
State Complexity Characterizations of
Parameterized Degree-Bounded Graph

Connectivity, Sub-Linear Space Computation, and
the Linear Space Hypothesis

(Preliminary Report)

Tomoyuki Yamakami

Abstract: The linear space hypothesis is a practical working hypothesis, which originally states the insolv-
ability of a restricted 2CNF Boolean formula satisfiability problem (2SAT3) with respect to the number of
Boolean variables. From this hypothesis, it follows that the degree-3 directed graph connectivity problem
(3DSTCON) parameterized by the number of vertices in a given graph cannot belong to PsubLIN (charac-
terized by polynomial-time, sub-linear space deterministic Turing machines). This hypothesis immediately
implies L6=NL and it was used as a solid foundation to obtain new lower bounds of the computational com-
plexity of various NL search and NL optimization problems. The state complexity of transformation refers
to the cost of converting one type of finite automata to another type, where the cost is measured in terms
of the increase of the number of inner states of the converted automata from the original number. We relate
the linear space hypothesis to the state complexity of transforming restricted 2-way nondeterministic finite
automata to equivalent 2-way alternating finite automata having narrow computation trees. For this pur-
pose, we present state complexity characterizations of 3DSTCON and PsubLIN. We further characterize a
non-uniform version of the linear space hypothesis in terms of state complexity of transformation.

Keywords: State Complexity, Alternating Finite Automata, Sub-Linear-Space Computability, Directed
Graph Connectivity Problem, Parameterized Decision Problems, Polynomial-Size Advice, The Linear Space
Hypothesis

1. Backgrounds and an Overview

1.1 Parameterized Problems and the Linear

Space Hypothesis

The nondeterministic logarithmic-space complexity class,

NL, has been discussed since early days of computational

complexity theory. Typical NL decision problems include

the 2CNF Boolean formula satisfiability problem (2SAT) as

well as the directed s-t connectivity problem∗ (DSTCON) of

determining whether there exists a path from a given vertex s

to another vertex t in a given directed graph G. These prob-

lems are known to be NL-complete under log-space many-one

reductions. The NL-completeness is so robust that even if

we restrict our interest within graphs whose vertices are lim-

ited to be of degree at most 3, the corresponding decision

problem, 3DSTCON, remains NL-complete.

In practice, when we measure the computational complex-

ity of given problems, we tend to be more concerned with

1 Department of Information Science, University of Fukui, 3-9-1
Bunkyo, Fukui 910-8507, Japan

∗ This problem is also known as the graph accessibility problem
and the graph reachability problem.

parameterizations of the problems. In other words, we treat

the size of specific “input objects” given to the problem as a

practical size parameter n and use it to measure how much

resources are needed for algorithms to solve those target

problems. Such a situation gives rise to parameterized deci-

sion problems, expressed as pairs (L,m) of decision problems

L (over certain alphabets Σ) and (logarithmic-space com-

putable) size parameters m : Σ∗ → N. Since we deal only

with parameterized problems in the rest of this paper, we

often drop the adjective “parameterized” as long as it is clear

from the context.

Instances x = 〈G, s, t〉 to 3DSTCON are usually parame-

terized respectively by the numbers of vertices and of edges

in G. It was shown in [2] that DSTCON with n vertices

and m edges can be solved in O(m + n) steps using only

n1−c/
√

logn space for a suitable constant c > 0. However, it

is unknown whether we can reduce this space usage down to

nε polylog(m+n) for a certain fixed constant ε ∈ [0, 1). Such

a bound is informally called “sub-linear” in a strong sense.

It has been conjectured that, for every constant ε ∈ [0, 1),

no polynomial-time O(nε)-space algorithm solves DSTCON

with n vertices (see references in, e.g., [1], [4]). For conve-

IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan 1

Vol.2018-AL-168 No.1
2018/5/25

nience, we denote by PsubLIN the collection of all parame-

terized decision problems (L,m) solvable deterministically

in time polynomial in |x| using space at most m(x)ε`(|x|)
for certain constants ε ∈ [0, 1) and certain polylogarithmic

(or polylog, in short) functions ` [11].

The linear space hypothesis (LSH), proposed in [11], is

a practical working hypothesis, which originally asserts the

insolvability of a restricted form of 2SAT, denoted 2SAT3,

together with the size parameter mvbl(φ) indicating the

number of variables in each given Boolean formula φ, in poly-

nomial time using sub-linear space. From this hypothesis,

we immediately obtain the separation L 6= NL, which many

researchers believe to hold. It was also shown in [11] that

(2SAT3,mvbl) can be replaced by (3DSTCON,mver), where

mver(〈G, s, t〉) refers to the number of vertices in G. The

linear space hypothesis has acted as a reasonable foundation

to obtain new lower bounds of several NL-search and NL-

optimization problems [11], [12]. To find more applications

of this hypothesis, we need to translate the hypothesis into

other fields. In this paper, we look for a logically equivalent

statement in automata theory, in hope that we would make

a great progress in solving LSH.

1.2 Finite Automata and State Complexity

Classes

The purpose of this work is to look for an assertion that is

equivalent to the linear space hypothesis in automata theory;

in particular, we seek a new characterization of the relation-

ship between 3DSTCON and PsubLIN in terms of the state

complexity of transforming a certain type of finite automata

to another type with no reference to 3DSTCON or PsubLIN.

