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Variational Bayesian Image Restoration
with Transformation Parameter Estimation

Motoharu Sonogashira1,a) Takuya Funatomi2,b) Masaaki Iiyama1,c) MichihikoMinoh3,d)

Abstract: Image restoration is essential for high-quality photography and used in many applications. Its objective
is to estimate a clean image from one or more degraded images affected by problem-specific transformation with an
unknown parameter. Traditionally, the estimation of this transformation parameter has limited the effectiveness of
restoration, since it can be unstable in the presence of severe or complex degradation. In this work, we overcome this
difficulty by estimating multiple parameters simultaneously via stable joint inference enabled by variational Bayes.
Specifically, we developed novel methods for three problems of restoration: multiframe denoising, deblurring, and
devignetting. The established methodology can address various restoration problems in a unified Bayesian framework,
and also achieves high quality restoration for a wide range of images owing to stable and fully automatic parameter
tuning, thereby extending the real-world applicability of restoration.
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Fig. 1: Image degradation types.

1. Introduction
Image restoration is a long-studied topic in the field of image

processing [1]. Essentially, its goal is to remove various types of
degradation from images. Noise (Fig. 1(a)) is one of the most typ-
ical types of image degradation, which randomly alters the light
intensity values of image pixels. Blur (Fig. 1(b)) is another type
of degradation that obscures image details, such as contours and
textures. Vignetting (Fig. 1(c)) is also common in real images,
which makes the periphery of an image darker than its center.
Digital image restoration for reduction of such undesirable degra-
dation effects is important for high-quality photography, and thus
has a wide range of applications [2].

In general, a problem of image restoration can be considered
as estimation of a clean image without degradation from one or
more degraded images [1], assuming the degradation process de-
picted in Fig. 2. Here, each degraded image is affected by image
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Fig. 2: Image degradation process.

transformation, which describes optical effect in image capturing
such as blur. To constrain the possible range of transformation,
it is common to assume that the transformation can be uniquely
determined by an image-dependent parameter. While this trans-
formation parameter has traditionally been assumed to be known,
its true value is often unknown in reality; thus, to perform restora-
tion, we need to guess its value. The most näive approach is man-
ual parameter tuning, which is obviously time-consuming and
often impractical. Alternatively, a reasonable value of a trans-
formation parameter may be found automatically by estimation
from degraded images. However, automatic parameter tuning is
not trivial in the real world, where images are affected by a variety
of transformation, and also by noise. Since such degradation can
damage informative image features that help distinguish trans-
formation, pre-estimation of a transformation parameter before
restoration can be quite unstable and often inaccurate, leading
to poor restoration quality. Although restrictive parameterization
schemes have been proposed to alleviate this difficulty [3], they
have been found too inflexible to represent the variety of trans-
formation in the real world. Therefore, the effectiveness of tradi-
tional image restoration has been strictly limited due to unknown
transformation parameters in image degradation.

In this work, we aim to overcome the difficulty with unknown
transformation parameters in image restoration. To this end, we
follow the approach of automatic parameter tuning to achieve
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higher applicability than manual parameter tuning; however, we
consider multiple unknown parameters not separately but jointly,
thereby dealing with transformation, noise, and other unknown
factors simultaneously. Specifically, we establish a methodology
to jointly estimate a transformation parameter and a clean image
from degraded images by making full use of the family of statis-
tical techniques called variational Bayes (VB) [4], which enables
stable statistical inference on multiple latent variables in consid-
eration of their dependency and uncertainty. To realize the VB
methodology of image restoration and demonstrate its effective-
ness for practical imaging scenarios, we developed novel methods
for three important problems of image restoration: multiframe de-
noising, deblurring, and devignetting. Through extensive experi-
ments, we confirmed that the proposed VB methods are highly ef-
fective and often outperform previous methods, especially when
degradation is severe, dealing with a variety of transformation
without manual parameter tuning.

The proposed VB methodology of image restoration, which is
the main contribution of this work, has various advantages over
traditional image restoration. First, the proposed methodology
can address various image restoration problems in a unified man-
ner, i.e., by specifying a transformation type for each problem
in a Bayesian model and then performing principled VB infer-
ence. Thus, it facilitates the development of novel methods for
various image restoration problems. Second, the VB approach
enables more effective image restoration, i.e., achieves higher
image quality, than traditional non-VB approaches. This is be-
cause VB restoration can deal with a variety of transformation
without resorting to restrictive parameterization, even if images
to be restored are affected by severe degradation, owing to sta-
ble parameter estimation via joint VB inference. Third, VB en-
ables automatic tuning of other image-dependent parameters than
transformation parameters, which have been manually tuned in
traditional image restoration. Hence, the proposed VB methods
can restore a wide range of images without troublesome manual
parameter tuning, thereby extending the applicability of image
restoration in the real world.

The rest of this paper is organized as follows. In Section 2,
a general overview on VB image restoration is provided, moti-
vating the above-mentioned three problems of image restoration
with different transformation parameters. Then, these problems
are addressed in the following three chapters, i.e., multiframe de-
noising in Section 3, deblurring in Section 4, and devignetting in
Section 5. Finally, this work is concluded with a discussion on
future work in Section 6.

2. Variational Bayesian Image Restoration
2.1 Image Restoration

The imaging system of a digital camera captures an image by
recording the intensity of light from a targeted scene using an op-
tical sensor, which consists of photon-detecting cells arranged in
a two-dimensional grid on a plane [2]; here, all light rays from
a single point in the scene should converge exactly on a single
cell, which is represented by a single pixel of the captured image,
after being narrowed by an aperture and bent by a lens. In real-
ity, however, this expectation does not hold when some objects in

the scene have gone out of focus, or when the camera or objects
have moved during exposure. Then, the light rays spread over
multiple cells, resulting in blur. Moreover, if multiple images of
the same scene are taken from different viewpoints or at differ-
ent times, a single scene point may be looked at by more than
one cell, producing displacement between images. Besides, since
physical components of the imaging system do not accept incom-
ing light uniformly, the sensitivity to light can also vary between
cells, leading to vignetting. Finally, the light intensity recorded at
each cell is affected by noise from optical, electric, and electronic
components of the imaging system, before being converted into a
digital pixel value.

Image restoration is the inverse problem of estimating a clean
image without degradation from one or more degraded images.
Considering the degradation process of the typical imaging sys-
tem explained above, each degraded image is commonly modeled
as a version of the original clean image affected by linear transfor-
mation and additive noise [1]; here, the transformation describes
optical effect that light has undergone before arriving at the sen-
sor, e.g., displacement, blur, and vignetting. Since each digital
image is a two-dimensional array of pixels with light intensity
values, it can mathematically be represented as a vector by stack-
ing the pixel values; in the multiframe case, the vectors of multi-
ple degraded images are further stacked to form a single vector.
Similarly, an arbitrary linear transformation on such a vector can
be represented as a matrix. Using these notations, the standard
degradation model of image restoration can be formulated as fol-
lows [1]:

y = Hx + n, (1)

where x and y are the vectors of the clean and degraded images,
respectively, H is the matrix of an arbitrary linear transformation,
and n is a noise vector (commonly assumed to follow a zero-
mean Gaussian distribution). Here, each row of y represents a
single pixel of the degraded images, which is the sum of the pix-
els of x weighted by the corresponding row of H plus the noise
component of n. Image restoration basically aims to invert this
degradation process to recover the clean image x from the de-
graded images y.

