital hardware design approach using Ver-
ilog HDL. We also followed the RTL simulation and circuit logic
synthesis as a typical flow of digital hardware development.

Before applying FEHA, we were not be able to arrange any
HDL programming activities during the lecture because of dif-
ficulties related to the preparation of the HDL programming en-
vironment. Using an HDL programming environment generally
requires complicated personal settings for RTL simulation, logic
synthesis, and visualization of the circuit netlist or input/output
signals.

We arranged several programming assignments during two lec-
tures by using Verilog HDL, which is a common programming
HDL used for hardware product development. We provided these
assignments through FEHA because the development environ-
ment of such digital hardware requires specialized tools and com-
plex environment settings. We did not announce any preparation
for the programming to the students.

7.2 Configuration of the Back-end Cluster
For this case study, we used a cluster that we usually use for

other research projects as the back-end. The cluster consists of
one login node, six GPU nodes, four multicore CPU nodes, and
one large Symmetric MultiProcessing (SMP) node that has 24
cores in total. All nodes are connected with a single TCP/IP net-
work using 1-Gb Ethernet. In addition, the login node, multicore
CPU nodes, and SMP nodes are connected via Infiniband QDR,
which is a high-performance network for parallel computing. The
cluster has Torque 4.2.5 and Environment Modules 3.2.10 as the
batch job system and environment switching software. We cre-
ated one local user on the cluster for FEHA. We did not perform

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Table 2 Summary of submission records.

Lecture Total submissions User submissions (Ave. /Min. /Max) Active users (Attendance) Number of Assignments
1st (14/7/2017) 1,629 10.9 / 1 / 25 150 (161) 6
2nd (21/7/2017) 867 5.9 / 1 / 19 148 (163) 3

any modification to use FEHA on the cluster.
The cluster has a toolchain for hardware development using

Verilog HDL. We used the toolchain, which includes iverilog
0.9.20120609 and yosis 0.5 as the RTL simulator and logic syn-
thesizer.

7.3 Setup of FEHA
The minimum functional requirements for the back-ends work-

ing with FEHA are that the back-ends have to provide “ssh” and
“rsync” commands as well as a batch job system. If the back-ends
have the Environment-modules capability, FEHA allows the in-
structors to add settings for each programming environment eas-
ily as an option. Most public computing systems can meet these
requirements. Thus, FEHA is pluggable for most public comput-
ing systems.

To setup FEHA, the instructor and system administrator need
to follow the following steps:
(1) Prepare a user account on the back-end (back-end user) and

apply concise settings for the programming environment for
the back-end user.

(2) Prepare a user account on the FEHA host (FEHA host user).
(3) Register an SSH public-key of the FEHA host user in the

list of the back-end user’s authorized keys on the back-end.
FEHA does not support password authentication for secu-
rity reasons. It is better to enable the SSH session sharing
option provided by OpenSSH for the FEHA host user. This
can dynamically reduce the latency of communications over
an SSH session.

(4) Install FEHA itself on the FEHA host with the FEHA host
user.

(5) Write the general configuration file on the FEHA host. The
file contains settings for the web service, load balancing for
HTTP, a database, and logs.

(6) Write the cluster profile. This profile contains information
about the programming environment supported by the back-
end. The information includes the types of the batch job
system and environment switching software as well as the
configuration of the compiler and libraries.

(7) Write the lecture profile. This profile contains the names of
the lectures and the programming environment required for
the lectures. The instructor can add their own libraries and
code templates for the lectures.

In this case study, we installed FEHA on a server (Intel Xeon
E3-1241 v3, 3.50 GHz, 8 cores; 16 GB DDR3, 1,600 MHz), and
invoked eight instances of FEHA under the management of pro-
cess manager PM2 2.4.6 for load balancing.

7.4 User Registration
At the beginning of the first lecture, we introduced FEHA

to the students and then prompted them to register themselves
on FEHA. The registration procedure includes just entering an

Fig. 7 Completed registrations on a time series. Within 3 min, 105 of 149
(�70%) registrations were completed.

email address and password on the registration page provided by
FEHA. Figure 7 shows the number of completed registrations on
a time series from 15:00 to 16:00 during the lecture. The total
number of completed registrations during this time span was 149.
We note that the overall number of registrations was more than
149 because FEHA had been opened for students in the class be-
fore the lecture, and some students registered before the lecture.

The graph shows that 70% (=105/149) of the students com-
pleted self-registration within 3 min (from 15:38 to 15:40). More-
over, the graph also shows that a total of 94% (=140/149) of
the students completed self-registration by 15:43. We observed
that programming activities began at 15:43 from the log. From
this result, we supposed that most of the students who tried self-
registration did not encounter a significant difficulty. Thus, we
confirmed that FEHA aided to the preparation of a personal envi-
ronment, as we aimed.

7.5 Program Submission
We have summarized the submission records of two lectures

in Table 2. From the results, we found that the average number
of submissions per user (student) exceeded the number of assign-
ments corresponding to the lecture. This indicated that more than
90% students submitted one or more codes for each assignment.
This indicates that most of the students were able to experience
HDL programming without a fatal problem.