It is often cited from [3] (re-proven in [8], Section 3) that, if

L = NL, then every n-state two-way nondeterministic finite

automaton (or 2nfa) can be converted into an nO(1)-state

two-way deterministic finite automaton (or 2dfa) that agrees

with it on all inputs of length at most nO(1). Conventionally,

we call by unary finite automata automata working only on

unary inputs (i.e, inputs over a one-letter alphabet). Geffert

and Pighizzini [6] strengthened the aforementioned result

by proving that the assumption of L = NL leads to the

following: for any n-state unary 2nfa, there is a unary 2dfa

of at most nO(1)-states agreeing with it on strings of length

at most n. Within a few years, Kapoutsis [8] gave a similar

characterization of the following form: NL ⊆ L/poly iff there

is a polynomial p such that any n-state 2nfa has a 2dfa of at

most p(n) states agreeing with the 2nfa on strings of length

at most n. Another incomparable characterization was given

by Kapoutsis and Pighizzini [9]: NL ⊆ L/poly iff there is a

polynomial p satisfying that any n-state unary 2nfa has an

equivalent unary 2dfa of states at most p(n). In this paper,

we want to seek a similar automata characterization for the

linear space hypothesis.

Sakoda and Sipser [10] further laid out a complexity-

theoretical framework to discuss the state complexity by

giving formal definitions to state-complexity based classes

(such as 2D, 2N/poly, 2N/unary), each of which is gener-

ally composed of non-uniform families of (finite) languages

recognized by finite automata of specified types (with cer-

tain input sizes). Such complexity-theoretical treatments of

finite automata were also considered by Kapoutsis [7], [8]

and Kapoutsis and Pighizzini [9]. For those state complex-

ity classes, it was proven in [8], [9] that 2N/poly ⊆ 2D iff

NL ⊆ L/poly iff 2N/unary ⊆ 2D.

1.3 Main Contributions

As the main contribution of this paper, firstly we provide

with two characterizations of 3DSTCON and PsubLIN in

terms of state complexity of finite automata, and secondly

we give a characterization of the linear space hypothesis in

terms of state complexity of transforming a restricted form

of 2nfa’s to restricted two-way alternating finite automata

(or 2afa’s) whose computation trees have alternating ∀- and

∃-levels. The significance of our characterization includes the

fact that LSH can be expressed by the state complexity of

finite automata of certain types with no clear reference to ei-

ther (2SAT3,mvbl) or (3DSTCON,mver), or even PsubLIN;

therefore, this characterization helps us apply LSH to a wider

range of NL-complete problems.

To describe our result precisely, we need to explain our ter-

minology. A simple 2nfa is a 2nfa having a “circular” input

tape† (in which both endmarkers are located next to each

other) whose tape head “sweeps” the tape (i.e. it moves only

to the right), and making nondeterministic choices only at

the right endmarker. For a positive integer c, a c-branching

2nfa makes only at most c nondeterministic choices at every

step and a family of 2nfa’s is called constant-branching if

there is a constant c ≥ 1 for which every 2nfa in the family

is c-branching. A c-narrow 2afa is a 2afa having ∀∃-leveled

computation trees whose width at every ∀-level is bounded

by c.

For convenience, we say that a finite automaton M1 is

equivalent (in computational power) to another finite au-

tomaton M2 over the same input alphabet if M1 agrees with

M2 on all inputs. Here, we use a straightforward binary en-

coding 〈M〉 of an n-state finite automaton M by O(n logn)

bits.

Proposition 1.1 Every L-uniform family of constant-

branching O(n logn)-state simple 2nfa’s can be converted

into another L-uniform family of equivalent O(n1−c/
√
logn)-

narrow 2afa’s with nO(1) states for a certain constant c > 0.

Theorem 1.2 The following three statements are logically

equivalent.

(1) The linear space hypothesis fails.

(2) For any constants c > 0 and k ∈ N+, there exists a

constant ε ∈ [0, 1) such that every L-uniform family

of constant-branching simple 2nfa’s of state at most

cn logk n can be converted into another L-uniform fam-

ily of equivalent O(nε)-narrow 2afa’s with nO(1) states.

† A 2nfa with a tape head that sweeps a circular tape is called
“rotating” in [9].

IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan 2

Vol.2018-AL-168 No.1
2018/5/25

(3) For any constant c > 0, there exists a constant ε ∈ [0, 1)

and a log-space computable function that, on inputs of

an encoding of c-branching simple n-state 2nfa, pro-

duces another encoding of equivalent O(nε)-narrow 2afa

of nO(1) states.

In addition to the original linear space hypothesis, it is

possible to discuss its non-uniform version, which asserts

that (2SAT3,mver) does not belong to a non-uniform version

of PsubLIN, denoted by PsubLIN/poly.

The state complexity class 2linN consists of all non-uniform

families {Ln}n∈N of languages, each Ln of which is recog-

nized by a certain c-branching simple O(n logk n)-state 2nfa

on all inputs for an appropriate constant k ∈ N+. Moreover,

2Anarrow(f(n)) is composed of language families {Ln}n∈N
recognized by O(f(n))-narrow 2afa’s of nO(1) states on all

inputs.

