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Linking videos and languages:
Representations and Their Applications

Mayu Otani5,a) Yuta Nakashima2,b) Esa Rahtu3,c) Janne Heikkilä4,d) Naokazu Yokoya1,e)

Abstract: Mimicking the human ability to understand visual data (images or videos) is a long-standing goal of com-
puter vision. To achieve visual content understanding in a computer, many recent works attempt to connect visual
and natural language data including object labels and descriptions. This attempt is important not only for visual under-
standing but also for broad applications such as content-based visual data retrieval and automatic description generation
to help visually impaired people. The goal of this paper is to develop cross-modal representations, which enable us
to associate videos with natural language. We explorer two directions for constructing cross-modal representations:
hand-crafted representations and data-driven representation learning. The experiments demonstrate the proposed rep-
resentations can be applied to a wide range of practical applications including query-focused video summarization and
content-based video retrieval with natural language queries.

1. Introduction
Once humans take a brief look at visual data (images or

videos), they can easily and quickly list various concepts in the
image and describe the visual content with natural language.
Mimicking this human ability, i.e., understanding and describ-
ing visual content, in a computer is a key technique for various
applications such as content-based image or video retrieval and
automatically describing visual content to help visually impaired
people understand the visual content.

One approach for connecting visual and natural language data
is to design a cross-modal embedding space. Figure 1 illustrates
the idea of cross-modal embedding space. Both images and texts
are represented as points in a common space so that those with
similar semantics are located at close points. For example, an im-
age of zebras in the field, as well as a sentence “a flock of zebras
grazing” should be mapped to nearby points.

One straightforward approach to constructing cross-modal rep-
resentation is to use visual concept recognition techniques. We
can obtain a list of visual concepts from an image by visual con-
cept classification or detection techniques. As visual concepts
are often described with nouns or verbs in natural language, we
can compute the semantic similarity between text and visual data
by matching words in a text and detected concept labels. Based
on this assumption, some work represents visual data by a set of
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Fig. 1 Illustration of cross-modal embedding space.

concept labels and natural language data by a set of words. This
cross-modal representation is often used as an intermediate rep-
resentation in description generation methods [7], [12].

While extensive research efforts had been made so far for de-
signing cross-modal representations, it was difficult to connect vi-
sual and natural language data because of the limited performance
of visual concept recognition models. Visual concept recognition
has been a challenging task, although it looks quite simple. In-
ferring visual concepts of an image involves finding patterns that
might be relevant to the visual concepts. Since humans are not
aware of how they find and generalize the visual patterns, imple-
menting how to recognize visual concepts in a computer has been
quite difficult.

The recent emergence of large-scale datasets and deep neural
networks (DNNs) facilitate visual concept recognition. In com-
puter vision, convolutional neural network-based classification
models have shown substantial improvement in visual concept
recognition tasks including object recognition [15], [26], [49] and
action recognition [19], [21]. Now, the state-of-the-art models
can even distinguish thousands of visual concepts [43].

An important advantage of the DNN-based approach is the
integration of the whole process involved in a task in a deep
model, which can be trained in an end-to-end manner. For exam-
ple, previous object recognition involves several processes: low-
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level feature extraction, feature transformation, and classification.
They are separately designed, and tuning low-level processing
(e.g., low-level feature extraction) to maximize the performance
of final output is hardly feasible. On the other hand, DNN-based
approach integrates these process into one deep model, and the
whole process can be optimized by fitting to large-scale data.
Given pairs of input and correct output, deep models can learn
useful features and how to use them.

This also accelerated the research for tasks that involve differ-
ent modalities, such as image or video captioning [3], [63]. Re-
cent works propose to associate embeddings of visual data and
natural languages with DNNs. In end-to-end learning, how to ex-
tract features from different modalities, as well as how to fuse
them can be learned seamlessly. This leads the improvement in
learning cross-modal embedding spaces for visions and language
[24], [64]. In DNN-based approach, one may not need to extract
concepts from images or natural language explicitly. Instead, one
will model how to map images and text to a common space.

The goal of this paper is to develop cross-modal representa-
tions for videos and natural languages. The representation should
capture complex semantics, and their similarity should follow hu-
man intuition on semantic similarity. Most works in this direc-
tion have tried to connect static images and short phrases or sets
of keywords [20], [24], and videos and natural language have
still significant room to explore. Different from static images,
videos have additional challenges to capture semantics because
they have temporal changes. Due to the temporal changes, the
semantics of videos are more complex. This complexity of con-
tent makes modeling video understanding more difficult. Simi-
lar challenge exists in natural language understanding. Since a
sentence in natural language may include various words, and the
semantics of each word highly depends on context, modeling the
semantics of sentences is also difficult.

As we mentioned above, techniques to connect videos and
text have some practical applications. To evaluate the perfor-
mance of our cross-modal representations, we will apply them
to several tasks, which involve videos and natural languages,
such as query-focused video summarization, video captioning,
and content-based video retrieval. By showing the results of these
applications, we will investigate the capability of our cross-modal
embedding space.

2. Related Work
The work in this paper is motivated by many previous works

that address to link vision and language modalities. This section
gives the overview of existing cross-modal representations and
applications that involve visual and language data.

2.1 Cross-modal Representations for Videos and Languages
Some early works proposed to use a set of concept labels as

cross-modal representations for static images and text [7], [33].
Farhadi et al. [7] introduced triplets of concept labels (object, ac-
tion, and scene) as representations, which represent the abstract
semantics of images and sentences. For videos, the approach by
Lin et al. [33] associates a parsed semantic graph of a query sen-
tence and visual cues based on object detection and tracking.

These works require explicit concept detection to construct
representations. Therefore, they cannot handle images or text
with unseen concepts. To achieve more flexible representations,
some works propose to develop a common embedding space, in
which visual and language data can be mapped [9], [22], [51].
This approach enables us to compute the semantic similarity be-
tween images and text based on the distance in the embedding
space without explicit concept detectors. For example, Socher et
al. [51] proposed to embed low-level image representations and
word vectors of object labels into a common embedding space
with neural network-based models. They demonstrated classifi-
cation of unseen visual concepts in the embedding space, which
is called as zero-shot learning.

The recent success of deep convolutional neural networks
(CNNs) together with large-scale visual datasets has led to sev-
eral powerful models for image understanding [15], [49], [52].
These models showed not only significant improvement in ob-
ject classification, but also highly generalized visual representa-
tions obtained from hidden layers of the deep models [5]. Deep
neural networks have also been used in the field of natural lan-
guage processing [24], [29]. These works demonstrated that neu-
ral network-based models are capable of encoding semantics of
text. For example, Kiros et al. [24] proposed sentence represen-
tation learning using recurrent neural networks (RNNs). They
also demonstrated joint learning of image and sentence embed-
ding models, which convert images and sentences to cross-modal
representations.

Cross-modal representation learning using deep neural net-
works is explored in many tasks [9], [22], [34], [64], [70]. Frome
et al. [9] proposed image classification by computing similarity
between joint representations of images and labels, and Zhu et
al. [70] addressed alignment of movie scenes with sentences in
a book using joint representations for video clips and sentences.
Their approach also computes the similarity between sentences
and subtitles of video clips to improve the performance of video-
sentence alignment.

2.2 Applications
Video Summarization

We develop video summarization methods as an applications
of the proposed representations in Section 3. Video summariza-
tion is a technique to generate a compact representation of videos,
which help users quickly understand their content.

To automatically select video excerpts from input videos, var-
ious ideas to asses the importance of video clips have been pro-
posed. Attractiveness is a widely employed selection criterion,
representing how well a clip attracts the attention of the audience
[6], [13], [27], [36].

Another criterion for video clip selection is representativeness;
video clips in a summary should be less redundant but cover most
of the original content, [11], [14], [64], [69]. One major ap-
proach to retrieving representative clips is video-clip clustering.
Gygli et al. [14] cast the selection of representative clips as a k-
medoids problem, which can be efficiently optimized due to its
sub-modularity. Zhao et al. [69] proposed an online video sum-
marization method. Their method generates a video summary by
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picking out video clips that are able to reconstruct the remaining
clips.