The fundamental observation in this work is that image restora-
tion problems for various degradation types can be formulated in
a unified manner, i.e., by letting the image transformation in the
standard degradation model represent different operations. For
example, in multiframe denoising, where more than one image
are used to improve noise removal, H is considered to be a warp-
ing operation, which aligns the desired clean image x with respect
to each of the degraded images y (Fig. 3(a)). Here, to produce the
pixel represented by each row of y, the corresponding row of H
interpolates the value of x at a single spatial point on the image
plane, from which the pixel value of y (before noise n is added) is
originated. This effectively describes the displacement of a single
scene point projected onto the image plane, which must be com-
pensated for to enable the use of multiple images. Another exam-
ple is deblurring, where H is a convolution operation (Fig. 3(b)).
Here, at each pixel of y, the corresponding row of H averages the
pixel values of x in a small spatial neighborhood, i.e., multiplies
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Fig. 3: Degradation models in image restoration problems.

the original values with weights and sums them up. Physically,
this operation mixes light rays from different scene points into a
single cell, resulting in a blurry pixel. Furthermore, devignetting
is the problem where H represents a pixelwise gain operation,
which decreases the light intensity value at each pixel (Fig. 3(c)).
In this case, H becomes a diagonal matrix, each of whose rows
has only one element that holds a multiplicative factor applied to
the pixel at the same row of x, yielding the corresponding pixel
of y. This factor measures the amount of brightness reduction at
a sensor cell due to vignetting, which makes the degraded pixel
darker than the original clean pixel. To constrain H as the in-
tended operation for each problem, the large matrix H is com-
monly parameterized with a smaller number of elements, which
is denoted by vector w in this work. In addition, regularization
on w is often performed to alleviate the ill-posedness of parame-
ter estimation.

2.2 Variational Bayes
Bayesian inference provides a principled way to estimate un-

known or uncertain parameters from known parameters given as
observation. To perform inference, a problem-specific Bayesian
model that describes the relationship between known and un-
known parameters is first constructed, treating them as observed
and latent variables, respectively, and defining their probabil-
ity distributions. Then, an algorithm of Bayesian inference is
derived, whose typical objective is to find out the most prob-
able value of a latent variable, i.e., to maximize its posterior

probability given the observed variables. To obtain the neces-
sary posterior distribution when more than one latent variable
is present, marginalization, i.e., integration of a joint probabil-
ity distribution with respect to other latent variables, needs to be
performed. However, this integration can be quite difficult and
often intractable (at least analytically) in practical problems, due
to complex dependency between parameters.

The main objective of variational Bayes is to resolve such mu-
tual dependence of multiple latent variables in Bayesian infer-
ence. Technically, VB bypasses intractable marginalization by
approximating posterior distributions of latent variables [4]. To
obtain approximate posteriors that are as close to the exact ones
as possible, the Kullback-Leibler divergence between the exact
and approximate distributions are typically minimized. The re-
sulting algorithm reduces to iterative update of parameterized ap-
proximate posteriors, which is guaranteed to converge [5], start-
ing at some initial estimates. In this joint inference, dependency
between all variables are naturally considered, since each pos-
terior is updated using estimates of other parameters, including
those that are initially unknown. Note that VB can be interpreted
as a generalization of traditional techniques such as maximum a
posteriori (MAP) and expectation maximization (EM), which as-
sume that all or some posteriors are degenerate, effectively treat-
ing them as deterministic variables and thus ignoring their uncer-
tainty. Unlike these techniques, however, VB can yield estimates
of full posterior distributions, i.e., not only point estimates but
also information on their uncertainty, which contributes to the ro-
bustness of inference [4].

Bayesian inference has been proved to be effective for image
restoration, which deals with random degradation factors such as
noise [6], [7], [8]. In Bayesian image restoration, observed vari-
ables consist of one or more degraded images, and latent variables
include a clean images, a transformation parameter, and other
image-dependent parameters, e.g., strength of noise and smooth-
ness of the clean image; here, the distribution of the degraded im-
age should incorporate assumptions on observation, including the
specific degradation model for the problem, while the prior distri-
butions of the clean image and transformation parameter should
reflect additional assumptions on these unknowns for regulariza-
tion. In traditional image restoration, the parameters other than
the desired clean image have been assumed to be known, or sepa-
rately estimated in advance of restoration; by contrast, VB image
restoration performs joint inference on these variables to obtain
their approximate posteriors, effectively estimating all unknown
parameters simultaneously. After this inference, a restored image
can be obtained by maximizing the resulting approximate poste-
rior of the clean image.

3. Variational Bayesian Multiframe Denoising
3.1 Introduction

Classical image restoration assumes that each degraded im-
age is affected by noise and blur, and aims to recover a clean
image from it [1], mainly focusing on denoising rather than de-
blurring. To effectively remove noise, the majority of traditional
methods have parameters that control restoration, e.g., a param-
eter for image smoothing, which distinguishes a noise-free clean
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image from a degraded image and thereby regularizes the ill-
posed restoration problem. Since the optimal value of such a pa-
rameter varies between images, it should be carefully tuned for
each image to achieve high-quality restoration. Although there
have been studies on automatic tuning of smoothing parameters
[9], [10], [11] along with several attempts to simultaneously esti-
mate multiple parameters via MAP [12], [13], [14], [15], [16],
such point-estimation methods can yield poor parameter esti-
mates in the presence of degradation.

To overcome the difficulty of parameter tuning, variational
Bayes has recently been introduced to denoising [6], [17], [18];
here, VB can jointly estimate a clean image and other parameters
from degraded images, thus enabling fully automatic parameter
tuning. It is also known that VB methods often outperform tra-
ditional non-VB methods in the presence of severe degradation
[6]. However, state-of-the-art VB denoising has focused on the
single-frame setting, where one clean image is recovered using
only one degraded image. In practice, information from a single
image is often insufficient for high-quality restoration, especially
when noise is strong [19]. Therefore, despite the practical ad-
vantage of automatic parameter tuning, the effectiveness of VB
denoising has been strictly limited.

In this section, multiframe denoising is addressed via a VB
approach. Unlike previous single-frame methods, the proposed
multiframe method exploits rich information in multiple images
to restore a single image, thus achieving higher image quality.
This VB approach also maintains the key advantage over tradi-
tional non-VB approaches, i.e., the ability to automatically tune
parameters. More specifically, we make full use of VB tech-
niques to enable Bayesian inference for multiframe denoising,
where multiple parameters are jointly estimated, including one
for image warping that compensates for displacement between
images, effectively performing image registration simultaneously
with image restoration; here, the warping is flexibly parameter-
ized with an optical flow, which can handle a wide range of dis-
placement in the real world [20], [21]. Through experiments, the
effectiveness of the proposed multiframe method was verified in
comparison with its single-frame counterpart, as well as the ad-
vantage of the VB approach over non-VB approaches.

3.2 Model
As in the previous work on single-frame VB denoising [6],

[17], [18], we assume that degraded images are affected by
additive zero-mean Gaussian noise, and additionally blur by a
known convolution kernel. Furthermore, in multiframe denois-
ing, displacement between the images also needs to be consid-
ered; hence, we introduce image warping, which geometrically
aligns one image with another, effectively performing registra-
tion. More specifically, each degraded image is assumed to be
generated by warping, blurring, and then adding noise to a single
clean image. To determine an image to be restored, the clean im-
age is required to be a noise-free and blur-free version of one of
the degraded images, which is called the reference image.