Theorem 1.3 The following three statements are logically

equivalent.

(1) The non-uniform linear space hypothesis fails.

(2) For any constant c > 0, there exists a constant ε ∈ [0, 1)

such that every c-branching simple n-state 2nfa can be

converted into an equivalent O(nε)-narrow 2afa of state

at most nO(1).

(3) 2linN ⊆
⋃

ε∈[0,1) 2Anarrow(nε).

It is open whether 2linN in Theorem 1.3(3) can be replaced

by 2N or even 2N/poly. This is somewhat related to the

question of whether we can replace 2SAT2 by 2SAT in LSH.

When we focus our attention on “unary” finite automata,

we obtain a slightly weaker implication to the failure of the

linear space hypothesis.

Theorem 1.4 Each one of the following statements im-

plies the failure of the linear space hypothesis.

(1) For any constants c > 0 and k ∈ N+, there exists a

constant ε ∈ [0, 1) such that every L-uniform family

of constant-branching simple unary 2nfa’s of state at

most cn4 logk n can be converted into an L-uniform

family of equivalent O(nε)-narrow unary 2afa’s with

nO(1) states.

(2) For any constants c > 0 and k ∈ N+, there exist a

constant ε ∈ [0, 1) and a log-space computable function

that, on inputs of an encoding of c-branching simple

unary 2nfa of at most cn4 logk n states, produces an-

other encoding of equivalent O(nε)-narrow unary 2afa

of nO(1) states.

Theorems 1.2–1.3 will be proven in Section 3 after we estab-

lish basic properties of PsubLIN and 3DSTCON in Section

2. Theorem 1.4 will be shown in Section 4.

2. Two Basic Characterizations

Since Theorems 1.2–1.3 are concerned with 3DSTCON

and PsubLIN, we want to look into their basic properties. In

what follows, we will present two state complexity character-

izations of the complexity class PsubLIN and the language

3DSTCON.

A function m : Σ∗ → N+ is called a log-space size param-

eter if there exists a DTM M that, on any input x, produces

m(x) in binary on its output tape using only O(logn) work

space.

2.1 Automata Characterizations of PsubLIN

Let us give a precise characterization of PsubLIN in terms

of the state complexity of narrow 2afa’s because the nar-

rowness of 2afa’s directly corresponds to the space usage

of DTMs. What we intend to prove in this section is, in

fact, slightly more general than what we need for proving

Theorems 1.2–1.3.

Let s and t denote two functions taking the form s :

N×N→ N+ and t : N→ N+, and let m denote any log-space

size parameter. We define TIME, SPACE(t(x), s(x,m(x)))

(where x expresses a symbolic input) to be the collection

of all parameterized decision problems (L,m) recognized by

DTMs (equipped with a read-only input tape and a semi-

infinite rewritable work tape) within time c1t(x) using space

at most c2s(x,m(x)) on every input x for absolute constants

c1, c2 > 0.

Our proof of Proposition 2.1 is a fine-grained analysis of

the well-known transformation of alternating Turing ma-

chines (or ATMs) to DTMs and vice versa. In what follows,

we freely identify a language with its characteristic function.

Proposition 2.1 Let t, ` : N → N+ be two O(t(n))-time

space constructible functions. Let L and m denote a lan-

guage L over alphabet Σ and a log-space size parameter,

respectively.

(1) If (L,m) ∈ TIME, SPACE(t(|x|), `(m(x))), then there

are two constants c1, c2 > 0 and an L-uniform family

{Mn,l}n,l∈N of c2`(m(x))-narrow 2afa’s such that each

Mn,|x| has at most c1t(|x|)`(m(x)) states and computes

L(x) on all inputs x satisfying m(x) = n.

(2) If there are constants c1, c2 > 0 and an L-

uniform family {Mn,l}n,l∈N of c2`(m(x))-narrow

2afa’s such that each Mn,|x| has at most c1t(|x|)
states and computes L(x) on all inputs x sat-

isfying m(x) = n, then (L,m) belongs to

TIME, SPACE(t(|x|)`(m(x)), `(m(x)) + log t(|x|)).

Proof Sketch. (1) Given a parameterized decision prob-

lem (L,m), let us consider a DTM N that solves (L,m)

in time at most c1t(|x|) using space at most c2`(m(x)) for

certain constants c1, c2 > 0. We first modify N so that it

halts in scanning both |c on the input tape and the blank

symbol B at the start cell (i.e., cell 0) of the work tape.

Moreover, we make it halt exactly c1t(|x|) steps. Now, we

want to simulate N by 2afa’s of the desired type. Let x be

any instance to N . Let us consider surface configurations

(q, j, k, w) of N on x, which indicates that N is in state q,

scanning both the jth cell on the input tape and the kth

cell on the work tape containing w. We want to trace down

IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan 3

Vol.2018-AL-168 No.1
2018/5/25

those surface configurations using a series of universal and

existential states of Mn,|x|.