Another interesting research direction in video summariza-
tion is text-focused summarization, which controls the content
of video summaries using textual cues. Sharghi et al. [48] pro-
posed to extract video clips based on the relevance to keywords.
Research in this line attempts to associate video content and text,
such as scripts and query words, to generate a video summary
based on the input text. In Section 3, we propose an object-based
representation for videos and text for text-focused video summa-
rization.
Content-based Video and Language Retrieval

Due to the explosive growth of images and videos on the web,
visual retrieval has become a hot topic in computer vision and
machine learning [30], [31], [37]. Early work addressed content-
based video retrieval by detecting predefined concepts in videos,
such as objects, actions, and events [50], [60]. A single visual
concept may not be enough to spot the desired video, as users
are more likely to query with their combinations. Video retrieval
by natural language queries provides an intuitive way to make
a combination of concepts in a specific context represented in a
query. One possible approach is to detect visual concepts and
match them to keywords in a query [28], [33], [59], [61], but as
they require pre-trained concept detectors, unseen concepts are
missed.

To overcome such limitations, Socher et al. [51] proposed to
learn to embed images and concept labels into a common space,
which can handle unseen concepts. Several approaches in this
direction have been proposed on both image retrieval [9], [24]
and video retrieval [40], [64], [70]. Xu et al. [64] proposed a
deep neural network for video retrieval by sentence queries and
vise versa. They embed a video clip and a sentence into a com-
mon space to compute the similarity between them. Yu et al.’s
approach [67] learns a similarity metric between a whole video
content and a query sentence. In contrast to these methods, we
address to estimate the relevance that may vary within a video in
Section 6.

3. Object-based Representations for Summa-
rizing Personal Videos Using Blog Text

This section proposes object-based representations to capture
the semantics of videos and text. We assume that objects in
a video clip provide rich cues to understand events in a video,
and nouns in text also tell key concepts of text’s content as well.
Based on this assumption, we construct an object-based repre-
sentation that encodes objects in videos and nouns extracted from
text. We also define a similarity metric with this object-based rep-
resentation, which enables us to compute the semantic similarity
between a video and text.

In this work, as an application of our object-based represen-
tations, we develop a video summarization method that edits a
long video according to scripts written by a user. Specifically, our
video summarization system takes a text written for a video blog
post and unedited videos as input and produces a video summary
that has semantically relevant content to the blog post. During
video clip selection, we optimize the content similarity between

“deer” “cracker” “temple”
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Nouns
Video clip clusters
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Fig. 2 Overview of the proposed text-based video summarization method.
Given text written by a user, our method selects video clips based
on the content of the text, such that the video summary reflects the
user’s intentions.

an output video summary and the blog post, which can be com-
puted with our object-based representation.

3.1 Text-based Video Summarization
Our video summarization method takes videos with times-

tamps and the text written by the blog author as input and gener-
ates a video summary. The problem of video summarization can
be cast as a problem of selecting the optimal subset of video clips.
In this study, we design an objective function based on the con-
tent similarity between a set of clips and text. By selecting clips
that have high content similarity to the input text, our method
produces a video summary reflecting the blog author’s intentions.
Figure 2 illustrates an overview of our method. Our method first
extracts nouns from the input text. The videos are then segmented
and clustered into groups, each of which corresponds to an event.
Based on these clusters, we compute the priority of clips; highly
prioritized clips are more likely to be included in the video sum-
mary. After computing the priority, a video summary is produced
by selecting the optimal subset of clips.
3.1.1 Object-based Representations for Videos and Text
Encoding Text

Since objects in videos are often described with nouns, we ex-
tract nouns from the input text. The input text is represented by
an N-dimensional vector y, where N is a vocabulary size, and as-
sume that noun n corresponds to object n. We set yn = 1 if noun n
is included in the input text and 0 otherwise. For noun extraction,
we apply parts-of-speech tagging to the input text [57]. We also
remove predefined stop words because common words are hardly
informative.
Encoding video clips

We first perform video segmentation on lengthy input videos.
Because our method selects clips based on their objects, we set
clip boundaries where objects appear or disappear. To find these
clip boundaries, we employ the method by Huang et al. [17].
Their method tracks the number of keypoint matches and identi-
fies local minima. These local minima often correspond to frames
around which objects appear or disappear. Thus, we divide the
video at such frames.

Each video clip after video segmentation is represented by ob-
ject labels and their importance. Object-detection methods, such
as [10], can automatically find objects in the clips; however, to
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Input (a) (b)
Fig. 3 Maps of location-based object importance (a) and saliency-based ob-

ject importance (b).

focus on our clip selection performance without focusing on the
performance of the object-detection method, we manually anno-
tate object labels in this study, rather than detecting them auto-
matically. To do so, we extracted the middle frame of each clip
as a keyframe and annotated the object labels.

In this paper, we test two types of object importance: location-
based object importance, and saliency-based object importance.
Location-based object importance is simply based on the location
and the size of the bounding box of each object. The computation
of location-based importance relies on some heuristics: viz., (i) an
important object is more likely to be located near the center of a
frame, and (ii) it occupies a large area. Based on these heuristics,
the importance xm,n of object n in a clip m is defined as

xm,n =

∫
ω∈Ωn

N(ω|µ,Σ)dω, (1)

where Ωn is object n’s bounding box, and N is the normal dis-
tribution whose mean µ is the frame’s center position and whose
variance Σ is a predefined parameter.

The other type of object importance incorporates saliency
maps. Because salient objects are likely to be visually important,
we employ the average of saliency values over a bounding box
as the saliency-based object importance. In this thesis, we use
saliency maps based on Yan et al.’s method [65]. Saliency maps
are computed based on local contrast values and center bias, i.e.,
areas near the center of an image are more likely to be important.
To get stable results, their method generates multiple image lay-
ers, which are coarse representations at different levels, and com-
putes a saliency map for each layer. Saliency maps in different
scales are fused to produce a final output. Note that the proposed
method can use any other method to obtain saliency maps, such as
[1], [39], [41], without significant modification. Figure 3 shows
the maps of location-based object importance and saliency-based
object importance, where brighter areas are regarded as more im-
portant.

After computing the importance, the input videos are repre-
sented by a set of clips X = {xm ∈ RN | m = 1, . . . ,M}, where
xm is a vector representation of the clip m. N is the number of
object categories, and each element xm,n denotes the importance
of object n in that clip.
3.1.2 Text-based Clip Selection

Let ψ(S ) be a function that gives an N-dimensional vector rep-
resentation of a subset of clips S ⊆ X, given by

ψ(S ) =
∑
xm∈S

pm(y)xm, (2)

where pm(y) and xm denote a priority value of the clip m con-
ditioned on the input text and an N-dimensional vector repre-
sentation for clip m, respectively. The priority value represents
how relevant the clip is to the input text, which is computed with

cluster-based content similarity.
With the video summary representation, we formulate the

problem of selecting a subset of clips S ∗ ⊆ X as:

S ∗ = argmax
S⊆X

O(ψ(X), y), (3)

s.t.
∑
xm∈S

lm ≤ L. (4)

Here, L is the length of the resulting summary, which is given by
the user, and lm is the length of clip m. The objective function to
be maximized in video summarization is a linear combination of
two terms as follows:

O(ψ(S ), y) = osim(ψ(S ), y) + αocov(ψ(S )), (5)

where osim is the content similarity between S and the input text
y, and ocov is the content coverage. Moreover, α is a parame-
ter that balances these two terms. Selecting a subset with high
content similarity reflects the blog author’s intentions in the re-
sulting summary, and the content-coverage term encourages the
summary to include various content, provided that it is relevant to
the input text. We obtain a subset of video clips that maximize the
objective function by solving a knapsack problem with dynamic
programming algorithm.

The following sections detail the clip priority, the content-
similarity term, and the content-coverage term.
Clip Priority

Our method uses content similarity based on the objects in each
video clip and the nouns in the input text. However, this can be
unreliable, because the clip usually contains a subset of objects
that appear in the event. For example, suppose an input text writes
about a certain event in which a certain object is involved. If this
object is not very specific to the event, even though it appears
throughout the input video, content similarity based solely on ob-
jects and nouns can pick out all clips that come with the object.

