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1. Introduction 
3D shape generation is a promising application of 

generative adversarial network (GAN). While GANs 

have been used in this task, previous work focused on 

mapping random latent vectors to 3D shapes, that is, the 

generated 3D shapes are uncontrolled， which means 

if we want to synthesize 3D shapes from one particular 

category, multiple models have to be trained. 

We address the issue of generating 3D shapes of 

our interest by providing additional category 

information. A novel approach for synthesizing 3D 

shapes given its category information by employing a 

conditional GAN is proposed, and it successfully 

generates discriminable 3D shapes from multiple 

categories.  

2. 3D Shape Generation 
2.1. 3D Shape Representation 

In this work, a 3D object is represented as a 

volume. The space in which a 3D object lies is split into 

multiple grids called voxel, which is either occupied by 

the 3D object or not. Thus, a 3D object turns into a 

binary 3-dimensional tensor, and only its shape 

information is kept. 

2.2. Generative Adversarial Network (GAN) 

Among all kind of generative models, recent 

developments of GAN demonstrate its powerful 

capability of generating novel realistic samples [1]. A 

GAN consist of two networks, namely, a generator and 

a discriminator. The discriminator tries to decide 

whether an input sample is from the real world or the 

generator. On the contrast, the generator attempts to 

generated samples that can fool the discriminator into 

determining the synthesized samples as real samples. 

After adversarial training of the two networks, the 

generator becomes able to mimic the real sample 

distribution. 

 The input of the generator is a randomly sampled 

vector z from a specified distribution, usually called a 

latent vector.  

2.3. 3D Shape Generation via GANs 

Several work has been done to generate 3D shapes 

from a random vector by GANs, such as 3D-GAN and  

 

 

 

 
 

3D-IWGAN [2]. Some work considers utilizing prior 

information. 3D-VAE-GAN convert a photo of an 

object into its corresponding 3D shape, while 3D- 

RecGAN reconstruct a complete 3D shape from a 

single depth view. 

In this research, the category information is taken 

into account when generating 3D shapes. 

3. 3D Shape Generation using Category Info. 
3.1. Architecture 

In this work, auxiliary classifier generative 

adversarial network (ACGAN), a variant of conditional 

GAN, is utilized to generate 3D shapes from category 

information. There are two improvements in the 

architecture of ACGAN compared to the vanilla GAN. 

First, besides the latent vector 𝐳 , the generator of 

ACGAN takes a one-hot vector 𝐜 representing category 

information as input. Second, an additional classifier 

network, of which the function is to determinate which 

category the input 3D shape belongs to, is stacked on 

top of the discriminator. Benefiting from the 

improvements, the generator of ACGAN is forced to 

generate 3D shapes matching the given category 

information. 

The generator is a 3D transposed convolutional 

neural network which takes a vector concatenated by 

the latent vector and the one hot vector as input. Two 

fully connected layers and three transposed 

convolutional layers are stacked consecutively, 

mapping a low-dimensional vector to a 3D tensor 

gradually, as shown in Figure 1. Batch normalization is 
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Figure1.Architecture of our model 
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applied after all hidden layers. The activation function 

of hidden layers is leaky ReLU with leaky rate 0.2 

while that of the output layer is tanh. 

The architecture of discriminator almost mirrors 

that of the generator except that transposed 

convolutional layers are replaced by convolutional 

layers. The classifier is a neural network consisting of 

two fully connected layers. 

3.2. Loss Function 
The loss function we used to train the model in this 

work consist of three parts as follows: 

𝐿𝐷 = −𝐸[logD(𝑥)] − 𝐸 [log (1 − 𝐷(𝐺(𝑧, 𝑐)))] 

𝐿𝐺 = −𝐸 [log (𝐷(𝐺(𝑧, 𝑐)))] 

𝐿𝑐 = −𝐸[log(𝑃(𝐶 = 𝑐|𝑥))]

− 𝐸[log𝑃(𝐶 = 𝑐|𝐺(𝑧, 𝑐))] 

where 𝐿𝐷/𝐿𝐺/𝐿𝑐  represents the loss of 

discriminator/generator/classifier, respectively. x/
G(𝑧, 𝑐) represents real/generated 3D shapes, and D(·) 
indicates the probability of the input 3D shape being 

real.   

  Similar to the training strategy of vanilla GAN, the 

generator and the discriminator has different training 

goals, and the parameters of generator and 

discriminator are updated alternately. The generator 

tries to minimize 𝐿𝐺 + 𝐿𝑐  while the discriminator 

attempts to minimize 𝐿𝐷 + 𝐿𝑐. 

4. Experiments and Evaluation 
4.1. Generation Experiment 

ShapeNetCore, an open 3D shape dataset, is used 

as training samples to train the model. ShapeNetCore 
contains roughly  55000 3D shapes over 55 object 

categories. In experiments, we choose five categories, 

namely, chair, table, sofa, airplane, and car to train the 

model because they contain the most 3D shapes.  

In training procedure, we use ADAM optimizer 

with the default setting. The learning rate is set to 0.001 

for the generator and 0.0002 for the discriminator. In 

consideration of computation cost, the resolution of 3D 

shape volume is set to 32, and a mini-batch of training 

samples contains 32 3D shapes. To stabilize training, 

10% of real 3D shapes are labeled as generated 3D 

shapes, which will prevent the discriminator from 

converging too fast, resulting in the generator learned 

nothing.  

The generated samples are shown in Figure 2. 

Each column represents 3D shapes that are generated 

from the same category. We find that although they are 

not real, they have sharp shapes discriminable to human. 

4.2. Quantitative Evaluation of Quality 
To evaluate the quality of samples generated by 

GAN quantitatively, we mainly consider how well the 

generated samples match the prior information, that is, 

to what extent the generated 3D shape will be correctly 

recognized as the category used to produce them. To 

this end，we train an additional classification network 

to predict the category of the generated samples. We 

suppose that the category predicted by the network will 

have a high probability of being the same as that used 

to generate the 3D shape if the generated 3D shape has 

good quality. The network is trained on ShapeNetCore 

which is split into train/validation/test set with a ratio 

7:2:1. The category used is the same as that of ACGAN 

and the network score 96.85% test accuracy.  

 We take into account the F score for each category 

and assume that the improvement of the quality of 

generated 3D shapes will increase of F score. Since 

during the training procedure, the classification 

network didn’t experience the test samples and the 

samples generated by ACGAN, it is a reasonable 

comparison between them. 

4.3. Results 
For comparison, we randomly generate 1280 3D 

shapes of each category and feed them into the 

classification network. The F score of 3D shapes from 

real test set and the generator is shown in table 1. 

  Although generated samples are discriminable to 

human, they struggle to acquire high F score partly 

because not each latent vector can be mapped to a 3D 

shape with high quality. 

Table 1. Comparison of F score of each category 

 sofa car chair table airplane 

Real 0.9080 0.9745 0.9535 0.9738 0.9756 

Fake 0.1533 0.1420 0.2412 0.2723 0.1188 

5. Conclusion and Future Work 
We proposed a novel 3D shape generation method 

given its category information by employing ACGAN. 

The generation results show that our model can 

generate discriminable 3D shapes. Future work will 

focus on improving the quality of generated 3D shapes 

and introducing more prior information. 
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Figure2.Generated 3D shapes.  
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