Since each move of N affects at most 3 consecutive cells

of the input tape and the work tape, it suffices to focus our

attention to those local cells. Our idea is to define Mn,|x|’s

surface configuration ((q, i, k′, u), j) to represent N ’s surface

configuration (q, j, k, w) at time i in such a way that u in-

dicates either the k′-th cell content or the content of its

neighboring 3 cells. In particular, when k = k′, u carries ex-

tra information (by changing tape symbol σ to σ̂) that tape

head is at the k′-th cell. For example, an initial surface con-

figuration of Mn,|x| on x is ((qacc, c1t(|x|), 0, B̂), 0), which

corresponds to the final accepting surface configuration of N

on x, where qacc is assumed to be a unique accepting state of

N . Inductively, we generate the next surface configuration of

Mn,|x| roughly in the following way. In an existential state,

Mn,|x| guesses (i.e., nondeterministically chooses) the con-

tent of 3 consecutive cells in the current configuration of N

on x. In a universal state, Mn,|x| checks whether the guessed

content is actually correct by branching out 3 paths, each

of which selects one of the 3 cells chosen in the existential

state.

(2) Let k ≥ 1 and M = {Mn,l}n,l∈N be ones given

for L by the premise of (2). Assume that each Mn,l is

a c2`(m(x))-narrow 2afa of at most c1t(|x|) states for con-

stants c1, c2 > 0. We want to simulate {Mn,l}n,l∈N by a

certain DTM. On input x, compute n = m(x), and generate

〈Mn,|x|〉 using O(logn) space. Consider a computation tree

of Mn,|x| on input x. Using a breadth-first search technique,

we check whether there is an accepting computation sub-

tree of Mn,|x| on x by trimming all encountered branches

that lead to rejecting states. It is possible to carry out this

procedure using space O(log t(|x|)) +O(`(m(x))) since Mn,l

is c2`(m(x))-narrow and O(log t(|x|)) bits are needed to de-

scribe each state. The running time of the procedure is at

most O(t(|x|)`(m(x))). 2

Proposition 2.2 is a non-uniform version of Proposition 2.1

by making use of “advice” instead of the uniformity condi-

tion. In a uniform case, we have used a DTM to produce

〈Mn〉 from 1n; however, in a non-uniform case, we must

obtain 〈Mn〉 from advice instead.

A Karp-Lipton style non-uniform version of

TIME, SPACE(t(x), `(x,m(x))), which is denoted by

TIME, SPACE(t(x), `(x,m(x)))/O(s(|x|)), is defined by

supplementing advice strings to underlying Turing machines

used to define TIME, SPACE(t(x), `(x,m(x))). More

precisely, our underlying machine is equipped with an

additional read-only advice tape, to which we provide

exactly one string (called an advice string) of length O(s(n))

surrounded by two endmarkers for all instances of length n.

Proposition 2.2 Let s, t, ` : N → N+ be log-space con-

structible functions. Let L and m be a language L and a

log-space computable size parameter, respectively. Assume

that there is a function h satisfying |x| ≤ h(m(x)) for all x.

(1) If (L,m) ∈ TIME, SPACE(t(|x|), `(m(x))/O(s(|x|)),
then there is a non-uniform family {Mn,l}n,l∈N

of O(`(m(x)))-narrow 2afa’s such that Mn,|x| has

O(t(|x|)`(m(x))s(|x|)) states and computes L(x) on

all inputs x satisfying m(x) = n.

(2) If there is a non-uniform family {Mn,l}n,l∈N

of O(`(m(x)))-narrow 2afa’s such that Mn,|x|

has O(t(|x|)) states and computes L(x) on all

inputs x satisfying m(x) = n, then (L,m) be-

longs to TIME, SPACE(t(|x|)`(m(x)), `(m(x)) +

log t(|x|))/O(h(m(x))t(|x|)2 log t(|x|)).

2.2 Automata Characterizations of 3DSTCON

The proofs of Theorems 1.2 and 1.3 requires a char-

acterization of 3DSTCON in terms of 2nfa’s. Kapout-

sis [8] and Kapoutsis and Pighizzini [9] earlier gave 2nfa-

characterizations of DSTCON; however, 3DSTCON requires

a slightly different characterization.

First, we re-formulate the parameterized decision problem

(3DSTCON,mver) as a family {3DSTCONn}n∈N of deci-

sion problems, each of which is limited to directed graphs of

vertex size exactly n. To express instances to 3DSTCONn,

we also need to define an appropriate binary encoding of

degree-bounded directed graphs, which is quite different from

the binary encoding used in [9]. Formally, let Kn = (V,E)

denote a complete directed graph with V = {0, 1, . . . , n− 1}
and E = V × V . Let G = (V,E) be a degree-3 subgraph of

Kn. We express this graph G as the form of an adjacency

list, which is represented by an n× 3 matrix whose rows are

indexed by i ∈ [n] and columns are indexed by j ∈ {1, 2, 3}.
If there is no jth edge leaving from vertex i, then the (i, j)-th

entry of this list is the designated symbol ⊥. We then encode

this list into a single binary string, denoted by 〈G〉, of size

O(n logn). Here, we also demand that it should be easy

to check whether a given string is an binary encoding of a

directed graph.