To find clips that are more relevant to the input text, we intro-
duce clustering-based clip priority. First, we assume that an event
is temporally concentrated, i.e., clips capturing the same event
have similar timestamps. Under this assumption, we can cluster
clips based on their timestamps and the objects in them. For clus-
tering, we use affinity propagation [8]. The similarity between
two clips xi and x j is defined as

A(xi, x j) = exp
[
−
λmin(|τi − τ j|, θ)

M

]
+ γJ(xi, x j), (6)

where τi is the temporal frame index of the middle frame in clip
i, and M denotes the total number of frames in the input videos.
Here, J(·, ·) gives the weighted Jaccard similarity, defined as

J(xi, x j) =
∑

n min(xi,n, x j,n)∑
n max(xi,n, x j,n)

. (7)

In Eq. (6), λ controls the reduction in temporal similarity, and
θ is a threshold for the temporal distance |τi − τ j|. We suppose
that clips extracted from different videos are temporally distinct.
Thus, the temporal distance |τi−τ j| of such clips is set to a thresh-
old θ. Moreover, γ is a parameter to balance the temporal simi-
larity with the object based similarity. The number of clusters is
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automatically determined from data and self-similarity A(xi, x j).
Low self-similarity values result in a small number of clusters.
We set the self-similarity values to the median of the pair-wise
similarities as suggested in [8].

We assume that a cluster is relevant to the input text when the
nouns corresponding to the objects in the cluster are included in
the input text. Thus, we again use the weighted Jaccard similarity
between a cluster and the input text to determine the priority of
all clips in the cluster. Let ci be a representation of the cluster that
includes clip i, each element of which represents whether the cor-
responding object appears in the cluster. More specifically, we
set ci,n = 1 if any clip in the cluster has xm,n > 0, and ci,n = 0
otherwise. Using this, the priority value of clip i is computed as

pi(y) = J(ci, y). (8)

Content-similarity Term
We quantify the content similarity between the set S of clips

and the input text y using the weighted Jaccard similarity in
Eq. (7). This computes the similarity between object labels in
selected videos and nouns in the input text as follows:

osim(x, y) = J(ψ(S ), y). (9)

This similarity indirectly relies on priority through ψ(S ). The
value increases when S includes clips with high priority that have
objects in common with the input text.
Content-coverage Term

If content coverage is not considered, some relevant clips can
be rejected when their objects do not appear explicitly in the input
text. This can result in a summary that is entirely composed of
clips with similar content. To avoid this, our method encourages
the inclusion of relevant clips that cover diverse content. Cov-
erage of the original content is a criterion that is widely used in
summarization tasks [53], [55], [58]. Insofar as our goal is to gen-
erate a summary that reflects the blog author’s intentions, we list
objects annotated to highly prioritized video clips. The coverage
of the set of objects is rewarded during clip selection.

Let Γ = (γ1, . . . , γN) represent a set of objects in highly priori-
tized clips, where γn = 1 if clip xi ∈ X whose pi > ρ has xi,n > 0
and γn = 0 otherwise. We define the coverage ocov(ψ(S )) using
the weighted Jaccard similarity in Eq. (7) to compute similarity
between sets of objects in selected clips and prioritized ones as
follows:

ocov(ψ(S )) = J(ψ(S ),Γ). (10)

This term represents how well S covers the content of highly pri-
oritized clips.

3.2 Evaluation and Discussion
Assessing the quality of video summaries is a challenging

problem itself. Most previous methods are evaluated based on
user studies [23], [35] or by comparing the resulting summaries
with manually created reference summaries [13], [32], [42].
Since our task (i.e., video summarization for video blogs) is a
novel video summarization task, there is no established way to
evaluate the performance of our method. Therefore, we opt to

T1

On a warm day in March, we went to Nara Park. Before getting
to Nara Park, we went to Saho river. There were cherry trees
along the river. The river is well known for cherry blossom, and
many people visit during the season of blossom. I took many
videos of other students. One of the students, Nakashima used
a special camera for his study. He took some videos, carrying
the camera along the river. It was a beautiful place and I want
to visit there next spring again.

T2

We went to Nara Park. A lot of deer were around the Nandai-
mon. There were also a few cracker shops, and many tourists
enjoyed feeding deer. I bought some crackers and deer immedi-
ately gathered around me.

T3
Nandaimon is a famous gate in the Nara Park. I saw a statue of
Nandaimon. There were many people.

Fig. 4 Original texts used in the experiment.

Table 1 Input and methods evaluated.

Input Method
(a) Videos Uniform sampling
(b) Videos Cluster-based
(c) Videos and text Proposed method
(d) Videos and text Description-based w/o content coverage
(e) Videos and text Description-based w/o content coverage and preference

conduct a user study.
The user study consists of two parts. First, a participant is

asked to score multiple video summaries for a given blog post re-
garding their suitability to the blog post. To investigate our video
summaries in detail, we administer an additional questionnaire
regarding other properties, including redundancy, content cover-
age, and the relevance of the summary to the input text. This first
part evaluates the video summaries from the perspective of the
video blog viewers. The second part of the user study involves
collecting blocks of text written by the participants and generat-
ing video summaries using the text. The participants are asked
to score the video summaries based on their text. Consequently,
this part evaluates the video summaries from the perspective of
the blog authors.

3.3 Evaluation from the Viewers’ Perspective
Because this is the first attempt to use video summarization for

video blogs, we investigate whether blog viewers believe that the
video summaries generated by our method are suitable for a given
blog post. We also evaluate video summaries in terms of several
properties, such as redundancy and content coverage, which are
widely used criteria in the domain of video summarization.

To compile a dataset, we recorded multiple videos of a short
trip, totaling 80 min. As input text, we used the three blocks of
text shown in Figure 4, each of which describes different scenes
from the input videos. We compared our method to multiple base-
line methods (see Table 1). Methods (a) and (b) generate video
summaries without text. Uniform sampling (a) is a simple yet
effective way to produce video summaries, and this method is
widely employed as a baseline. We sampled 2-sec. clips with
uniform intervals. The clustering-based method (b) utilizes the
clustering results described in Section 3.1.2. With this method,
clips are selected from cluster representatives, such that they in-
clude as many objects as possible. We also compared some vari-
ants of our method. Method (c) is our full method. Method (d)
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Fig. 5 Keyframes of our video summaries for each input text.

Table 2 Average scores regarding suitability to a video blog post. Bold
values indicate the highest scores for each group.

method Input text Group
G1 G2 G3

(a) Uniform sampling None 3.38 1.67 2.67
(b) Cluster-based None 4.38 1.83 2.00

(c) Proposed method
T1 3.38 1.00 1.83
T2 2.25 4.33 2.67
T3 1.38 1.67 3.67

(d) Description-based
w/o content coverage

T1 3.25 1.00 1.83
T2 2.13 4.17 2.67
T3 1.13 2.17 4.00

(e) Description-based
w/o content coverage and preference

T1 2.25 3.00 2.50
T2 2.00 3.17 3.00
T3 2.13 2.67 3.17

is basically our text-based method, but with the content coverage
term ocov excluded (i.e., α = 0). In addition to the exclusion of
the coverage term ocov, method (e) also excludes clip priority by
setting the priority values of all clips to 1. All of these variants
used location-based object importance.

For location-based object importance, the parameters were set
to Σ = diag(8w, 8h), where w and h are the width and the height
of the frame, respectively. Other parameters were heuristically
determined as follows: α = 0.25, λ = 5, θ = 3600, γ = 0.25,
ρ = 0.1, and L = 20. Here, θ corresponds to 60 seconds, because
our input videos were 60 fps. We generated video summaries us-
ing methods (c)–(e) for each input text. In total, we generated
11 videos. Keyframes of the clips selected with our full method
are shown in Figure 5. These resulting summaries show that our
method selects clips from different scenes based on the content of
the input texts.