We also plotted the submission records on a time series, as
shown in Fig. 8. The graphs show the numbers of submissions
and build errors encountered by the students. From Fig. 8 (a), it
can be seen that the submissions started around 15:43 during the
first lecture. On the other hand, most of the registrations were
completed around 15:40, as shown in Fig. 7. This indicates that
the students could understand how to use FEHA and start to sub-
mit codes within several minutes after registration. This result
answers the purpose of FEHA development.

Next, we focused on the difference between the numbers of

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

Fig. 8 Numbers of submissions and build failures during submission on a time series. Students experi-
enced a coding flow including build failure and program completion during 45 and 30 min in 1st
and 2nd lectures, respectively.

submissions and build failures in Fig. 8. We constructed two
types of assignments in both lectures: “Running a sample” and
“Filling in a blank.” “Running a sample” involves running com-
pleted code samples to learn how to use FEHA and to experience
the technologies simply. “Filling in a blank” involves coding the
missing parts of code templates to learn more about programming
techniques.

Around 15:55-16:20 in Fig. 8 (a) and 15:50-16:00 in Fig. 8 (b),
there are time spans in which we can observe relatively small
numbers of build failures. The students were working on sam-
ple assignments during this time. In contrast, the number of build
failures occupies about 1/3 of the submissions in other time spans.
The students were trying to fill in the missing parts of the tem-
plates during this time.

In addition, most submissions approximately occurred within
45 and 30 min during the first and second lectures, respectively.
These time spans occupy about 1/2 to 1/3 of the time slot of the
lectures because the time slot of the lecture is 90 min. This indi-
cates that most of the students were able to experience a coding
flow including build failure and completion of the program dur-
ing this shorter time span by utilizing the sample and template
feature.

From this case study, we confirmed that FEHA helps learners
experience a specialized technology in a reasonable time span.
This result meets the purpose of FEHA.

8. Conclusion

In this paper, we described the details of the design and im-
plementation of our FEHA, which is a web-based programming
environment. FEHA is designed to utilize existing Unix-like sys-
tems that are equipped with a specialized programming environ-
ment for programming lectures. FEHA controls existing systems
by using SSH and Rsync so that FEHA does not make any mod-
ification to the existing systems. FEHA also utilizes a batch job
system installed on existing systems to fairly share computational
resources between programming learners. This means that FEHA
can be set up on most public computing systems and utilize their
computational resources. Thus, FEHA increases the utilization

of computational resources of existing computing systems and
saves time during the preparation of the programming environ-
ment for programming lectures. FEHA also allows novice pro-
gramming learners to experience various technologies by a sum-
marized web-based UI.

On the other hand, FEHA only supports particular program-
ming activities implemented in FEHA. This restricts learner’s
programming activities. To add new technologies or program-
ming environments to extend the programming activities sup-
ported by FEHA, additional development is required. In addition,
we assume that there is a condition that needs to be considered
while using FEHA. The use of FEHA might cause a violation
with the use of the back-end. For example, the use of some soft-
ware installed at the back-end might be restricted for use by an
individual user or a dedicated organization. The system adminis-
trator needs to pay attention to this kind of violation.

We showed a case study of FEHA when we applied it to pro-
gramming lectures for digital circuit design. About 160 students
attended the lectures. In the case study, we confirmed that 70%
of the students completed registration within about 3 min. In ad-
dition, they were able to understand how to use the FEHA and
started submission codes within several minutes after registration.
The results showed that the students could experience a coding
flow including build failure and program completion within 1/2
to 1/3 of the time slot of the lectures. The case study showed that
FEHA helps more than hundreds of learners experience a spe-
cialized programming environment with a small amount of effort
from the instructor.

In the future, FEHA will support virtualization technologies
equipped on the back-end since it has become a key feature for
any type of computing. From the point of view of file protection,
FEHA should have some sandbox-like mechanism to prevent ma-
licious activities as an option. Filesystem in USErspace (FUSE),
a virtual machine, or system-call-overriding technologies could
be a candidate to resolve this problem. Further, we will also ap-
ply FEHA to other lectures using state-of-the-art technologies.

Acknowledgments Part of this work was supported by JSPS
KAKENHI Grant Numbers JP26330143 and JP16K00490. The

c© 2018 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.26

authors would like to thank the reviewers for their valuable com-
ments and suggestions to improve the quality of this paper.

References

[1] Denning, P.J. and Gordon, E.E.: A Technician Shortage, Comm. ACM,
Vol.58, No.3, pp.28–30 (2015).

[2] Codecademy: Codecademy (online), available from
〈https://www.codecademy.com/〉 (accessed 2017-08-01).

[3] Rodrı́guez-del Pino, J.C.: VPL, Virtual Programming lab for Moodle
(online), available from 〈http://vpl.dis.ulpgc.es/〉 (accessed 2017-08-
01).

[4] Dakkak, A., Pearson, C. and Hwu, W.M.: WebGPU: A Scalable
Online Development Platform for GPU Programming Courses, 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp.942–949 (2016).