Lemma 2.3 There exists an L-uniform family {Nn}n∈N
of O(n logn)-state simple 2dfa’s, each Nn of which checks

whether any given input x is an encoding 〈G〉 of a certain

subgraph G of Kn.

With the above encoding of graphs, the family

{3DSTCONn}n∈N of decision problems is defined as follows.

Degree-3 Directed s-t Connectivity Problem for Size n

(3DSTCONn):

◦ Instance: an encoding 〈G〉 of a subgraph G of the com-

plete directed graph Kn with vertices of degree (i.e.,

indegree plus outdegree) at most 3.

◦ Output: YES if there is a path from vertex 0 to vertex

n− 1; NO otherwise.

Notice that each instance x in 3DSTCONn must satisfy

mver(x) = n. Clearly, the family {3DSTCONn}n∈N corre-

sponds to (3DSTCON,mver), and thus we freely identify

(3DSTCON,mver) with the family {3DSTCONn}n∈N.

IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan 4

Vol.2018-AL-168 No.1
2018/5/25

Lemma 2.4 There is an absolute constant c > 0 such

that mver(x) ≤ |x| ≤ cmver(x) logmver(x) for all inputs x

to 3DSTCON.

We start with building a uniform family of constant-

branching simple 2nfa’s that solve {3DSTCONn}n∈N. Let

Σn denote the set of all encodings of inputs to 3DSTCONn.

Lemma 2.5 There exists an O(logn)-space computable

function g such that g produces from each 1n a descrip-

tion of 3-branching simple 2nfa Nn of O(n logn) states

that solves 3DSTCONn on inputs in Σn in time O(n2).

Moreover, Nn can reject all inputs outside of Σn.

Proof Sketch. Our 2nfa has a circular tape and moves

its tape head only to the right. Choose any input x = 〈G〉
to 3DSTCONn, where G = (V,E) is a degree-3 subgraph of

Kn. Notice that V = {0, 1, . . . , n− 1}.
We design Mn so that it works round by round in the

following way. At the first round, we assign vertex 0 in G

to v0 and move the tape head rightward from |c to $. Now,

assume by induction hypothesis that, at round i (≥ 0), we

have already chosen vertex vi and have moved the tape head

to $. Nondeterministically, we select an index j ∈ {1, 2, 3}
at scanning $ and then deterministically search for a row

indexed i in an adjacency list of G by moving the tape head

only from left to right along the circular tape. We then

read the content of the (i, j)-entry of the list. If it is ⊥,

then reject immediately. Next, assume otherwise. If vi+1 is

the (i, j)-entry, then we update the current vertex from vi

to vi+1. Whenever we reach vertex n− 1, we immediately

accept x and halt. If Mn visits more than n vertices, we

surely know that Mn cannot accept x. 2

Let us consider the converse of Lemma 2.5. Here, we prove

it only in a slightly weaker form.

Lemma 2.6 Let c > 0 be a constant. There exists a func-

tion g such that, for every c-branching simple 2nfa M with n

states, g takes input 〈M〉#x and outputs an encoding 〈Gx〉
of a subgraph Gx of K2(n+1)+1 of degree at most 2(c+ 1)

satisfying that M accepts x iff Gx ∈ 3DSTCON2(n+1)+1.

Moreover, g is computed by a certain nO(1)-state simple

2dfa with a write-only output tape.

3. Proofs of Theorems 1.2 and 1.3

We are now ready to give the desired proofs of Theorems

1.2–1.3 through the subsequent subsections.

3.1 Generalizations to PTIME,SPACE(·)
Theorems 1.2 and 1.3(1)–(2) are concerned with PsubLIN.

Nonetheless, it is possible to prove slightly more general theo-

rems, shown below as Theorems 3.1 and 3.2, for a complexity

class PTIME, SPACE(s(x,m(x))), defined in [11], which is

the union of all TIME, SPACE(p(|x|), s(x,m(x))) for any

positive polynomial p. The class PsubLIN is the union of all

PTIME, SPACE(m(x)ε`(|x|)) for any log-space size parame-

ter m, any constants k ≥ 1 and ε ∈ [0, 1), and any polylog

function `. naturally, we can define PsubLIN/poly to be a

non-uniform version of PsubLIN.

Theorem 3.1 Let F denote an arbitrary nonempty set

of functions ` : N → N+ such that, for every ` ∈ F and

every c > 0 and k ∈ N+, there are functions `, `′ ∈ F
such that `(cn logk n) ≤ `′(n) and `(n) + lognk ≤ `′′(n)

for all n ∈ N. Assume that
⋃

m PTIME, SPACE(`(m(x)))

is closed under ≤sL
m -reductions, where m ranges over all

log-space size parameters. The following three statements

are equivalent.

(1) There exists a function ` ∈ F such that

(3DSTCON,mver) is in
⋃

m PTIME, SPACE(`(m(x))).

(2) There are an ` ∈ F and a constant c > 0 such that

every L-uniform family of constant-branching simple

2nfa’s with at most cn logk n states is converted into

another L-family of O(`(n))-narrow 2afa’s with nO(1)

states that agree with them on all inputs.