We recruited 20 participants from both genders; all participants
were in their 20s or 30s. They reviewed a video blog post and
were asked to score each video in terms of how well the video
suited the blog post. The scores ranged from 1 to 5, where 1
means that the video definitely does not suit the blog post, and
5 means that it suits the post very well. The participants were
divided into three groups. Group 1 (G1), Group 2 (G2), and
Group 3 (G3) had eight, six, and six people, respectively. The
blog post T1 was displayed for subjects in G1, blog post T2 for
G2, and blog post T3 for G3. After reviewing a blog post, sub-
jects rated baseline video summaries and description-based video
summaries. Subjects also scored video summaries generated us-
ing blog posts for other groups.

Table 2 shows the scores for each group. For all groups, our
full method (c) was scored as either the first or second best. Vari-
ant (d) was also rated highly. Interestingly, the participants in
G1 chose clustering-based video summary (b) as most suitable

Fig. 6 Averages and standard deviations of the scores for Q2.

Fig. 7 Averages and standard deviations of the scores for Q3.

for text T1. In fact, the clustering-based method (b) only acci-
dentally included many clips relevant to T1, which contributed
to the high score. Furthermore, we found that only the summary
generated by the clustering-based method (b) included scenes just
before the events described in T1. Although the inclusion of such
clips was not part of the design of the clustering-based method,
such clips can lead to a better comprehension of the events by
providing context. The effect of such connecting video clips on
video summaries is discussed in [35].

The results from comparing the scores among variants of our
methods (c)–(e) imply that the content coverage term ocov did
not significantly affect the score. On the other hand, the use of
clip priority resulted in a significant improvement in the suitabil-
ity for the video blog. From these results, we conclude that the
participants generally preferred our method over other methods.
These results also suggest that the inclusion of clips that intro-
duce scenes of interest can further improve the suitability for a
blog post. The participants were also asked to score videos in
terms of the following three aspects, to investigate the perception
of our video summary compared to that of the baselines.

Q1 How well the video matches the input text (relevance to the
input text).

Q2 How redundant the video is.

Q3 How well the summarized video covers the content of the
entire video.

The scores ranged from 1 to 5. For Q1, a score of 1 means that
the video does not represent the text at all, whereas 5 means that
it represents the text very well. For Q2, scores 1 and 5 mean
“significantly redundant” and “hardly redundant,” respectively.
For Q3, score 1 means significant content is missing, whereas
5 means that most content is covered. The relevance to the input
text is an important property for video summarization designed
for video blogs. Because redundancy and content coverage is
widely used in evaluations of video summaries, we also investi-
gated these properties.

Table 3, Figure 6, and Figure 7 show the results for Q1, Q2,
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Table 3 Average scores of similarity to the input text (Q1). Bold values are the highest scores for each
input text.

Baselines Our method
(a) (b) (c) (d) (e)

Text None T1 T2 T3 T1 T2 T3 T1 T2 T3
T1 3.45 3.65 3.90 1.60 1.30 3.8 1.65 1.15 2.75 1.55 1.65
T2 1.70 1.85 1.10 4.50 1.75 1.20 4.45 1.70 2.35 3.70 3.40
T3 1.35 1.20 1.10 1.65 4.70 1.10 1.30 4.75 1.55 2.80 3.10

Clustering-based

Neither agree nor disagreeAgree

Strongly disagreeDisagree

Strongly agree

UniformSaliency-basedLocation-based

Fig. 8 Answers for Q4.

and Q3, respectively. Regarding Q1, our summaries received the
highest scores in terms of the relevance to the input text.

This means that our method was able to select clips appropriate
to the input text. On the other hand, in terms of redundancy (Q2)
and content coverage (Q3), our method received lower scores
than uniform sampling (a) and the clustering-based method (b).
Because our video summaries have multiple clips relevant to the
input texts, the clips can have similar content. This resulted in
lower scores for Q2. The score for Q3 was also expected because
our method restricts those clips that are included in the summary
based on the input text. Although our method was not rated
highly for Q2 (redundancy) and Q3 (content coverage), the par-
ticipants preferred our video summaries for the video blog posts,
according to Table 2. This indicates that, for blog viewers, the
relevance to the input text is more important for video blogs than
redundancy or content coverage.
3.3.1 Evaluation from the Blog Author’s Perspective

We also collected texts written by 12 participants, all male and
all in their 20s. We asked them to score the video summaries that
were generated based on their texts. The participants reviewed
all unedited videos in our dataset and wrote a short description of
what interested them. By comparing participants’responses, we
investigated how their intention was reflected in the video sum-
maries.

The video dataset was the same as that of the previous section.
In this evaluation, we compared four methods. Two were the
same as the baselines (a) and (b) in the previous section. The
other two methods were our proposed method, with location-
based object importance and saliency-based object importance.
The parameter ρ was set to the minimum of the priority for the
top-90% of the clips.

For the first question, participants were asked to rate whether
they would want to use the video summary generated by each
method for their video blog post (Q4). Scores 1 and 5 indi-
cate “strongly disagree” and “strongly agree,” respectively. Ta-
ble 4 shows the average and the standard deviation of the scores.
Whereas our method with saliency-based object importance and
uniform sampling received the same average score, the standard

Relevance to the text Inclusion of more scenes Being aesthetically good

Neither important nor unimportantVery important

Not at all importantVery unimportant

Extremely important

Fig. 9 Answers regarding the importance of video-summary properties.

deviation of our method was smaller. Figure 8 shows details of
the results. This reveals that uniform sampling received both pos-
itive and negative responses, whereas only a few participants neg-
atively rated our method with saliency-based object importance.

To identify the factors that affect these scores, we asked the
participants to answer an additional questionnaire regarding their
assessment of the following properties of video summaries:

• Relevance to the text in the blog post

• Inclusion of more scenes than the text

• Aesthetic quality (composition, camera motion, etc.).

The participants were asked whether these respective properties
were important. Figure 9 shows the results. The results show that
many participants thought that the relevance to the blog post and
the aesthetic quality were important for video summaries. We be-
lieve that this is the main reason why the participants preferred
saliency-based object importance to location-based object impor-
tance.

3.4 Summary
We proposed object-based cross-modal representations for

videos and text and introduced the semantic similarity using the
representations. We demonstrated a text-based video summariza-
tion method for video blog authoring as an application of our rep-
resentation. The user study showed that our video summarization
method benefits video blog authoring. The results also suggest
that considering the aesthetic quality in addition to relevance to a
blog post can further improve video summaries.

4. Learning Semantic Representations by
Linking Videos and Sentences

This section describes a representation learning method to as-
sociate videos and sentences. Different from the object-based
representations described in Section 3, we address to incorporate
various concepts including actions, scenes and attributes to com-
pute cross-modal representations. Specifically, we construct deep
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Table 4 Averages and standard deviations of scores for Q4.

Our Methods Baseline Methods
Location-based (c) Saliency-based Uniform (a) Clustering-based (b)

Avg. 2.92 3.50 3.50 3.33
Std. 1.31 0.80 1.31 1.44

models that convert a video clip and a sentence to vector repre-
sentations in a common embedding space, where their semantic
similarity correlates to their negative distance.

Our cross-modal representations are validated on the task of
content-based video retrieval. We demonstrate content-based
video and sentence retrieval between video clips and sentences
using our cross-modal representations. Our embedding models
are further extended with web image search to disambiguate the
semantics of sentences, which can be helpful for content-based
video and sentence retrieval applications.

4.1 Cross-modal Representation Learning for Videos and
Sentences

We propose a neural network-based embedding model to ex-
tract cross-modal representations for videos and sentences. Our
embedding model consists of two sub-networks, each of which
encodes videos and sentences, respectively. Moreover, we also
propose to enhance sentence embedding using web images.

4.2 Video Embedding
In our approach, we employ two CNN architectures: 19-layer

VGG [49] and GoogLeNet [52], both of which are pre-trained on
ImageNet [46]. We replace the classifier layer in each model with
two fully-connected layers. Specifically, we compute activations
of the VGG’s fc7 layer or the GoogLeNet’s inception 5b layer
and feed them to additional fully-connected layers.