Under these assumptions, we estimate the clean image from
the degraded images, considering all other unknown parameters
including an optical flow as a warping parameter. To describe
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Fig. 4: Bayesian model for multiframe denoising. Gray and white
circles represent observed and latent variables, respectively. The
part enclosed by dots is specific to the multiframe case.

their relationship, we define a Bayesian model by treating these
parameters as random variables and assigning a probability dis-
tribution to the each variable, as described in the following. The
resulting Bayesian model is shown graphically in Fig. 4.
3.2.1 Degraded Images

Let y ∈ Rn and x ∈ Rm be vectors that represent the degraded
images and the clean image, respectively, where n and m are the
total numbers of their pixels. Then, the following equality de-
scribes the relationship between x and y:

y = H0Hwx + n, (2)

where Hw ∈ R
n×m is the warping matrix with parameter w,

H0 ∈ R
n×n is the convolution matrix for blur (assumed to be

known), and n ∈ Rn is the zero-mean Gaussian noise vector. Note
that H0Hw can be considered as a single transformation matrix to
recover the standard degradation model. To make Hw a flexible
warping operator, we parameterize it with optical flow w ∈ R2n,
which has two velocity components for each degraded pixel.
Next, to enable optical flow estimation, w is related to Hw and
x by the following linearized optical flow constraint [21], [22]:

Hwx ' I′
(
w′ ◦ x′

)
, (3)

where ◦ denotes elementwise multiplication, I′ ∈ Rn×3n, and

w′ = J(w − w∗) + j, (4)

x′ = Kx; (5)

here, J ∈ R3n×2n, j ∈ R3n, K ∈ R3n×m, and w∗ ∈ R2n is the point at
which w is linearized. Combining Eqs. (2) and (3), the probabil-
ity distribution of y is defined as follows:

p(y|x,w, b) ∝
n∏

i=1

√
b exp

(
−

b
2

(
y −H′(w′ ◦ x′)

)2
i

)
, (6)

where b ∈ R is a fidelity parameter (i.e., an inverse noise vari-
ance), and H′ = H0I′.
3.2.2 Clean Image

Exploiting the redundancy of natural images to regularize the
ill-posedness of image restoration, it is commonly assumed that
the clean image is smooth except for edges, which can be real-
ized by minimizing the total variation (TV) of the image [23]. To
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enable a Bayesian treatment of the TV prior, we assume that the
gradient magnitude at each pixel of x follows a zero-mean Lapla-
cian distribution, and define the probability distribution of x as
follows:

p(x|a) ∝
m∏

i=1

a exp

−a

√√√ 2∑
k=1

(Gkx)2
i + ε

 , (7)

where a ∈ R is an image smoothness parameter (i.e., a global
smoothing weight), G1,G2 ∈ R

m×m are horizontal and vertical
differentiation matrices, respectively, and ε = 0.001 is a small
constant for numerical stability.
3.2.3 Optical Flow

The multiframe problem is more ill-posed and thus difficult
than the single-frame case, since not only the clean image x
but also the optical flow w have to be estimated. As TV-based
smoothing is also known to work well for optical flows between
natural images [22], we define the prior distribution of w to be
similar to that of x as follows:

p(w|z) ∝
2n∏
i=1

z exp

−z

√√√ 2∑
k=1

(Fkw)2
i + ε

 , (8)

where z ∈ R is a flow smoothness parameter, and F1,F2 ∈ R
2n×2n

are horizontal and vertical differentiation matrices, respectively.
3.2.4 Weights

For the rest of the variables, i.e., fidelity parameter b and
smoothness parameters a, z, no prior information is available,
since they can vary a lot between different images to be restored.
Thus, we use noninformative conjugate priors [4] for these weight
parameters, which are Gamma distributions for Gaussian preci-
sions. Here, we make these priors noninformative by using the
shape parameter α0 = 0 and the rate parameter β0 = ε.

3.3 Inference
In Bayesian multiframe denoising, the goal is to find out the

most probable clean image given a set of degraded images. That
is, we maximize the posterior probability of x given y as follows:

x̂ = arg max
x

p(x|y). (9)

To obtain the posterior probability in the right-hand side, the other
latent variables need to be marginalized out from the joint poste-
rior probability of all latent variables as follows:

p(x|y) =

∫
p(x,w, b, a, z|y)dwdbdadz. (10)

By Bayes’ theorem [4], the joint posterior in the right-hand side
can be obtained as

p(x,w, b, a, z|y) ∝ p(y|x,w, b)p(x|a)p(w|z)p(b)p(a)p(z). (11)

The exact marginalization, however, is intractable due to the
complex dependency between the variables; for instance, the de-
graded images y is dependent on x, w and b, as shown in Fig. 4,
and the posterior of x given y cannot be obtained by marginaliz-
ing out w and b at once.

To handle the intractable marginalization, we invoke a VB

technique called mean-field approximation [4]. The basic idea is
to resolve the complex dependency by regarding the latent vari-
ables as independent after observation, i.e., assuming the condi-
tional independence of their posterior distributions. More specif-
ically, the exact joint posterior is approximated by the product of
the independent posteriors of individual latent variables as fol-
lows:

p(x,w, b, a, z|y) ' q(x,w, b, a, z) = q(x)q(w)q(b)q(a)q(z).
(12)

This factorized approximation yields the approximate posterior of
each variable without explicit marginalization, and q(x) provides
an approximation of the desired posterior p(x|y). Then, the exact
joint posterior becomes close to the approximate one by mini-
mizing the Kullback-Leibler divergence of p(x,w, b, a, z|y) from
q(x,w, b, a, z). This is equivalent to maximizing the variational
lower bound of the log-evidence under the model, i.e.,

LB[q(x,w, b, a, z)]

=

∫
q(x,w, b, a, z) ln

p(x,w, b, a, z|y)
q(x,w, b, a, z)

dxdwdbdadz + const .

(13)

In performing inference under the model in Section 3.2, the
nonlinearity in the TV priors of w and x prevents direct maxi-
mization of LB in Eq. (13). Hence, we invoke another VB tech-
nique called local approximation [4]. The idea is to approxi-
mate the original lower bound LB with further lower bound LB′

such that LB′ ≤ LB, replacing the troublesome TV priors with
Gaussian-like priors with additional parameters. To this end, the
inequality of arithmetic and geometric means [6] is applied to the
logarithms of the TV priors on w and x, introducing auxiliary pa-
rameters u ∈ R2n and v ∈ Rm, respectively; then, the following
new lower bound is obtained:

LB′[q(x,w, b, a, z)]

=

∫
q(x,w, b, a, z) ln

p′(x,w, b, a, z|y)
q(x,w, b, a, z)

dxdwdbdadz + const .,

(14)

where

p′(x,w, b, a, z|y) ∝ p(y|x,w, b)p′(x|a)p′(w|z)p(b)p(a)p(z)
(15)

with modified priors

p′(w|z) ∝
2n∏
i=1

z exp

− z
2

ui

 2∑
k=1

(Fkw)2
i + ε + u−2

i


 , (16)

p′(x|a) ∝
m∏

i=1

a exp

−a
2
vi

 2∑
k=1

(Gkx)2
i + ε + v−2

i


 . (17)

Since these priors are Gaussian of w and x, it is easy to perform
VB inference with these priors. In addition, the precision parts of
Eqs. (16) and (17) consist of global smoothness parameters (z and
a) and auxiliary parameters (u and v), which effectively work as
local (pixelwise) smoothness parameters for edge preserving [6]
when adapted to w and x through inference.