(3) There are an ` ∈ F and a constant ε ∈ [0, 1) satisfying

the following: for each constant c ∈ N+, there exists

a log-space computable function f such that f takes

inputs of the form 〈M〉 for any c-branching n-state

simple 2nfa M and f produces another encoding of

O(`(n))-narrow 2afa with nO(1) states that agree with

M on all inputs.

Theorem 3.2 Let F denote an arbitrary nonempty set of

functions ` : N→ N+ such that, for every ` ∈ F and every

c > 0 and k ∈ N+, there are functions `, `′ ∈ F such that

`(cn logk n) ≤ `′(n) and `(n)+lognk ≤ `′′(n) for all n ∈ N.

Assume that
⋃

m PTIME, SPACE(`(m(x)))/poly is closed

under ≤sL
m -reductions, where m is any log-space size param-

eter. There is an ` ∈ F such that (3DSTCON,mver) is

in
⋃

m PTIME, SPACE(`(m(x)))/poly iff, for each constant

e ∈ N+, there are an ` ∈ F and a constant ε ∈ [0, 1) such

that every n-state e-branching simple 2nfa can be converted

into another nO(1)-state O(`(n))-narrow 2afa that agrees

with it on all inputs.

Proof of Theorems 1.2 and 1.3(1)–(2). Notice that

Theorems 1.2 and 1.3(1)–(2) are special cases of Theorems

3.1 and 3.2, respectively, where `(n) equals nε for a certain

constant ε ∈ [0, 1). Therefore, Theorems 1.2 and 1.3(1)–(2)

follow immediately. 2

Now, we return to Theorem 3.1 and describe its proof, in

which we use the fact from Section 2.2 that mver(x) ≤ |x| ≤
cmver(x) logmver(x) for an absolute constant c > 0.

Proof Sketch of Theorem 3.1. For convenience, given

a function `, we write C` for
⋃

m PTIME, SPACE(`(m(x))),

where m refers to any log-space size parameter.

[1 ⇒ 3] Assume that (3DSTCON,mver) ∈ C` for a cer-

tain function ` ∈ F . Let c > 0 be a constant. By applying

Proposition 2.1(1), we obtain a constant k ≥ 1 and an L-

IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan 5

Vol.2018-AL-168 No.1
2018/5/25

uniform family {Nn,l}n,l∈N of O(`(mver(x)))-narrow 2afa’s

of O(|x|k ·mver(x)) states that agree with 3DSTCON(x) on

all inputs x satisfying mver(x) = n. Take a log-space com-

putable function g that produces 〈Nn,l〉 from input 1n#1l.

For simplicity, let d = 2(n+ 1) + 1. By Lemma 2.6, there is

a function g that transforms 〈M〉#x to an encoding 〈Gx〉
of a subgraph Gx of Kn satisfying that M accepts x iff

Gx ∈ 3DSTCONd. Note that g is computed by a certain

simple 2dfa with nO(1) states.

Next, we want to design a log-space computable function

f that transforms a c-branching n-state simple 2nfa M to

another 2afa N of the desired type. The desired function f

works as follows. Let M be any c-branching simple 2nfa with

n states. We define an appropriate 2afa N to work as follows.

On input x, we generate 〈Gx〉 from 〈M〉#x by applying g.

Compute e = |〈Gx〉|, which is O(n logn). We then produce

Nd,e and run it on input 〈Gx〉. Note that we cannot actually

write down 〈Gx〉 onto a tape. However, since g is computed

by a simple 2dfa, we can produce any bit of 〈Gx〉 easily.

[3 ⇒ 2] Assuming (3), we obtain a log-space computable

function g that, from any c-branching n-state simple 2nfa,

produces an `(n)-narrow 2afa that agrees with it on all in-

puts. Let us take any L-uniform family {Mn}n∈N of simple

2nfa’s, each Mn of which has at most cn logk n states for ab-

solute constants c > 0 and k ∈ N+. By the L-uniformity of

{Mn}n∈N, we choose a log-space DTM N that produces

〈Mn〉 from 1n for each n ∈ N. By (3), we obtain an

`(cn logk n)-narrow 2afa 〈Nn〉 from 〈Mn〉 in polynomial time

using log space. Hence, {Nn}n∈N is L-uniform. Moreover,

by our assumption, there is a function `′ ∈ F such that

`(cn logk n) ≤ `′(n) for all n ∈ N. It then follows that Nn

has at most `′(n) states.

[2 ⇒ 1] Let c ≥ 1. Assume that we can convert any L-

uniform family of c-branching cn logk n-state simple 2nfa’s

into another L-uniform family of nO(1)-state O(`(n))-narrow

2afa that agrees with it on all inputs. Let us consider

{3DSTCONn}n∈N. By Lemma 2.5, we obtain an an L-

uniform family of e-branching simple 2nfa’s Nn of cn logn-

state that solves 3DSTCONn in time n2 on all inputs x with

mver(x) = n, where c, e ≥ 1 are constants.

Since mver(x) ≤ |x| ≤ emver(x) logmver(x) for a con-

stant e > 0 by Lemma 2.4, we obtain |x| ≤ en logn.