We extract frames from a video at 1 fps as in [64]. Let
V = {v1, . . . vN} be a set of frames vi, where vn ∈ Rdv is a vi-
sual feature extracted from n-th frame (dv=4,096 for VGG, and
dv=1,024 for GoogLeNet). The video embedding x ∈ Rde is com-
puted by:

x = mean
v∈V

[tanh(Wv2 tanh(Wv1v + bv1 ) + bv2 )]. (11)

Here, Wv1 ∈ Rdh×dv , bv1 ∈ Rdh , Wv2 ∈ Rde×dh , and bv2 ∈ Rde are
the learnable parameters of the fully-connected layers. mean[·]
denotes a mean pooling, which take the average of input vectors.

4.3 Sentence Embedding
For the sentence sub-network, we use skip-thought vector

model by Kiros et al. [24], which encodes a sentence into 4800-
dimensional vectors with an RNN. Similarly to the video sub-
network, we introduce two fully-connected layers with hyper-
bolic tangent nonlinearity (but without a mean pooling layer). We
encode sentences into vector representations using skip-thought
that is an RNN pre-trained with a large-scale book corpus [24].

We use combine-skip in [24], which is a concatenation of out-
puts from two separate RNNs trained with different datasets. We
denote the output of combine-skip by tcs ∈ Rdc , where dc=4,800.

We then transform the skip-thought vectors tcs into a sentence
embedding y with two fully-connected layers as:

Pooling}

+

Loss

Web images

Video

“.”“A” “dog” “is” “eating” “watermelon”

Pooling}

Sentence

Fully-connected LayersCNN for Videos

CNN for Web Images

RNN for Sentences

RNN RNN RNN RNN RNN RNN

Fig. 10 Illustration of our video and sentence embedding with web images.
The orange component is the sentence embedding model that takes
a sentence and corresponding web images as input. Video embed-
ding model is denoted by the blue component.

y = tanh(Ws2 tanh(Ws1 tcs + bs1 ) + bs2 ), (12)

where Ws1 ∈ Rdh×dc , bs1 ∈ Rdh , Ws2 ∈ Rde×dh , and bs2 ∈ Rde are the
learnable parameters of sentence embedding.

4.4 Sentence Embedding with Web Images
In addition to the sentence embedding model, we propose to

extend the sentence embedding with web images. To enhance the
sentence embedding, we retrieve relevant web images that are ex-
pected to disambiguate semantics of the sentence. For example,
the word “keyboard” can be interpreted as a musical instrument or
an input device for computers. If the word comes with “play,” the
meaning of “keyboard” narrows down to a musical instrument.
This means that a specific combination of words can reduce the
possible visual concepts relevant to the sentence, which may not
be fully encoded even with the state-of-the-art RNN-based ap-
proach like [24].

We propose to take this into account by using web image search
results. Since most image search engines use surrounding text to
retrieve images, we can expect that they are responsive to such
word combinations. Consequently, we retrieve web images us-
ing the input sentence as a query and download the results. The
web images are fused with the input sentence by applying a two-
branch neural network as shown in Figure 10.

This sentence embedding model consists of two branches that
merge the outputs of a CNN-based network for web images and
an RNN-based network for a sentence described in Section 4.3.
Before computing the sentence embedding, we download top-K
results of web image search with the input sentence as a query.
Let Z = {z1 . . . zK} be a set of web images. We utilize the same
architecture as the video embedding and compute an intermediate
representation ez ∈ Rde that integrates the web images as:

ez = mean
z∈Z

[tanh(Wz2 tanh(Wz1 z + bz1 ) + bz2 )], (13)

where Wz1 ∈ Rdh×dv , bz1 ∈ Rdh , Wz2 ∈ Rde×dh , and bz2 ∈ Rde are
the leanable parameters of the two fully-connected layers.

Once the outputs ez are computed, the sentence embedding us-
ing web images yz is computed as:
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yz =
1
2

(y + ez). (14)

By this simple mixture of y and ez, the sentence and web images
directly influence the sentence embedding.

4.5 Joint Learning of Embedding Models
We jointly train both embedding models for videos and sen-

tences using pairs of videos and associated sentences in a train-
ing set by minimizing the contrastive loss [4]. In our approach,
the contrastive loss decreases when embeddings of videos and
sentences with similar semantics get closer to each other in the
embedding space, and those with dissimilar semantics get farther
apart.

The training process requires a set of positive and negative
video-sentence pairs. A positive pair contains a video and a sen-
tence that are semantically relevant, and a negative pair contains
irrelevant ones. During training, we get a positive pair by sam-
pling a video and its description. Let {(xn, yn) | n = 1, . . . ,N}
be the set of positive pairs. Given a positive pair (xn, yn),
we sample irrelevant sentences and compute their embeddings
Y′ = {y′1 . . . y′Nc

}, as well as, videos X′ = {x′1 . . . x′Nc
} from the

training set, which are used to build two sets of negative pairs
{(xn, y

′) | y′ ∈ Y′} and {(x′, yn) | x′ ∈ X′}. Our embedding mod-
els for sentences and videos are jointly optimized by minimizing
the contrastive loss defined as:

Loss(xn, xn) =
1

1 + 2Nc

{
d(xn, yn)

+
∑
y′∈Y′

max(0, α − d(xn, y
′))

+
∑
x′∈X′

max(0, α − d(x′, yn))
}
, (15)

where d(·, ·) denotes euclidean distance between embeddings.
The hyperparameter α is a margin. Negative pairs with smaller
distances than α are penalized. Margin α is set to the largest dis-
tance of positive pairs before training so that most negative pairs
influence the model parameters at the beginning of training.

4.6 Experiments
Dataset: We used the YouTube dataset [2] consisting of 80K

English descriptions for 1,970 videos. We first divided the dataset
into 1,200, 100, and 670 videos for training, validation, and test,
respectively, as in [66]. Then, we extracted five-second clips from
each original video in a sliding-window manner. As a result, we
obtained 8,001, 628, and 4,499 clips for the training, validation,
and test sets, respectively. For each clip, we picked five ground
truth descriptions out of those associated with its original video.

We collected top-5 image search results for each sentence us-
ing the Bing image search engine. We used a sentence modified
by lowercasing and punctuation removal as a query. In order to
eliminate cartoons and clip art, the image type was limited to pho-
tos using Bing API.

Video Retrieval: Given a video and a query sentence, we
extracted five-second video clips from the video and computed
Euclidean distances from the query to the clips. We used their
median as the distance of the original video and the query.

We ranked the videos based on the distance to each query and
recorded the rank of the ground truth video.

Sentence Retrieval: For the sentence retrieval task, we ranked
sentences for each query video. We computed the distances be-
tween a sentence and a query video in the same way as the video
retrieval task. Note that each video has five ground truth sen-
tences; thus, we recorded the highest rank among them.

Evaluation Metrics: We report recall rates at top-1, -5, and
-10, the average and median rank, which are standard metrics
employed in the retrieval evaluation. We found that some videos
in the dataset had sentences whose semantics were almost the
same (e.g., “A group of women is dancing” and “Women are
dancing”). For the video that is annotated with one of such sen-
tences, the other sentence is treated as incorrect with the recall
rates, which does not agree with human judges. Therefore, we
employed additional evaluation metrics widely used in the de-
scription generation task, i.e., CIDEr, BLUE@4, and METEOR
[3]. They compute agreement scores in different ways using a
retrieved sentence and a set of ground truth ones associated with
a query video. Thus, these metrics give high scores for semanti-
cally relevant sentences even if they are not annotated to a query
video. We computed the scores of the top-ranked sentence for
each video using the evaluation script provided in the Microsoft
COCO Evaluation Server [3]. In our experiments, all ground truth
descriptions for each original video are used to compute these
scores.
4.6.1 Effects of Each Component of Our Approach

In order to investigate the influence of each component of our
approach, we tested some variations of our full model. The scores
of the models on the video and sentence retrieval tasks are shown
in Table 5. Our full model that computes sentence embedding
using web images is denoted by ALL2. ALL1 is a variation of
ALL2 that computes embeddings with one fully-connected layer
with the unit size of de. Comparison between ALL1 and ALL2

indicates that the number of fully-connected layers in embedding
is not essential.