To perform VB inference, we maximize the modified lower
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Algorithm 1 Algorithm of VB inference for multiframe denois-
ing.
1: Input y.
2: Initialize µx, Σx, µw, and Σw.
3: repeat
4: Update u and v with Eqs. (18) and (19).
5: Update αb, αa, αz, βb, βa, and βz with Eqs. (23) to (28).
6: Update µw and Σw with Eqs. (30) and (31).
7: Update µx and Σx with Eqs. (33) and (34).
8: until convergence.
9: Output x̂ = µx.

bound LB′ in Eq. (14) with respect to approximate posteriors
q(x), q(w), q(b), q(a), q(z) (each of which is determined with a few
parameters) and auxiliary parameters u, v. Since the mutual de-
pendency of the latent variables makes it impossible to obtain all
the parameters at once in closed form, we iteratively update them
one by one until convergence. In the following, update formu-
las for the auxiliary parameters and approximate posteriors that
maximize the lower bound are derived. The resulting algorithm
is summarized in Algorithm 1.
3.3.1 Auxiliary Parameters

Taking the derivative of the right-hand side of Eq. (14) with
respect to u and v and setting it to zero, the auxiliary parameters
are obtained as follows:

ui =
1√∑2

k=1 E
[
(Fkw)2

i

]
+ ε

, (18)

vi =
1√∑2

k=1 E
[
(Gkx)2

i

]
+ ε

, (19)

where we have taken the expectations with respect to the approx-
imate posteriors. Here, vi is basically the inverse of the local
image variation at the ith pixel captured by high-pass filtering
via G1,G2. Thus, the coefficients of the auxiliary parameters be-
come small around large variations. This adaptation of the auxil-
iary parameters automatically reduces local smoothing power of
the modified TV priors in Eqs. (16) and (17) around edges, ef-
fectively achieving edge-preserved smoothing. In addition, the
small positive term ε works as a supplementary regularizer that
prevents division by zero in Eqs. (16) and (17), thereby maintain-
ing numerical stability.
3.3.2 Weights

According to the variational principle [4], the optimal ap-
proximate posterior of each variable can be obtained by tak-
ing the logarithmic expectation of the modified joint posterior
p′(x,w, b, a, z|y) with respect to the other approximate posteri-
ors. Taking the logarithmic expectation of the right-hand side
of Eq. (15) with respect to the other variables, the approximate
posteriors of the smoothness parameters z, a, and the fidelity pa-
rameter b are obtained as gamma distributions as follows:

q(z) = G(z|αz, βz), (20)

q(a) = G(a|αa, βa), (21)

q(b) = G(b|αb, βb), (22)

where

αz = α0 + 2n, (23)

αa = α0 + m, (24)

αb = α0 +
1
2

n, (25)

βz = β0 +
1
2

2n∑
i=1

ui

 2∑
k=1

E
[
(Fkw)2

i

]
+ ε + u−2

i

 , (26)

βa = β0 +
1
2

m∑
i=1

vi

 2∑
k=1

E
[
(Gkx)2

i

]
+ ε + v−2

i

 , (27)

βb = β0 +
1
2

n∑
i=1

E
[(

y −H′
(
w′ ◦ x′

))2
i

]
. (28)

3.3.3 Optical Flow
Taking the logarithmic expectation of the right-hand side of

Eq. (15) with respect to the variables other than w, the approx-
imate posterior of the optical flow w is obtained as a Gaussian
distribution as follows:

q(w) = N(w|µw,Σw), (29)

where

µw = E[b]ΣwJT
(
diag(E[x′])H′Ty + (H′TH′ ◦ E[x′x′T])(Jw∗ − j)

)
,

(30)

Σ−1
w = E[b]JT(H′TH′ ◦ E[x′x′T])J + E[z]

2∑
k=1

FT
k diag(u)Fk.

(31)

Thus, the posterior of w depends not only on degraded images y
but also on the posterior of clean image x and other parameters
through the expectations in Eqs. (30) and (31). Hence, the de-
pendency between the variables is naturally incorporated in VB
inference. Moreover, the full posterior approximation of w, i.e.,
not only the mean µw but also the covariance Σw is available,
which represents the uncertainty in estimation and contributes to
the robustness of inference [4]. For example, Σw is considered in
evaluating the squared expectations of variations in Eq. (18), pro-
ducing an additional positive term in the denominator as a regu-
larizer for stable inference [18].
3.3.4 Clean Image

Taking the logarithmic expectation of the right-hand side of
Eq. (15) with respect to the variables other than x, the approx-
imate posterior of the clean image x is obtained as a Gaussian
distribution as follows:

q(x) = N(x|µx,Σx), (32)

where

µx = E[b]ΣxKT diag(E[w′])H′Ty, (33)

Σ−1
x = E[b]KT(H′TH′ ◦ E[w′w′T])K + E[a]

2∑
k=1

GT
k diag(v)Gk,

(34)

Hence, this posterior also depends on the posterior of the optical
flow w, and has the variance Σx. It is trivial to maximize this ap-
proximate posterior, since the mode x̂ of Gaussian q(x) coincides
with the mean µx [4].
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Table 1: Image quality of Lena (PSNR [dB]).
Sequence Method

Dis-
place-
ment

Blur Noise Degraded Single Multi
(proposed)

Trans-
lation

Gaus-
sian

Weak 32.8 37.2 39.8
Strong 25.0 29.8 34.2

Uni-
form

Weak 32.0 36.8 39.7
Strong 24.9 29.5 33.6

Rota-
tion

Gaus-
sian

Weak 32.8 37.3 39.7
Strong 25.0 29.8 34.1

Uni-
form

Weak 32.0 36.8 39.7
Strong 24.9 30.0 33.5

3.4 Experiments
3.4.1 Comparison of Single-Frame and Multiframe Denois-

ing
The effectiveness of the proposed VB multiframe denoising

method was evaluated through experiments. To validate the ben-
efit of using multiple images, the proposed VB method was com-
pared with a single-frame method, which is a special case of the
proposed method when the number of input images is one and
no warping is involved. This single-frame method is in prin-
ciple equivalent to the previous method proposed in [6], which
also takes a VB approach and uses a TV-based image prior. In
this experiment, the standard test image Lena, which consisted
of 256 × 256 pixels, was used as a ground-truth clean image. As-
suming displacement due to camera motion, this image was trans-
formed by translation and rotation to obtain two sequences of
warped images, each of which had 15 images; here, the amounts
of displacement through the sequences were 1.5 pixels horizon-
tally for translation and 1.5 degrees around the image center for
rotation. Next, blur and noise were added to each sequence; here,
each image was convolved with an uniform kernel and a Gaussian
blur kernel of standard derivation 1, both of whose sizes were
3 × 3 pixels, while Gaussian noise was generated at 40 and 20
dB in blurred-signal-to-noise ratio (BSNR) [6], which represent
weak and strong noise, respectively. Then, the single-frame and
multiframe methods were applied to each of these degraded im-
age sequences, selecting the image in the middle of the sequence
as a reference image.

Image quality of each restored image was assessed using peak-
signal-to-noise ratio (PSNR), which is a standard image quality
metric for image restoration [24]. The resulting PSNR values
are summarized in Table 1, while example images are shown in
Fig. 5. As seen from the tables, for any original image and degra-
dation type, the proposed multiframe method achieved higher
quality of the restored image than the corresponding degraded im-
age; thus, the denoising by the proposed method was successful
regardless of input sequences. Furthermore, the proposed mul-
tiframe method achieved higher PSNR values than those of the
single-frame version, thereby demonstrating the effectiveness of
the proposed multiframe method compared with previous single-
frame one.
3.4.2 Comparison of VB and Non-VB Approaches

The advantage of the proposed VB approach to multiframe
denoising over non-VB approaches was examined. For a fair
comparison between approaches, the proposed VB method was

(a) (b) (c)

Fig. 5: Images of Lena with translation, uniform blur, and strong
noise: (a) degraded; (b) restored by single-frame denoising; and
(c) restored by multiframe denoising (proposed) using 15 images.

compared with a non-VB method that uses the same model, i.e.,
the multiframe extension of classical TV-based denoising with
manual parameter tuning [25], [26], which directly maximizes
the original lower bound LB with respect to x̂ by nonlinear opti-
mization. As with the majority of non-VB methods, this method
requires manual parameter tuning, since it is unable to estimate
parameters other than clean image x; thus, the ground-truth flow
was used for warping parameter w, and image smoothness pa-
rameter a was varied between 1 and 128, while ignoring fidelity
b and flow smoothness z (which have no effect in this method).
Moreover, a comparison with a state-of-the-art non-VB multi-
frame method with partially automatic parameter tuning [16] was
made, which performs optical-flow-based registration and itera-
tive MAP estimation. Since the main objective of this method
was to reconstruct a high-resolution image from multiple low-
resolution images, we adapted this method to our denoising prob-
lem by omitting downsampling and blur kernel estimation, and
employed the same iteration scheme as the proposed method.
While this non-VB method can automatically set parameters for
registration and noise, it still requires several free parameters to
be given, for which the values suggested in its original paper were
used.