Apply (2), and we obtain 2afa’s, which has nO(1) states

and is O(`(cn logn))-narrow, solving {3DSTCONn}n∈N on

all inputs x, including all strings y satisfying mver(y) =

n. Define `′(n) = `(cn logn) for all n ∈ N. By

our assumption, `′ belongs to F . By Proposition

2.1(2), we conclude that (3DSTCON,mver) belongs to

TIME, SPACE(|x|O(1), `′(mver(x))), which is included in

C`′ . 2

The proof of Theorem 3.2 is in essence similar to that of

Theorem 3.1 except for the treatment of advice strings.

Proof Sketch of Theorem 3.2. [Only if – part] The

argument is similar to the one for [1 ⇒ 3] in the proof of

Theorem 3.1.

[If – part] Assume that every c-branching n-state sim-

ple 2nfa can be converted into another nO(1)-state O(`(n))-

narrow 2afa that agrees with it on all inputs. Hereafter,

we will describe how to compute (3DSTCON,mver) non-

uniformly in polynomial time using O(`(mver(x))) space.

By Lemma 2.5, we can take a constant c > 0 and a family

{Mn}n∈N of 3-branching simple 2nfa with at most cn logn

states recognizing {3DSTCONn}n∈N on all inputs x with

mver(x) = n. Moreover, Mn rejects all inputs x with

mver(x) 6= n.

We modify Mn to a new 2nfa M ′k(n), where k(n) =

dcn logne by appending k(n)−n extra dummy states, which,

in essence, neither contribute to the behavior of Mn nor en-

ter any accepting state. Note that M ′k(n) still computes

3DSTCONn(x) on all inputs x. Since M ′k(n) has k(n) states,

by our assumption, there are a constant e ∈ N+ and an

O(`(k(n)))-narrow 2afa Nk(n) with at most k(n)e states

that agrees with M ′k(n) on all inputs.

Take another function `′ ∈ F satisfying `(n) + logne ≤
`′(n) for all n ∈ N. Applying Proposition 2.2(2), we

immediately conclude that (3DSTCON,mver) belongs to

PTIME, SPACE(`(mver(x)) + lognO(1))/poly, which is in-

cluded in PTIME, SPACE(`′(mver(x)))/poly. 2

An argument similar to that of [1 ⇒ 3] in the proof of

Theorem 3.1 leads to Proposition 1.1 on top of the result of

Barnes et al. [2] on (DSTCON,mver).

Proof of Proposition 1.1. By the result of Barnes

et al. [2], it follows that (3DSTCON,mver) belongs

to PTIME, SPACE(n1−c/
√
logn), where n = mver(x).

By Proposition 2.1(1), we obtain an L-uniform family

{Mn,l}n,l∈N of O(n1−c/
√

logn)-narrow 2afa’s with nO(1)

states that solve {3DSTCONn}n∈N on all inputs x with

mver(x) = n. Consider any L-uniform family {Mn}n∈N of

c-branching simple 2nfa’s with O(n logn) states. We define

a 2afa N ′ that works as follows. We turn 〈Mn〉#x into 〈Gx〉
and apply N2(n+1)+1,|x| to 〈Gx〉. 2

3.2 Relationships among State Complexity

Classes

To complete the proof of Theorem 1.3, nevertheless, we

still need to show the logical equivalence between (1) and

(3) of the theorem. To achieve this goal, we first show the

following equivalence. This comes from Proposition 3.3.

Let us recall the state-complexity class 2Anarrow(f(n)).

In what follows, we present a close relationship between

PsubLIN and
⋃

ε∈[0,1) 2Anarrow(nε).

Proposition 3.3 Given a parameterized decision problem

(L,m) with log-space computable m, define Ln,l = {x ∈
L ∩ Σl | m(x) = n} and Ln,l = {x ∈ L ∩ Σl | m(x) = n}
for each pair n, l ∈ N. We set L = {(Ln,l, Ln,l)}n,l∈N.

IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan 6

Vol.2018-AL-168 No.1
2018/5/25

Assume that there are constants c1, c2 > 0 and k ≥ 1

for which c1m(x) ≤ |x| ≤ c2m(x) logkm(x) for all x with

|x| ≥ 2. It then follows that (L,m) ∈ PsubLIN/poly iff

L ∈
⋃

ε∈[0,1) 2Anarrow(nε).

As an immediate corollary of this proposition, we obtain

the following corollary.

Corollary 3.4 (3DSTCON,mver) ∈ PsubLIN/poly if

and only if {3DSTCONn}n∈N ∈
⋃

ε∈[0,1) 2Anarrow(nε).

Finally, we want to prove Theorem 1.3(3).