Our model which does not use web images to compute sen-
tence embeddings is denoted by VS. The comparison between
our full model ALL and VS reveals the contributions of web im-
ages. VGG+ALL2 had better average rank (aR) than VGG+VS
on both video and sentence retrieval, and comparison between
GoogLeNet+ALL2 and GoogLeNet+VS also shows a clear ad-
vantage of incorporating web images.

We also tested a model without sentences, which is denoted by
VI. In VI, the sentence embeddings are computed only from web
images. We investigated the effect of using both sentences and
web images by comparing VI to our full model ALL2. The re-
sults show that sentences are necessary. The comparison between
VI and VS also indicates that sentences provide main cues for the
retrieval task.

The scores of retrieved sentences computed by CIDEr,
BLEU@4, and METEOR are shown in Table 6. In all metrics,
our full model using both sentences and web images (ALL1 and
ALL2) outperformed to other models (VS and VI). In summary,
contributions by sentences and web images were non-trivial, and
the best performance was achieved by using both of them.
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Table 5 Video and sentence retrieval results. R@K is recall at top K results (higher values are better). aR
and mR are the average and median of rank (lower values are better). Bold values denote best
scores of each metric.

Video retrieval Sentence retrieval
Models R@1 R@5 R@10 aR mR R@1 R@5 R@10 aR mR

Random Ranking 0.15 0.79 1.48 335.92 333 0.22 0.69 1.32 561.32 439
VGG+VS 6.12 21.88 33.22 58.98 24 7.01 18.66 27.16 131.33 35
VGG+VI 4.03 13.70 21.40 94.62 48 5.67 17.91 28.21 116.86 38

VGG+ALL1 6.48 20.15 30.51 59.53 26 10.60 25.22 36.42 85.90 21
VGG+ALL2 5.97 21.31 32.54 56.01 24 8.66 22.84 33.13 100.14 29

GoogLeNet+VS 7.49 22.84 33.10 54.14 22 8.51 21.34 30.45 114.66 33
GoogLeNet+VI 4.24 16.42 24.96 84.48 41 6.87 17.31 30.00 96.78 30

GoogLeNet+ALL1 5.52 18.93 28.90 60.38 28 9.85 27.01 38.36 75.23 19
GoogLeNet+ALL2 7.67 23.40 34.99 49.08 21 9.85 24.18 33.73 85.16 22

ST [24] 2.63 11.55 19.34 106.00 51 2.99 10.90 17.46 241.00 77
DVCT [64] - - - 224.10 - - - - 236.27 -

Query GoogLeNet+VS GoogLeNet+ALL2
(1) A man is playing a keyboard.

(2) A monkey is fighting with a man.

Query GoogLeNet+VI GoogLeNet+ALL2
(3) A boy is singing into a microphone.

(4) A cat is pawing in a water bowl.

Fig. 11 Examples of video retrieval results. Left: Query sentences and web images. Center: Top-3 re-
trieved videos by GoogLeNet+VS and VI. Right: Top-3 retrieved videos by GoogLeNet+ALL2.

Table 6 Evaluated scores of retrieved sentences. All values are reported in
percentage (%). Higher scores are better.

Models CIDEr BLEU METEOR
VGG+VS 30.44 27.16 25.74
VGG+VI 29.00 22.42 22.99
VGG+ALL1 42.52 30.81 27.77
VGG+ALL2 32.56 27.39 26.58
GoogLeNet+VS 33.82 26.97 25.99
GoogLeNet+VI 35.08 24.56 24.16
GoogLeNet+ALL1 43.52 29.99 27.48
GoogLeNet+ALL2 38.08 29.28 26.50

Some examples of retrieved videos by GoogLeNet+VS,
GoogLeNet+VI, and GoogLeNet+ALL2 are shown in Figure 11.
These results suggest that web images reduced the ambiguity of
queries’ semantics by providing hints on their visual concepts.
For example, with the sentence (1) “A man is playing a keyboard,”
retrieval results of GoogleNet+VS includes two videos of a key-
board on a laptop as well as one on a musical instrument. On the
other hand, all top-3 results by GoogleNet+ALL2 are about mu-
sical instruments. We observed that web images retrieved by the
query (1) included several images of musical instruments, which
looked to be helpful to clarify the semantics of the query. How-

ever, irrelevant image search results can harm the video retrieval
performance. A query “A monkey is fighting with a man” in (2)
resulted in irrelevant web images, and our full model failed to get
correct videos.

Compared to GoogLeNet+VI, our full model obtained more
videos with relevant content for other queries. These results sug-
gest that both sentence and web images are important for the per-
formance of content-based video retrieval. The example in (4)
also got irrelevant images as in (2), but this result indicates that
our model may recover from irrelevant image search results by
combining a query sentence.
4.6.2 Comparison to Prior Work

The approach for image and sentence retrieval by Kiros et
al. [24] applies linear transformations to CNN-based image and
RNN-based sentence representations to embed them into a com-
mon space. Note that their model was designed for the image and
sentence retrieval tasks; thus, we extracted the middle frame as a
keyframe and trained the model with pairs of a keyframe and a
sentence. Xu et al. [64] introduced neural network-based embed-
ding models for videos and sentences. Their approach embeds
videos and SVO triplets extracted from sentences into an embed-
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“She kisses his cheek”

Multi-clip video

Relevance estimation

Retrieved frames

Fig. 12 Given a natural language query, fine-grained video retrieval finds
video frames which the query describes. An input video consists of
multiple video clips.

ding space. Kiros et al.’s and Xu et al.’s approaches are denoted
by ST and DVCT, respectively.

Scores in Table 5 indicates that our model clearly outperformed
prior work in both video and sentence retrieval tasks. There is a
significant difference in performance of DVCT and others. ST
and ours encode all words in a sentence, while DVCT only en-
codes its SVO triplets. This suggests that using all words in a
sentence together with an RNN is necessary to get good embed-
dings.

5. Summary
We developed neural network-based embedding models for

videos and sentences. Our embedding models are tested on the
task of content-based video and sentence retrieval. The experi-
mental results demonstrated that our embedding model extended
with web images can disambiguate the semantics of sentences
and benefits the retrieval performance. The future work includes
the development of a video embedding that considers temporal
structures of videos.

6. Representation Learning for Fine-grained
Video Retrieval by Sentence Queries

In this section, we address to learn time-varying representa-
tions for content-based video retrieval (CBVR). The embedding
models in Section 4 encode a video clip into one feature vector.
However, that approach cannot capture the change of semantics
along time. In order to represent the dynamic change of content
within a video clip, we propose to produce a sequence of fea-
ture vectors as a video representation. We expect that this time-
varying representation is helpful to model real-world videos such
as movies or YouTube videos, which are long and consist of mul-
tiple video clips.

As in Section 4, we try to map both sentences and videos
into a common embedding space, where a video is represented
by a sequence of feature vectors. One interesting application
of this representation is localizing content in a multi-clip video
with a natural language query. Given a description, e.g. “She
kisses his cheek”, we would like to find corresponding short video
clips from a long video (Figure 12). We call this task as fine-

Video description
dataset

Description Query

Relevance label

A group of people are dancing

Shuffle
Concatenate

Multi-clip video

Fig. 13 FGVR examples are generated from video-description datasets. A
video clip associated with a description is combined with randomly
sampled videos. This results in a multi-clip video and a sentence
which describes only a part of the video.

grained video retrieval (FGVR). In contrast to existing CBVR
tasks, FGVR aims to handle more complex videos which may
have multiple clips and varying content within a video. Thus,
we expect that FGVR techniques contribute to many applications
for real-world videos, for example, scene search from a lengthy
video, and alignment of roughly annotated metadata and videos.

In this section, we describe representation learning by solving
the FGVR task. We construct FGVR models that encode videos
and sentences into cross-modal representations as in Section 4.
The models are trained to localize video content which is seman-
tically relevant to a sentence query. The task of FGVR works as
strong supervision that makes a model encode time-varying se-
mantics into a sequential representation, as well as, map videos
and sentences into a cross-modal embedding space.