Table 2 shows the PSNR values resulting from the non-VB
manual method with different image smoothness parameter val-
ues (where only the results for a = 1, 16 are shown to summarize
the overall trend), the non-VB automatic method, and the pro-
posed VB automatic method. Closeup examples of the restored
images are also shown in Fig. 6, which are obtained from the
sequence with translation, uniform blur, and strong noise. First,
the optimal values of the smoothness parameter for the manual
method that yielded the best results varied a lot between noise
levels. This result confirms the fact that traditional methods of
image restoration require careful manual parameter tuning for
each input. Note that, since this method used the true value of the
warping parameter, no better results could have been expected
from this method, even if state-of-the-art registration methods
had been used. Compared with this manual method, the pro-
posed automatic method achieved higher PSNR values regardless
of degradation without knowing the ground-truth warping param-
eter. These results shows that the automatic parameter tuning of
the proposed method was quite successful, which is a huge ad-
vantage of our VB approach over traditional approaches. More-
over, the proposed VB automatic method always outperformed
the adaptation of the state-of-the-art non-VB automatic method
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Table 2: Image quality by multiframe methods (PSNR [dB]).
Sequence Method

Dis-
place-
ment

Blur Noise
Non-VB VB

Manual with a Auto
1 16

Trans-
lation

Uni-
form

Weak 38.5 34.2 34.6 39.7
Strong 26.0 33.4 30.1 33.6

Gaus-
sian

Weak 38.9 34.7 34.8 39.8
Strong 26.5 33.8 30.8 34.2

Rota-
tion

Uni-
form

Weak 37.5 34.2 34.3 39.7
Strong 25.7 33.4 30.1 33.5

Gaus-
sian

Weak 38.9 34.7 34.3 39.7
Strong 26.6 33.8 30.8 34.1

(a) (b) (c) (d)

Fig. 6: Closeups of images restored by multiframe methods: the
non-VB manual method with (a) α = 1 (worst quality) and (b)
α = 16 (best quality); (c) the non-VB automatic method; and the
proposed VB automatic method.

for all the sequences, further demonstrating the advantage of the
VB approach.

3.5 Conclusion
In this section, a method of multiframe denoising via a VB ap-

proach has been presented. Extending previous work on single-
frame denoising via VB approaches [6], [17], [18], image warp-
ing has been introduced to a Bayesian model for denoising, effec-
tively integrating registration into restoration. Then, VB tech-
niques such as mean-field and local approximation have been
used to overcome difficulties due to the complexity of the model
in deriving an algorithm of Bayesian inference, where full pos-
teriors of multiple latent variables are iteratively updated. The
proposed VB multiframe denoising method can achieve higher
image quality than single-frame one, while tuning multiple pa-
rameters automatically and stably. Through experiments, the ef-
fectiveness of the proposed VB multiframe method was demon-
strated in comparison with its single-frame version and non-VB
approaches.

4. Variational Bayesian Deblurring
4.1 Introduction

The basic assumption in deblurring is that blurring on an im-
age can be modeled as convolution with a blur kernel. Deblur-
ring, which is often called deconvolution, is essentially the in-
verse of this process, and effectively restores the sharp image
from the blurry one. In practice, the kernel is often unknown
[3], and needs to be estimated to perform deconvolution. This
motivates the problem called blind deconvolution, i.e., deblurring
in the presence of unknown blur kernels.

Traditional shift-invariant deblurring assumes uniform blur
that does not vary spatially across an image. In reality, however,
blur is often nonuniform [3]; for example, independently moving
objects are differently affected by motion blur, and close and dis-

tant objects are subject to different amounts of defocus blur. Blur
is often more complex since both motion and defocus blur can
simultaneously occur. In such cases, shift-invariant methods fail
in blur kernel estimation and also in blur removal [3]. Although
specialized methods for nonuniform blur have been recently de-
veloped, they can only handle certain types of blur, e.g., motion,
defocus, or locally uniform blur in each image segment [8]. Con-
sequently, the ability of deblurring to restore general images with
nonuniform blur has been limited.

In this section, shift-variant deblurring that can handle nonuni-
form blur regardless of type is discussed. The idea is to model
spatially varying blur with a field of kernels that assigns a local
blur kernel to each image pixel. By allowing different kernels
between pixels, a wide range of nonuniform blur can be flexibly
represented without making assumptions about its type. To al-
leviate the ill-posedness of the shift-variant problem, smoothing
of the field is also introduced, which sufficiently regularizes ker-
nel estimation without losing flexibility. Under this model, both
a sharp clean image and the field of kernels are estimated from
a blurry degraded image using techniques of variational Bayes.
As demonstrated through experiments, the proposed field-based
model is flexible enough to deal with complex blur beyond the
ability of previous shift-invariant and shift-variant approaches.

4.2 Model
Given a blurry degraded image of n pixels, denoted by a vec-

tor y = [y1 . . . yn]T ∈ Rn, the goal of deblurring is to recover
a sharp clean image, i.e., a blur-free version of y, denoted by
x = [x1 . . . xn]T ∈ Rn. To achieve this, we assume that each de-
graded pixel yi is the convolution of the clean image x and a local
blur kernel with m coefficients wi = [wi1 . . . wim]T ∈ Rm:

yi '

m∑
j=1

wi jxi⊕ j, (35)

where i ⊕ j denotes the jth coefficient in the spatial support of
the kernel at the ith pixel, and the approximate equality implies
the presence of noise. In practice, it is assumed that the sup-
port is square and centered at the ith pixel. Then, the n lo-
cal kernels from all the pixels are gathered into a single vector
w = [wT

1 . . .w
T
m]T ∈ Rmn, which is referred to as a field of kernels

because it has one kernel at each pixel in space.
In the deblurring problem, both the field of kernels and the

clean image are unknown, and thus need to be estimated in order
to perform deconvolution. To describe the relationship of these
parameters, we construct a Bayesian model in the following. The
resulting Bayesian model is shown graphically in Fig. 7.
4.2.1 Degraded Image

Let Hw ∈ R
n×n be the shift-variant convolution matrix with re-

spect to w such that (Hwx)i equals the right-hand side of Eq. (35).
Then, assuming additive noise, we can rewrite Eq. (35) as fol-
lows:

y = Hwx + n, (36)

where n ∈ Rn is a zero-mean Gaussian noise vector, which is a
standard assumption in deblurring [8]. We rephrase this degrada-
tion model in Bayesian terms by defining an elementwise Gaus-
sian distribution on y as follows:
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Fig. 7: Bayesian model for deblurring. Gray and white circles
represent observed and latent random variables, respectively.

p(y|x,w, b) ∝
n∏

i=1

√
b exp

(
−

b
2

(y −Hwx)2
i

)
, (37)

where b ∈ R is a fidelity parameter.
4.2.2 Clean Image

Exploiting natural image statistics, we assume that the clean
image is smooth except for edges, and minimize its TV. This is
achieved by defining an elementwise zero-mean Laplacian distri-
bution on the gradient magnitude of x as follows:

p(x|a) ∝
n∏

i=1

a exp

−a

√√√ 2∑
k=1

(Gkx)2
i

 , (38)

where a ∈ R is an image smoothness parameter, and G1,G2 ∈

Rm×m are horizontal and vertical differentiation matrices, respec-
tively.
4.2.3 Field of Kernels