[5] Lin, H.: Teaching Parallel and Distributed Computing Using a Cluster
Computing Portal, 2013 IEEE International Symposium on Parallel
& Distributed Processing, Workshops and Phd Forum, pp.1312–1317,
IEEE (2013).

[6] MoodleHQ: Moodle, Moodle Pty Ltd. (online), available from
〈https://moodle.org/〉 (accessed 2017-08-01).

[7] Blackboard: Blackboard (online), available from
〈http://www.blackboard.com/〉 (accessed 2017-08-01).

[8] KhanAcademy: Khan Academy (online), available from
〈https://www.khanacademy.org/〉 (accessed 2017-08-01).

[9] Courcera, Inc.: Coursera (online), available from
〈https://www.coursera.org/〉 (accessed 2017-08-01).

[10] Yazaki, S., Kikuchi, T., Tsuchiya, H. and Ishihata, H.: FEHA: An
Adaptive Web-Based Front-End Environment to Support Hands-On
Training in Parallel Programming, Proc. Conference Future of Educa-
tion, pp.166–170 (2016).

[11] Bill, C.: WebSSH2 (online), available from 〈https://github.com/
billchurch/WebSSH2〉 (accessed 2017-12-11).

[12] Kavanagh, S.: KeyBox: Web-Based Bastion Host and SSH Key
Management (online), available from 〈https://github.com/skavanagh/
KeyBox〉 (accessed 2017-12-11).

[13] Glassman, E.L., Scott, J., Singh, R., Guo, P. and Miller, R.: OverCode:
Visualizing Variation in Student Solutions to Programming Problems
at Scale, Proc. Adjunct Publication of the 27th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST’14 Adjunct,
pp.129–130, ACM (2014).

[14] Hashiura, H., Mori, K., Tanaka, T., Hazeyama, A. and Komiya, S.:
An Environment for Collecting Fine-Grained Development Records
to Help with Programming Exercise, 3rd International Conference on
Advanced Applied Informatics, pp.739–744 (2014).

[15] Wang, T., Su, X., Ma, P., Wang, Y. and Wang, K.: Ability-
training-oriented Automated Assessment in Introductory Program-
ming Course, Computers & Education, Vol.56, No.1, pp.220–226
(2011).

[16] Jin, W., Barnes, T., Stamper, J., Eagle, M., Johnson, M. and Lehmann,
L.: Program Representation for Automatic Hint Generation for a Data-
Driven Novice Programming Tutor, Lecture Notes in Computer Sci-
ence, Vol.7315, Springer (2012).

[17] Antonucci, P., Estler, C., Nikolić, D., Piccioni, M. and Meyer, B.: An
Incremental Hint System For Automated Programming Assignments,
Proc. 2015 ACM Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE ’15, pp.320–325, ACM (2015).

[18] Furlani, J.L. and Osel, P.W.: Abstract Yourself With Modules,
Proc. 10th USENIX Conference on System Administration, LISA ’96,
pp.193–204, USENIX Association (1996).

[19] Geimer, M., Hoste, K. and McLay, R.: Modern Scientific Software
Management Using EasyBuild and Lmod, 2014 First International
Workshop on HPC User Support Tools, pp.41–51, IEEE (2014).

[20] TechEmpower: Web Framework Benchmarks, Round 14 (on-
line), available from 〈https://www.techempower.com/benchmarks/〉
(accessed 2017-05-10).

[21] Liu, D. and Deters, R.: The Reverse C10K Problem for Server-Side
Mashups, ICSOC 2008 International Workshops, Service-Oriented
Computing, pp.166–177 (2009).

[22] Nakagawa, K., Suda, T., Zempo, H. and Matsumoto, K.: The Devel-
opment of Questionnaire for Evaluating Web Usability, Proc. Human
Interface Symposium 2001, pp.421–424 (2001). (in Japanese).

Syunji Yazaki received his Ph.D.
from The University of Electro-
Communications (UEC) in 2007. From
2007 to 2016, he worked as an assistant
professor at Tokyo University of Tech-
nology and UEC. From 2012 to 2013, he
was a visiting scholar at The Ohio State
University. From 2016 to 2018, he was a

research associate at Hitotsubashi University. He moved to UEC
as a project associate professor in 2018. His research interests
include high-performance computing and Internet operation
technology. He is a member of IPSJ, IEICE, IEEE, and ACM.

Hideaki Tsuchiya received his M.S.
and Ph.D. degrees in Information The-
ory from The University of Electro-
Communications in 1993 and 1997,
respectively. He is an associate professor
in Information Technology Center, the
University of Electro-Communications.
He is a member of IPSJ, IEEE, and

IEICE.

Hiroaki Ishihata was born in 1957. He
worked at Fujitsu Laboratories from 1980
to 2007. He received his Ph.D. from
Waseda University in 1992. He became
a professor at Tokyo University of Tech-
nology in 2007. His current research in-
terests include high-performance comput-
ing. He is a Member of IPSJ, IEICE and

IEEE-CS.

c© 2018 Information Processing Society of Japan