Most methods that temporally associate video content with lan-
guages, such as action localization, use frame-level labels indi-
cating the start and the end point of the desired content. How-
ever, there do not exist many datasets that have multi-clip videos
and sentences with temporal annotation. Making a dataset that is
large enough to develop recent deep neural network models will
require an immense amount of human intervention, thus we facili-
tate representation learning by synthesizing examples using exist-
ing datasets. While we do not have video-sentence datasets with
temporal annotation, there are several large-scale datasets that
provide videos and their descriptions only [2], [44], [47], [62].
We propose to compile a query sentence and a multi-clip video
with temporal annotation from video-description datasets and a
training scheme using the synthesized video-query pairs. As our
data generation scheme can be applied to any video-description
datasets, we can scale training datasets. Importantly, the ex-
perimental results demonstrate that our training scheme enables
FGVR models to localize query-relevant content in real-world
videos, while the models are trained on synthesized videos.

6.1 Fine-grained Video Retrieval
In the FGVR task, the input is a video consisting of multiple

clips and a natural language query. The goal is to retrieve a sub-
set of frames whose content is semantically relevant to the query
(Figure 12). Specifically, given a sentence and video frames
V = {v1, . . . vT }, where vt is a visual feature extracted from the t-th
frame, FGVR estimates relevance scores R = {r1, . . . , rT } at each
time step to retrieve frames. This task is similar to the video re-
trieval task for finding videos in a database which are relevant to a
query. However, video retrieval tasks often implicitly assume that
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each video in the dataset is short and can be represented by a sin-
gle query sentence. This assumption is not valid for most videos,
e.g., broadcast programs, movies, and even YouTube videos. A
majority of these videos are lengthy and come with multiple con-
cepts or scenes. The FGVR task relaxes this assumption; that
is only a small part of the target video is relevant to a sentence
query.

6.2 Data Generation
Training deep models usually requires large-scale datasets.

Since there are no existing datasets for FGVR, we compile
training examples for FGVR by extending the existing CBVR
datasets. For FGVR examples, videos must 1) consist of multiple
clips, 2) have corresponding query sentence related to a part of
the video, and 3) be annotated with frame-level relevance labels.
Since there is no dataset tailored for this task, we make video and
query pairs from a large-scale video-description dataset, such as
[44], [62].

The data generation using a video-description dataset is illus-
trated in Figure 13. To get a video consisting of multiple clips, we
sample several video clips and their corresponding descriptions.
We then choose one of the descriptions as a query sentence and
concatenate the video clips in random order. Concatenation of
multiple videos results in shot boundaries like most edited videos.
The frames in a video clip corresponding to the selected query
sentence are labeled as relevant frames, and other frames as irrel-
evant ones. By doing this, we can generate a number of videos
where only a small part of it is relevant to a query sentence. Our
data generation scheme can be applied to any dataset which pro-
vides videos and descriptions. This enables us to train FGVR
methods on diverse videos provided by existing datasets.

6.3 Models for FVGR
We introduce several video embedding models that read video

frames and produce a sequence of feature vectors. In order to
cover possible models to capture content dynamics, we develop
models with clip-level and frame-level video encoding. Each
video clip or frame and a query sentence are mapped to a com-
mon feature space, and we estimate the relevance between them
by computing the similarity of their representations in the feature
space. In all methods, we employ the pool5 layer of ResNet-50
[15] to extract visual features V from video frames.
6.3.1 Text Embedding Models

For text encoding, we employ two models that encode a se-
quence of words {w1, . . . , wN} into a vector representation t, where
wn is a word embedding vector. One is the word pooling-based
model (W-Pool). With W-Pool model, input word embeddings
are averaged to be transformed with a fully-connected layer.

The other is the word LSTM model (W-LSTM) that encodes a
sequence of word embeddings with an LSTM layer, i.e.,

hn, cn = LSTM(wn, hn−1, cn−1), (16)

where hn and cn are a hidden state and a memory cell of the LSTM
layer, respectively. We employ the last hidden state hN as a rep-
resentation of the sentence in the common feature space.

6.3.2 Dynamic Video Embedding Models
Clip-level Video Embedding

One possible approach is to divide an input video into short
video clips and outputs a feature vector for each video clip as il-
lustrated in Figure 14 (left). We call this approach as a clip-level
approach. We test two temporal video segmentation for this ap-
proach: Ground truth video segmentation uses clip boundaries
in synthesized videos, and uniform segmentation divides videos
with a uniform interval. Similarly to [56], we implement two neu-
ral network models that take a sequence of frames {vts , . . . , vte } in
a video clip as input and produce a vector representation x that
summarizes the frames.

Frame pooling (F-Pool): This model summarizes the frames
{vts , . . . , vte } in a video clip by average pooling. The averaged fea-
ture vectors are fed to a fully-connected layer with the hyperbolic
tangent non-linearity. In this work, we set the unit size of the
fully-connected layer to 256.

Weighted average (WA): This model incorporates the soft-
attention mechanism [66] in frame pooling. The weights ai of
the frame vi is computed based on the frame feature and a query
sentence by

ei = w
T
a tanh(Wa[y, vi] + ba), (17)

ai = exp(ei)/
tn∑

j=ts

exp(e j), (18)

where wa, Wa, and ba are learnable parameters, and [·, ·] denotes
the concatenation of vectors. The vector y is a text embedding
computed with a text encoding model described in Section 6.3.1.
Using the weights, we obtain a weighted sum of frames and feed
it to a fully-connected layer to get a clip representation x as:

ṽwa =

te∑
i=ts

aivi, (19)

x = tanh(Wwaṽwa + bwa), (20)

where Wwa and bwa are parameters of the fully-connected layer.
Frame-level Video Encoding

In the clip-level approach, an input video needs to be seg-
mented beforehand; however, segment boundaries are not always
available, and temporal video segmentation itself is still a chal-
lenging task. Another direction for this task is to read frames and
produce a feature vector at each time step as in Figure 14 (right).
For this approach, we implemented three models that encodes
video frames to a sequence of vector representations {x1, . . . , xT }.

Sliding window (SW): This model reads an input frame se-
quence in the sliding window fashion. At each time step, we
perform average pooling over frames within a temporal window
and feed its output to a fully-connected layer in the same way as
the F-Pool model. We set the temporal window size to 5 and the
model reads frames with a stride of 1.

Bidirectional-LSTM (biLSTM): The biLSTM model utilizes
a two-layer LSTM network that reads frames in forward and
backward directions. This bidirectional LSTM is employed in
several recent works to model video frames [16], [68]. Hidden
states at each time step are concatenated and transformed with a
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Video embedding

Text embedding

Relevance score

Clip

“A man is conducting
with happy excitement.”

Clip-level approach

Relevance score

Video embedding

Text embedding

“A man is conducting
with happy excitement.”

Frame-level approach
Fig. 14 Illustration of clip-level (left) and frame-level (right) embedding models. Clip-level model sum-

marizes frames in a clip and produces a feature vector. On the other hand, frame-level approach
outputs a feature vector for every frame. These models are trained to localize video parts, which
are semantically relevant to a query sentence.

fully-connected layer as:

xt = tanh(W[hforward
t , hbackward

t ] + b), (21)

where hforward
t and hbackward

t are hidden states of the forward-
LSTM and the backward-LSTM layers for the input frame vt,
respectively.

Fully-connected (FC): This model is a variation of the biL-
STM model. We remove the temporal connection by replacing
the bidirectional LSTM layers with two fully-connected layers.
This model estimates relevance scores in a frame-by-frame fash-
ion. Therefore, this model is equivalent to frame-level CBVR.

6.4 Similarity Metrics for Relevance Score
After a vector representations for clips or frames are obtained,

relevance scores R = {r1, . . . , rT } are computed. In this study,
we test cosine similarity and partial order similarity [56]. Partial
order similarity between two vectors is computed as:

rt = −∥max(y − xt, 0)∥2, (22)

where y and xt are non-negative vectors. Therefore, we com-
pute the absolute values of the outputs of models and apply L2-
normalization before computing the partial order similarity. Note
that partial order similarity is not order-invariant.