In shift-invariant deblurring, it is known that kernels can be
estimated even without priors [8]. In our shift-variant case, how-
ever, the field of kernels has multiple coefficients at each pixels,
which makes the problem highly ill-posed. To overcome this dif-
ficulty, we also impose a prior on the field of kernels w. While
we could use shift-invariant kernel priors [8], [27] for each local
kernel, such priors limit the range of tractable blur types, as in
restrictive parameterization. Instead, we assume that the field of
kernels is smooth, i.e., local kernels at adjacent pixels are similar.
This assumption effectively regularizes the ill-posed shift-variant
deblurring problem, but still allows for kernel variation between
pixels. This is realized by defining an elementwise zero-mean
Gaussian distribution on the gradient magnitudes of the field as
follows:

p(w|z) ∝
mn∏
i=1

√
z exp

− z
2

2∑
k=1

(Fkw)2
i

 , (39)

where z ∈ R is a kernel smoothness parameter for w, and F1,F2 ∈

Rmn×mn are horizontal and vertical differentiation matrices, re-
spectively. While this smoothing prior is not edge-preserving,
it is sufficient to enable shift-variant deblurring with the field of
kernels.

To reflect the physical properties of real kernels [8], each local
kernel wi is also assumed to be normalized, i.e.,

0 ≤ wi j ≤ 1, (40)
m∑

j=1

wi j = 1. (41)

4.2.4 Weights
For the weight-like parameters in the model, i.e., b, a, and z,

we simply assume uniform distributions as noninformative pri-
ors, i.e., p(b), p(a), and p(z) are constant.

4.3 Inference
The objective of Bayesian deblurring is to find the most prob-

able clean image given a degraded image. Thus, under the model
defined in Section 4.2, we maximize the posterior probability of
x given y to obtain a restored image x̂ as follows:

x̂ = arg max
x

p(x|y). (42)

The posterior distribution of x is obtained by marginalizing out
latent variables other than x from the joint posterior of all vari-
ables:

p(x|y) =

∫
p(x,w, b, a, z|y)dwdbdadz, (43)

where

p(x,w, b, a, z|y) ∝ p(y|x,w, b)p(x|a)p(w|z)p(b)p(a)p(z). (44)

Since exact marginalization is difficult due to the mutual de-
pendency between variables, we invoke the VB technique of
mean-field approximation, where the exact joint posterior is ap-
proximated by the product of independent posteriors of individual
variables as follows:

p(x,w, b, a, z|y) ' q(x,w, b, a, z) = q(x)q(w)q(b)q(a)q(z).
(45)

Here, q(x) approximates p(x|y), which is required to evaluate
Eq. (42). Following previous work on VB deblurring [8], we
also assume that q(x) is Gaussian and q(w), q(b), q(a), and q(b)
are degenerate. This assumption makes all approximate poste-
riors well-parameterized, thereby simplifying optimization [28].
Let µx ∈ R

n and Σx ∈ R
n×n be the mean and covariance of q(x),

respectively, and let b̂, â, ẑ, and ŵ be the modes of q(b), q(a), q(z),
and q(w), respectively. Then, optimal approximate posteriors in
terms of Kullback-Leibler divergence can be obtained by maxi-
mizing the following log-evidence lower bound of the model:

LB[q(x,w, b, a, z)]

=

∫
q(x,w, b, a, z) ln

p(x,w, b, a, z|y)
q(x,w, b, a, z)

dxdwdbdadz + const .

(46)

As the non-Gaussian image prior defined in Eq. (38) prevents
direct optimization of LB, we invoke another VB technique, i.e.,
local approximation, which is also common in VB deblurring
[8]. Then, the non-Gaussian p(x|a) in Eq. (44) is approximated
with Gaussian-like distribution p′(x|a, v) with auxiliary parame-
ter v ∈ Rn, which is derived from lower-bounding of p(x|a) [29]
and defined as follows:

p′(x|a) ∝
n∏

i=1

√
a exp

−avi

2

 2∑
k=1

(Gkx)2
i + v−2

i


 . (47)

Intuitively, vi is a local smoothing weight at the ith pixel, which is
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Algorithm 2 Algorithm of VB inference for deblurring.
1: Input y.
2: Initialize µx, Σx, and ŵ.
3: repeat
4: Update v with Eq. (49).
5: Update ẑ, â, and b̂ with Eqs. (50) to (52).
6: Update µx and Σx with Eqs. (53) and (54).
7: Update ŵ with Eq. (55).
8: until convergence.
9: Output x̂ = µx.

adapted to the clean image automatically through VB inference,
thereby enabling edge-preserving smoothing.

Combining Eqs. (44) and (46) and replacing p(x|a) with
p′(x|a), a modified lower bound is obtained, which depends on
both the approximate posteriors and the auxiliary parameter v.
This can be evaluated using the parameters of approximate pos-
teriors and the definition of the distributions, i.e., Eqs. (37), (39)
and (47) as follows:

LB′(µx,Σx, ŵ, b̂, â, ẑ, v)

=
n
2

ln b̂ −
b̂
2

(
‖y −Hŵµx‖

2
2 + tr(HŵΣxHT

ŵ)
)

+
n
2

ln â −
â
2

 2∑
k=1

(
‖V

1
2 Gkµx‖

2
2 + tr(VGkΣxGT

k )
)

+ tr(V−1)


+

mn
2

ln ẑ −
ẑ
2

2∑
k=1

‖Fkŵ‖22

+
1
2

ln |Σx| + const .,

(48)

where Hŵ is the version of Hw constructed with ŵ, and V =

diag(v). Then, this modified lower bound can be maximized with
respect to each parameter. Since each parameter depends on oth-
ers, they are iteratively updated until convergence, as described
in the following. The resulting algorithm is summarized in Algo-
rithm 2.
4.3.1 Auxiliary Parameter

Taking the derivative of Eq. (48) with respect to vi and setting
it to zero, each element vi of the auxiliary parameter v is obtained
as follows:

vi =
1√∑2

k=1

(
(Gkµx)2

i + (GkΣxGT
k )ii

) . (49)

Thus, vi becomes small around an edge, thereby weakening local
smoothing to preserve the edge.
4.3.2 Weights

Taking the derivative of Eq. (48) with respect to each of ẑ, â,
and b̂ and setting it to zero, the parameters of q(z), q(a), and q(b)
are obtained as follows:

ẑ =
mn∑mn

i=1
∑2

k=1(Fkŵ)2
i

, (50)

â =
n∑n

i=1

(
vi

∑2
k=1

(
(Gkµx)2

i + (GkΣxGT
k )ii

)
+ v−1

i

) , (51)

b̂ =
n∑n

i=1

(
(y −Hŵµx)2

i + (HŵΣxHT
ŵ)ii

) . (52)

4.3.3 Clean Image
Taking the derivative of Eq. (48) with respect to µx,Σx and set-

ting it to zero, the parameters of q(x) are obtained as follows:

µx =

HT
ŵHŵ +

â

b̂

2∑
k=1

GT
k VGk


−1

HT
ŵy, (53)

Σx =

b̂HT
ŵHŵ + â

2∑
k=1

GT
k VGk


−1

. (54)

Here, the covariance Σx represents uncertainty in estimates of x,
working as regularizers in the denominators of Eqs. (49), (51)
and (52). In deblurring, this property of VB inference helps avoid
trivial solutions and improve performance [3], [29], [30]. By re-
placing the exact posterior p(x|y) with the obtained approximate
posterior q(x) in Eq. (42), a restored image is obtained as the
mode x̂ of q(x), which coincides with µx since q(x) is Gaussian.
4.3.4 Field of Kernels

Taking the derivative of Eq. (48) with respect to ŵ and setting
it to zero, the parameter of q(w) is obtained as follows:

ŵ =

HT
µx

Hµx + H2
Σx

+
ẑ

b̂

2∑
k=1

FT
k Fk


−1

HT
µx

y, (55)

and Hµx and H2
Σx

are the matrices such that

Hµx ŵ = Hŵµx, (56)

ŵTH2
Σx

ŵ = tr(HŵΣxHT
ŵ), . (57)

4.4 Experiments
4.4.1 Comparison of Shift-Invariant and Shift-Variant De-

blurring
We conducted experiments to evaluate the effectiveness of the

proposed method. For a fair comparison, the proposed shift-
variant method was modified into a shift-invariant version with
nearly the same model, assuming a single local kernel common
to all pixels in the convolution model Eq. (35) and disabling ker-
nel smoothing. Ignoring minor differences in optimization, this
shift-invariant version is equivalent to state-of-the-art VB deblur-
ring methods with TV image priors [7], [29], [30]. In addition, the
proposed field-based method was compared with a segmentation-
based variant that assumes the same kernel in each segment in
Eq. (35). To enable ground-truth-based evaluation, a degraded
image was prepared by blurring the standard test image Lena as
a clean image via shift-variant convolution with a field of kernels
consisting of horizontally-varying line kernels in the foreground
and a box kernel in the background, which simulates rotational
motion blur and uniform defocus blur, respectively. The sizes
of the image and local kernel were n = 256 × 256 pixels and
m = 5 × 5 coefficients per pixel, respectively. Several samples of
the local kernels are shown in Fig. 8(a). For the segmentation-
based method, the ground-truth segments (the foreground and
background) were given as input.

The resulting images are shown in Fig. 9 with their PSNR val-
ues in Table 3. Here, the shift-invariant method could not fully re-
move blur and even degraded image quality in terms of PSNR, at-
tempting deconvolution based on shift-invariant kernel estimation
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(a) (b)

Fig. 8: Kernels for Lena: (a) ground truth and (b) estimated by
the proposed method. From the 256 × 256 pixels of each field,
12×12 pixels were sampled at an equal interval. The value range
of each local kernel was maximized for visualization. Note that
the white blocks in (a) indicate uniform kernels.

(a) (b) (c) (d)

Fig. 9: Images of Lena (top) and closeups (bottom): (a) de-
graded; (b) restored by shift-invariant deblurring; (c) restored by
segmentation-based shift-variant deblurring; and (d) restored by
field-based shift-variant deblurring (proposed).

Table 3: Image quality of Lena (PSNR [dB]).

Degraded Shift-invariant
Segmentation-

based
shift-variant

Field-based
shift-variant
(proposed)

28.3 23.2 28.6 30.2

against nonuniform blur. Meanwhile, the segmentation-based
shift-variant deblurring could make only a slight PSNR improve-
ment despite the use of the perfect segmentation result, since the
smoothly varying blur in the foreground was difficult to approxi-
mate by segmentation. Note that such composite blur is out of
the domain of most parametric deblurring methods that glob-
ally assume a single type of blur, e.g., motion or defocus. By
contrast, the proposed field-based shift-variant method success-
fully recovered a visually sharper image (e.g., around the edge
of the face) with a higher PSNR value, dealing with both the
smooth variation and the complexity of the blur. For reference,
the field of kernels estimated by the proposed method is shown
in Fig. 8(b). Here, the outline of the field, i.e., the difference
between the foreground and background, and also the smooth
variation in the foreground along the horizontal axis are success-
fully captured. Because of the field smoothing via the non-edge-
preserving Gaussian prior, discontinuities around object bound-
aries were smoothed out. Still, such a kernel prior was sufficient
for achieving PSNR improvement in the image domain, which is
the ultimate objective of deblurring.
4.4.2 Comparison of Shift-Variant Methods

Using real images with complex blur, the proposed method

(a) (b) (c)

Fig. 10: Images for comparison of shift-variant methods: (a) de-
graded; (b) restored by the previous specialized method; and (c)
restored by the proposed general method. The degraded image
input to the proposed method is from [32], while the restored im-
age output from the previous method is from [31]. These images
were gamma-corrected for visual comparison.

for general nonuniform blur was compared with a previous shift-
variant deblurring method specialized to camera shake, i.e., the
method of Hirsch et al. [31], which is based on segmentwise blur
parameterization with motion paths. As no implementations of
this method were available, we used the same image as in their ex-
periments for comparison, i.e., an image with camera shake used
in Whyte et al. [32], assuming local kernels of size 11×11 pixels.
Since this real image do not have the corresponding ground truth
image and kernel, only visual comparison is possible here.

The results are shown in Fig. 10. Overall, the deblurring per-
formances of both methods were visually comparable. How-
ever, the previous specialized method exhibited oversmoothing
in regions with textures (in the middle and right closeups of
Fig. 10(b)), which could happen when the assumptions under
their parameterization did not hold exactly. Meanwhile, the pro-
posed general method produced some artifacts in highly blurry
regions (in the middle closeup of Fig. 10(c)) possibly due to inac-
curacy in kernel estimation, which could be seen as the price for
the flexibility offered by our nonparametric approach; still, such
artifacts might be suppressed by using more effective image pri-
ors [7]. Note that the proposed method has a clear advantage over
this previous method, i.e., while the previous method is useful
only for images with camera motion blur, the proposed method
has the potential to handle defocus blur, object motion blur, and
even their mixture, without the need for blur type identification
for each image.

4.5 Conclusion
In this section, a method of shift-variant deblurring with a field-

based model has been presented. By modeling a spatially vary-
ing blur kernel as a smooth field of local kernels, the proposed
VB-based method can flexibly handle different kernels between
pixels. Experimental results confirmed that the proposed method
can successfully deblur images affected by nonuniform blur that
is intractable for previous approaches such as shift-invariant and
segmentation-based shift-variant deblurring.

5. Variational Bayesian Devignetting
5.1 Introduction

Vignetting arises from various optical components of real
imaging systems; thus, it is difficult to eliminate all possible
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causes of vignetting before actually capturing images. Hence,
it is useful to reduce undesirable vignetting effect in a postpro-
cess. While calibration is a basic approach to vignetting correc-
tion [33], it requires additional work during image capturing, such
as taking reference images [34], and cannot be applied to previ-
ously captured images. In this work, the problem of single-frame
devignetting using no other images is addressed, thereby afford-
ing broader applicability than calibration techniques.

The vignetting effect in an image is commonly modeled with a
vignetting function, which describes the radial decrease of bright-
ness from the optical center of an imaging system. In devi-
gnetting, it is essential to estimate this function accurately. Previ-
ous work on single-frame devignetting [34], [35], [36], [37], [38]
has basically assumed a rather ideal imaging condition, i.e.,
degradation other than vignetting is absent or negligible. In this
case, a correct vignetting function can often be determined from
a vignetted image, and then a desired vignetting-free image can
be obtained by inverting the vignetting process with that func-
tion. In reality, however, images captured by cameras are often
affected by noise, which is inherent in imaging systems. When
noise is dominant in a vignetted image, previous devignetting
methods that perform näive inversion of vignetting can remove
only vignetting but not noise, thereby being limited in the qual-
ity of the restored image. Furthermore, estimation of a vignetting
function from a noisy image can become unstable due to noise,
which leads to poor devignetting performance.

In this section, stable single-frame devignetting in the presence
of noise is discussed. Specifically, we introduce a general image
prior that exploits natural image statistics, whose effectiveness
for noise removal has been well-confirmed in image restoration.
Then, in Bayesian inference enabled by VB, we jointly estimate
a vignetting function and a clean image without vignetting nor
noise from a degraded image, considering their relationship. This
prior-driven VB devignetting can achieve high image quality even
in the presence of noise because it seeks a clean image free from
both vignetting and noise, which further benefits stable estima-
tion of the vignetting function through the joint inference. In ex-
periments, we confirmed the effectiveness of the proposed VB
approach to devignetting, especially when noise is strong, com-
paring the proposed method with a state-of-the-art method both
qualitatively and quantitatively.