Proof Sketch of Theorem 1.3(3). Write L for

{3DSTCONn}n∈N. By Lemma 2.5, we obtain L ∈ 2linN. By

Corollary 3.4, it follows that 2linN ⊆
⋃

ε∈[0,1) 2Anarrow(nε)

iff L ∈
⋃

ε∈[0,1) 2Anarrow(nε). The equivalence between (1)

and (3) of Theorem 1.3 follows directly from Corollary 3.4

and the above results. 2

4. Case of Unary Finite Automata

For the proof of Theorem 1.4, we need a unary version of

{3DSTCONn}n∈N. For this purpose, we first define a unary

encoding of a degree-bounded subgraph of each complete

directed graph Kn. Let G = (V,E) be a degree-3 subgraph

of Kn with V = {0, 1, 2, . . . , n − 1}. The unary encoding

〈G〉unary of G is of the form 1e with e =
∏k

l=1 p(il,jl), where

E = {(i1, j1), (i2, j2), . . . , (ik, jk)} ⊆ V 2 with k = |E| and

each p(i,j) denotes the (i · n+ j)-th prime number. Since G

has degree at most 3, it follows that k ≤ 3n. It is known

that the rth prime number is at most cr log r for a certain

constant c > 0. Since i · n+ j ≤ n2 for all pairs i, j ∈ V , we

conclude that |〈G〉unary| = e ≤ (cn2 logn)3n. Let us define

{unary3DSTCONn}n∈N.

Unary 3DSTCON of Size n (unary3DSTCONn):

◦ Instance: 〈G〉unary for a subgraph G of Kn with vertices

of degree at most 3.

◦ Output: YES if there is a path from vertex 0 to vertex

n− 1; NO otherwise.

Proof Sketch of Theorem 1.4. (1) Assume that every

L-uniform family of O(n4 logk n)-state constant-branching

simple unary 2nfa’s can be converted into another L-uniform

family of equivalent nO(1)-state O(nε)-narrow unary 2afa’s.

We then take a function g that transforms 〈G〉 to 〈G〉unary.

Note that g can be implemented by a certain L-uniform fam-

ily of nO(1)-state simple 2dfa’s. We further take a constant

c > 0 and an L-uniform family {Mn}n∈N of c-branching

simple 2nfa’s of O(n4 logn) states, each Mn of which solves

unary3DSTCONn on all inputs. By our assumption, there is

an L-uniform family {Nn}n∈N of O(nε)-narrow 2afa’s with

nO(1) states, each Nn of which agrees with Mn on all inputs

for a suitable choice of constant ε ∈ [0, 1).

Let 〈G〉 be any input to 3DSTCONn, i.e., the unary cod-

ing of a subgraph G of Kn. We define the desired 2afa

as follows. On input 〈G〉 to 3DSTCONn, we apply g to

produce 〈G〉unary and run Nn on 〈G〉unary. This 2afa has

nO(1) states and is O(nε)-narrow, as we expect.

(2) Assume that, given c and k, there are a constant

ε ∈ [0, 1) and a log-space computable function g such that,

on input 〈M〉 of c-branching simple 2nfa with O(n4 logn)

states, g outputs its equivalent O(nε)-narrow 2afa N . It

suffices to consider the following machine. On input 〈G〉 of

a degree-3 subgraph G of Kn, we transform it to 〈G〉unary

and run M2(n+1)+1 on 〈G〉unary. 2

References

[1] E. Allender, S. Chen, T. Lou, P. A. Papakonstantinou,
and B. Tang. Width-parameterized SAT: time-space trade-
offs. Thoery of Computing 10 (2014) 297–339.

[2] G. Barnes, J. F. Buss, W. L. Ruzzo, and B. Schieber. A
sublinear space, polynomial time algorithm for directed
s-t connectivity. SIAM J. Comput. 27 (1998) 1273–1282.

[3] P. Berman and A. Lingas. On complexity of regular lan-
guages in terms of finite automata. Report 304, Institute
of Computer Science, Polish Academy of Science, Warsaw,
1977.

[4] D. Chakraborty and R. Tewari. Simulteneous time-space
upper bounds for red-blue path problem in planar DAGs.
In Proc. of WALCOM 2015, LNCS, vol. 8973, pp. 258–269,
2015.

[5] V. Geffert, C. Mereghetti, and G. Pighizzini. Convert-
ing two-way nondeterministic automata into simpler au-
tomata. Theoret. Comput. Sci. 295 (2003) 189–203.

[6] V. Geffert and G. Pighizzini. Two-way unary automata
versus logarithmic space. Inform. Comput. 209 (2011)
1016–1025.

[7] C. A. Kapoutsis. Minicomplexity. J. Automat. Lang. Com-
bin. 17 (2012) 205-224.

[8] C. A. Kapoutsis. Two-way automata versus logarithmic
space. Theory Comput. Syst. 55 (2014) 421–447.

[9] C. A. Kapoutsis and G. Pighizzini. Two-way automata
characterizations of L/poly versus NL. Theory Comput.
Syst. 56 (2015) 662–685.

[10] W. J. Sakoda and M. Sipser. Nondeterminism and the
size of two-way finite automata. In the Proc. of STOC
1978, pp. 275–286, 1978.

[11] T. Yamakami. The 2CNF Boolean formula satsifiability
problem and the linear space hypothesis. In the Porc. of
MFCS 2017, LIPIcs 83, 62:1–62:14, 2017. Available also
at arXiv:1709.10453.

[12] T. Yamakami. Parameterized graph connectivity and
polynomial-time sub-linear-space short reductions (pre-
liminary report). In the Proc. of RP 2017, LNCS, vol.
10506, pp. 176–191, 2017.

IPSJ SIG Technical Report

ⓒ 2018 Information Processing Society of Japan 7

Vol.2018-AL-168 No.1
2018/5/25