6.5 Training
We train the models described in Section 6.3 using video-

sentence pairs synthesized as in Section 6.2. The models for
videos and sentences are jointly trained so that the query rele-
vance scores of relevant frames are larger than those of others.
We compute an averaged score of relevant and irrelevant frames
and update the model to make the difference between the scores
larger. During the training, a model is trained by minimizing the
loss computed from predicted relevance score R = {r1, . . . , rT }
and ground truth label L = {l1, . . . , lT } as:

Loss(R, L) = max(−Rpos + Rneg + µ, 0), (23)

Rpos =
1

Npos

T∑
t=1

ltrt, (24)

Rneg =
1

Nneg

T∑
t=1

(1 − lt)rt, (25)

where Npos and Nneg are the number of relevant and irrelevant
frames in a video, respectively. lt is a label representing the
frame’s relevance/irrelevance to a query sentence and rt is rele-
vance score, which is computed as in Section 6.4. We set lt = 1
if the frame is relevant, and otherwise 0. The parameter µ is a
predefined margin to penalize the smaller difference between the
averaged score of relevant and irrelevant frames than the mar-
gin. Models of the clip-level approach do not produce frame-level
scores, thus we spread a clip-level score to all frames in the clip.

6.6 Experiments
We evaluated learned representations on the task of FGVR. We

generated FGVR examples from two datasets, MSR Video to Text
(MSR-VTT) [62] and the MPII Movie Description dataset (MPII-
MD) [45], and investigate the performance of each model.
6.6.1 Datasets

We tested video and sentence encoding models on the MSR-
VTT and the MPII-MD datasets. The MSR-VTT dataset includes
10,000 YouTube video clips, and 20 descriptions are annotated
for each video clip. MPII Movie Description dataset has 118,507
video clips from movies, and each video clip is annotated with
one description. For the MSR-VTT dataset, we used training and
test splits provided by the MSR-VTT official web page. For the
MPII-MD dataset, we used splits for the LSMDC’16 movie an-
notation and retrieval task [56]. Word vocabulary is collected
from descriptions in the training split. The descriptions were
normalized by punctuation removal and lowercasing, then we
compiled a vocabulary dictionary by sampling words occurring
more than three times in training queries, which results in 8,935
words for the YouTube dataset and 10,066 words for the movie
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Query: He is up a tree

Query: She sits on his lap

Query: They bump a parked car

Fig. 15 Examples of relevance score estimation by the biLSTM model on movie videos.

dataset. The videos were down-sampled at 5 fps and rescaled
to 244 × 244. During training, we sampled two video clips for
each video-description pair to create FGVR examples as in Fig-
ure 13. Since most video clips in the datasets have similar dura-
tions, which can be a strong prior, the first and the last few sec-
onds of video clips are randomly trimmed so that the video clips
have 20-100% of their original length. The average durations of
videos compiled from the MSR-VTT dataset is 32 seconds and
those from the MPII-MD dataset is 8.6 seconds.
6.6.2 Qualitative Evaluation

We show examples of the biLSTM model on short movie ex-
cerpts to demonstrate that the model can be used for real-world
videos (see Figure 15). The ground truth parts are indicated by
yellow areas in the figure. Note that the ground truth labels are
based on where the query sentence is originally annotated in a
video captioning dataset, and other frames can also be relevant to
the query. Moreover, the start and end points of a specific event
are ambiguous, especially in movies. The examples of top two
rows show that the biLSTM can roughly localize content rele-
vant to the queries. However, the biLSTM model failed by giving
high scores for irrelevant frames in the bottom row. The input
video of this example shows a dark scene, and the scene changes
rapidly. Moreover, the video has unusual events since it is a fan-
tasy movie. We assume that these characteristics of the input
video made it difficult to capture the video content.
6.6.3 Quantitative Evaluation

We conducted a quantitative evaluation of predicting relevant
frames from multi-clipped videos on the MSR-VTT and the
MPII-MD datasets. We generated test videos in the same way
as in Section 6.2 from test splits of the datasets. For each test
sample, we computed frame-level relevance scores of a video to a
query sentence, and then evaluated the performance with average
precision (AP). We report the mean and the standard deviation
(the values in parenthesis) of the AP scores over all test samples
in Table 7. To compute AP, the clip-level scores were transformed

to frame-level scores by simply spreading the clip-level score to
all frames in the clip. The scores obtained by random score pre-
diction are reported in the bottom row.

Overall, cosine similarity performs better than partial order
similarity in this task. For clip-level approaches, there are no sig-
nificant differences between models. Note that these scores with
ground truth clip boundaries (GT) can be regarded as a sort of
upper bounds of the clip-level approaches. We also report scores
obtained by uniformly dividing an input video into three clips
(UNI). These results suggest that the performance of clip-level
FGVR methods highly relies on temporal video segmentation.

We can also observe that the frame-level approach (FC, SW,
and biLSTM models), which does not require temporal video seg-
mentation, achieves good retrieval performance on the MSR-VTT
dataset. This suggests that video segmentation is not necessary
for FGVR. From the comparison between models for the frame-
level approach, we can see that incorporating nearby frames im-
proves the performance. This might be because context obtained
from other frames is helpful to understand a video content.

For the MPII-MD dataset, all baselines resulted in lower scores
since videos and sentences in the dataset are more challenging.
Many of the sentences often describe complex scenes, of which
LSTM may have difficulties in encoding the semantics. More-
over, movies often have dark and low-contrast scenes, which may
cause failures in understanding the visual content.

7. Summary
In this work, we propose to learn sequential vector represen-

tation for videos to encode dynamics of content within a video.
Our video embedding model and sentence embedding model are
jointly trained by solving the FGVR task to localize video content
according to a query sentence. The FGVR results on some videos
from movies suggest that our approach can retrieve video parts
from real-world videos although our models are trained on gener-
ated video-query pairs. We expect that text embedding methods
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Table 7 Mean average precision (AP) scores (%) of FGVR. GT denotes ground truth clip boundaries,
and UNI denotes uniform segmentation.

video model /
sentence model

clip
boundaries

MSR-VTT MPII-MD
cosine p-order cosine p-order

F-Pool /W-Pool GT 86.5 (27.9) 80.9 (31.5) 77.7 (33.2) 73.6 (34.8)
UNI 81.1 (22.5) 76.0 (25.2) 74.4 (26.6) 70.7 (27.4)

F-Pool /W-LSTM GT 85.4 (28.7) 79.2 (32.3) 74.8 (34.3) 69.0 (35.8)
UNI 80.1 (23.1) 75.9 (25.3) 72.5 (27.6) 68.2 (28.4)

WA /W-LSTM GT 86.4 (28.0) 75.9 (33.7) 75.8 (34.0) 69.0 (35.9)
UNI 79.7 (23.2) 71.0 (26.7) 72.6 (27.4) 67.4 (28.5)

FC /W-LSTM — 80.9 (23.7) 75.7 (25.2) 73.1 (27.7) 63.3 (27.6)
SW /W-LSTM — 83.3 (22.9) 76.3 (25.7) 73.5 (27.9) 69.8 (28.8)

biLSTM /W-LSTM — 83.8 (22.7) 72.5 (25.7) 76.1 (28.9) 61.7 (26.5)
by chance — 47.0 (12.2) 49.4 (17.6)

that can handle long sentences, which have complex semantics,
will be a key component for further improvement.

8. Conclusion
This paper has proposed several cross-modal representations

for videos and languages. We have explored two approaches for
developing cross-modal representations. One is manually design-
ing a cross-modal representation for videos and languages. The
other approach is data-driven representation learning. Evaluating
the performance of representation is unclear; thus we investigate
how our cross-modal representations work in practical tasks, such
as video summarization and content-based video retrieval. Exper-
imental results demonstrated that our cross-modal representations
well capture the semantics of videos and languages, and benefit
some applications described above.

One significant criticism for recent video understanding re-
search is that settings of many video understanding tasks includ-
ing content-based video retrieval and captioning do not involve
temporal reasoning. Many of these tasks can be often solved
by focusing on a single keyframe. For further improvement of
cross-modal representations, it is insightful to explore novel tasks
or applications that require temporal reasoning. There are sev-
eral emerging applications, such as video question answering
[18], [38], [54], and dense video captioning [25]. These are chal-
lenging tasks, and addressing these tasks will lead to a new frame-
work to associate videos and languages.
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