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1. INTRODUCTION AND MOTIVATION
Being an electronic device maker, in order to satisfy our cus-

tomers expectations regarding the quality of our products, we
have to grasp the quality of the components we use. Until now,
using the information in the specifications provided by the com-
ponent maker as well as our component expert’s experience was
our main way to evaluate the quality of those components. How-
ever, having accumulated over the years electronic components
failure records when a device failed, we assumed that mining
those records could help our experts getting a better grasp of com-
ponents quality by finding links between the specifications and
the failures.

Thus, our main motivation for this work is to succeed in:
( 1 ) Identifying key factors in electronic components failure
( 2 ) Predicting failure rate of said components

Applying machine learning techniques to small data is chal-
lenging due to the difficulty of avoiding overfitting. Our contri-
bution is how we used an expert’s knowledge to reduce overfitting
by having him sort by order of relevancy each explanatory vari-
able to guide our stepwise model selection by AIC(stepAIC) [4]
of our Generalized Linear Model(GLM) [2] in R[3] for one type
of component and one type of failure. In cross-validation, our
expert guided model shows an improvement of 130% when com-
pared to the normalized root-mean-square deviation (NRMSD) of
our non-expert guided model.

We fill first present our data specificities, then our method of
analysis and finally our results.

2. DATA SPECIFICITIES
As mentioned in the introduction, our data is what we qual-

ify as "small", and is presented in table 1. We have available
to us around 100 failures (

∑
f ≈ 100) of a certain type, spread

over around 30 components (c with f , 0) plus 100 non failing
components (c with f = 0) of a certain type. Each component’s
specifications are expressed in the form of 30 variables which can
be used as explanatory variables (n ≈ 30). .

The ratio f /b gives us the observed fail rate p̂ of a given com-
ponent c. One of our goal is to find the actual fail rate p but the
below specificities of our data was problematic:
• The non-null p̂ remains low in general ( p̂ < 0.00001)
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Table 1 Fail Records
Response Explanatory Variables

Component Name Bought Qty. Fail Qty. Spec1 ... Specn
c1 b1 f1 s11 ... s1n... ... ... ... ... ...
cm bm fm snm ... snm

• Half of our data has a low bought quantity (b < 10000)
Because of that, it is hard to estimate p since we have several
components with a relatively high p̂ for a low bought quantity.
We assumed that in those cases, it is highly likely that p̂ is far
from p, cases which can be explained by having bought only a
few lots of components including a bad one. Thus to fit those
specificities, we decided to use GLM which can take into account
this risk of p̂ being far from p.

3. METHOD OF ANALYSIS

Build GLM with all variables

Perform stepAIC from full model

Perform stepAIC from empty model

Guide stepAIC with expert knowledge ex-
pressed as graded explanatory variables *1

Fig. 1 Our Approach

As summarized in figure 1, and mentioned in the previous part,
we first built a GLM with every available explanatory variable
available. This resulted in a poor model fit wise with a high
mean squared error (MSE) and a high Akaike Information Cri-
terion(AIC)[1] of 66000 compared to our following modeling
attempts. To obtain a better model, we then performed a stepAIC
on the previous GLM which also gave a high AIC of 69000 and
MSE.

Next step was to let stepAIC examine models with a scope
starting from an empty formula to a formula containing all vari-
ables which finally yielded promising results with an AIC of 74.
The problem this time was that some of the variables kept by the
stepAIC were not satisfying for our expert as he deemed and ex-
plained that physically the kind of failure studied could not be
linked in any way to some of the kept variables plus since our
data set is small we were also afraid that our model would be too
overfitted.

Our final modeling attempt and our main contribution, was to

Details in Algorithm 1
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combine our expert’s knowledge by having him grade each po-
tential explanatory variables from 1(no link to the kind of fail-
ure studied, should be pruned) to 5(very confident this variable is
linked to this kind of failure) and to finally combine those graded
explanatory variables in the stepAIC as shown in algorithm 1.
Compared to previous models, it gave us an AIC of 104. Its
results will be detailed in part 4

To identify the key factors in electronic components failure,
during the various modeling phases, we recorded after each
stepAIC modeling phases the kept variables with a significant p-
value(<0.05).

Algorithm 1 stepAIC combined with Expert Knowledge
1: procedure makeExpertModel
2: input:
3: data← List of failureData
4: exVarGraded← set of graded explanatory variables
5: output:
6: GLM with variables chosen by stepAIC and exVarGraded
7: main:
8: currentGrade← maxGrade(exVarGraded)
9: while currentGrade ≥ minGrade(exVarGraded) do

10: currentExVar ← {x ∈ exVarGraded | grade = currentGrade}
11: currentModel← glm(data, currentExVar)
12: currentModel← stepAIC(currentModel, keptExVar, currentExVar)
13: if AIC(currentModel) ≥ prevAIC then return prevModel

14: prevAIC← AIC(currentModel)
15: prevModel← currentModel
16: keptExVar← var(currentModel)
17: currentGrade← currentGrade − 1
18: return currentModel

In order to combine the previously built GLM with our estab-
lished explanatory variables grade, we conceived Algorithm 1:

In descending order of grade importance(line 9 and line 17),
we take the explanatory variables corresponding to current grade
(line 10), make the GLM for those variables (line 11), se-
lect the best variables with stepAIC within current grade vari-
ables(line 12), and then check the resulting model’s AIC. If we
reached a better model compared to the one built with the previ-
ously processed explanatory variables corresponding to the pre-
vious (higher) grade, we loop to process the variables in the grade
below. If the previous model was better, we stop processing fur-
ther and return this model (line 13).

4. RESULTS
4.1 Fitting

The p-value for some of our explanatory variables obtained af-
ter making our GLM showed was significant (p-value < 0.05).
When we showed those results to our expert it allowed him
to confront his own assumptions on what part of the specifica-
tions he thought was relevant for the studied failure type to those
deemed significant GLM-wise. It revealed that the GLM was able
to extract both matching and non-matching knowledge to our ex-
pert’s. For most of the non-matching cases, it highlighted the high
proportion of outliers present in the available data and more im-
portantly it led us to prune out those variables to reduce the risk
of overfitting. For the matching cases, it reinforced the expert’s
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Fig. 2 Prediction confidence interval

confidence in his experience.
We present in figure 2 the actual predicted number of failures

(red dots) compared to the predicted number of failures within a
95% confidence interval for each of the components in our data.
As we can observe, all the actual values fit within their predicted
interval. Although not shown here, for our pure stepAIC based
model, we had one component which actual value did not fit in
its interval.

4.2 Cross-Validation
Due to the lack of data, we chose a leave one out approach

for our k-fold cross-validation. Since most of the components in
our data has a low failure rate, we thought it would be relevant
to compare our model’s MSE resulting from cross validation to
a trivial model only predicting a failure rate of 0 for any compo-
nents which we called Zero Model (ZM).

It shows encouraging results: our EGM has an MSE almost
five times better than the NEGM and 6.6% better than the ZM.
NRMSD wise, EGM is twice better than NEGM and 3.3% better
than ZM.

5. CONCLUSION
We successfully combined our expert’s knowledge with our

small data to assess more accurately our components key factors
in failures. We were also able to predict each components num-
ber of failures within a 95% interval of confidence with satisfying
cross-validation results.

Our future work will focus on applying this methodology to
other electronic components and most importantly, we will build
a framework where we accumulate expert knowledge and con-
stantly confront it to available data in order for them to make more
accurate decisions when considering buying new components.
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