5.2 Model
In devignetting, the goal is to estimate a clean image with no

vignetting from a degraded image affected by vignetting. Let
x, y ∈ Rn be vectors of the clean and degraded images, respec-
tively, where n denotes the total number of pixels per image.
Meanwhile, the vignetting effect is commonly described using a
one-dimensional vignetting function [34], [36], [37], since natu-
ral vignetting is mostly radial, i.e., constant at each radius around
an optical center, which is assumed to be known here, as in the
majority of previous studies [33], [34], [35]. After discretization,
this function is represented as another vector w ∈ Rm, where m
is the number of discrete radii and the first element at the radial
origin corresponds to the optical center.

In the following, a Bayesian model is constructed to describe

x

w

yDegraded

image

Clean

image

Vignetting

function

b

a

z

Image

smoothness

Vignetting

smoothness

Fidelity

Fig. 11: Bayesian model for devignetting. Gray, white, and no
circles represent observed random, latent random, and determin-
istic variables, respectively.

wPw

Fig. 12: Prolongation of one-dimensional vignetting function w
into two-dimensional version Pw via operator P. Note that algo-
rithmically Pw is treated as a flattened one-dimensional vector.

the relationship between parameters, i.e., the degraded and clean
images, the vignetting function, and other weight parameters.
The resulting Bayesian model is shown graphically in Fig. 11.

5.2.1 Degraded Image
Unlike previous vignetting studies, we assume that each pixel

of the degraded image is affected by additive zero-mean Gaussian
noise. Note that this is a standard assumption in image restoration
[29]. By denoting the vector of pixelwise noise intensity values
by n ∈ Rn, the following relationship between parameters is ob-
tained:

y = Hwx + n = Pw ◦ x + n, (58)

where Hw = diag(Pw), and P ∈ Rn×m is a matrix that prolongs
the one-dimensional vignetting function into a two-dimensional
function, as shown in Fig. 12. Using this degradation model, we
define the distribution of the degraded image y as the following
elementwise Gaussian distribution:

p(y|x,w) ∝
n∏

i=1

√
b exp

(
−

b
2

(y − Pw ◦ x)2
i

)
, (59)

where b ∈ R is a fidelity parameter.
5.2.2 Clean Image

In the presence of noise, estimation of a clean image from a
degraded image under the degradation model in Eq. (58) is an
ill-posed problem, i.e., x cannot be uniquely determined from y
alone (even if w is known), since the complete information of x is
already lost in y due to noise. Thus, unlike previous devignetting
methods that ignore noise, additional information is necessary to
recover a noise-free image. To this end, we exploit the statisti-
cal regularity of natural images, i.e., an image in the real world
is generally smooth except for edges [23]. This means that local
variations in the image, i.e., the magnitudes of image gradients,
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should be small at most pixels, but can be large at a few disconti-
nuities. To minimize local image variations, we define the follow-
ing elementwise zero-mean Gaussian distribution on the gradient
magnitudes of the clean image x:

p(x) ∝
n∏

i=1

√
ai exp

−ai

2

2∑
k=1

(Gkx)2
i

 , (60)

where G1,G2 ∈ R
n×n are horizontal and vertical differentiation

matrices, respectively, and a ∈ Rn is a local image smoothness
parameter; here, each element ai measures the local smoothness
of x at the ith pixel. Thus, edge-preserving smoothing can be
achieved by adapting a to the structure of x through inference
[30].
5.2.3 Vignetting Function

To regularize the estimation of the vignetting function without
losing flexibility, we perform smoothing along radii by imposing
a Gaussian distribution on the magnitudes of the radial gradients
of w as follows:

p(w) ∝
m∏

i=1

√
z exp

(
−

z
2

(Fw)2
i

)
, (61)

where F ∈ Rm×m is a radial differentiation matrix, and z ∈ R is a
global vignetting smoothness parameter.

Moreover, w is constrained to obtain a valid vignetting func-
tion that reflect the natural vignetting characteristics, i.e., it takes
values between zero and one, decreases with respect to radii, and
is one at the origin corresponding to the optical center:

0 ≤ w ≤ 1, (62)

Fw < 0, (63)

w1 = 0, (64)

where vector inequalities are elementwise.

5.3 Inference
Under the model defined in Section 5.2, we estimate the most

probable clean image x̂ given the degraded image y. This can be
achieved by maximizing the marginal posterior probability of x
given y while marginalizing out w as follows:

x̂ = arg max
x

p(x|y) = arg max
x

∫
p(x,w|y)dw. (65)

Here, the joint posterior distribution of the latent variables can be
obtained as the product of the distributions in the model:

p(x,w|y) ∝ p(y|x,w)p(x)p(w), (66)

where Bayes’ theorem has been used [39].
Since exact marginalization of w is difficult under the con-

straints in Eqs. (62) to (64), we use mean-field variational Bayes.
Specifically, we factorize the exact joint posterior distribution into
approximate posterior distributions of the individual variables as
follows:

p(x,w|y) ' q(x,w) = q(x)q(w). (67)

To obtain a tractable distribution, we also restrict each approx-
imate posterior as an elementwise Gaussian, whose covariance

Algorithm 3 Algorithm of VB inference for devignetting.
1: Input y.
2: Initialize µx,σ

2
x,µw,σ

2
w, b, a, z.

3: repeat
4: Update µx and σ2

x with Eqs. (70) and (71).
5: Update µw and σ2

w with Eqs. (72) and (73).
6: Update b, a, and z with Eqs. (74) to (76).
7: until convergence.
8: Output x̂ = µx.

matrix is diagonal. The mean and elementwise variance of q(x)
are denoted by vectors µx and σ2

x, respectively (i.e., the covari-
ance is diag(σ2

x)), and those of q(w) by µw and σ2
w. Once the

approximate posterior q(x) is obtained, its mode can be taken as
the MAP solution x̂, which coincides with the mean µx in the
Gaussian case.

To make the approximation as accurate as possible, we maxi-
mize the log-evidence lower bound under our model, i.e.,

LB[q(x,w)] =

∫
q(x,w) ln

p(x,w|y)
q(x,w)

dxdw + const . (68)

Substituting Eqs. (66) and (67) along with Eqs. (59) to (61) into
Eq. (68), we obtain

LB(µx,σ
2
x,µw,σ

2
w, b, a, z)

=
n
2

ln b −
b
2

j ·
(

(y − Pµw ◦ µx)◦2 + P◦2σ2
w ◦ σ

2
x

+ (Pµw)◦2 ◦ σ2
x + P◦2σ2

w ◦ µ
◦2
x

)

+
1
2

j · ln a −
1
2

a ·
2∑

k=1

(
(Gkµx)◦2 + G◦2k σ

2
x

)
+

m
2

ln z −
z
2

i ·
(
(Fµw)◦2 + F◦2σ2

w

)
+

1
2

j · lnσ2
x +

1
2

i · lnσ2
w + const .,

(69)

where vector logarithms are elementwise, ◦ in superscripts de-
notes elementwise power, and j ∈ Rn and i ∈ Rm are vectors of
ones used to express summation in terms of dot product. Since
the parameters of the approximate posteriors and weight parame-
ters depend on each other, they are updated iteratively as follows.
The resulting algorithm is summarized in Algorithm 3.
5.3.1 Clean Image

Setting the derivative of Eq. (69) with respect to µx and σ2
x to

zero, the parameters of q(x) are obtained as follows:

µx =


diag

(
(Pµw)◦2 + P◦2σ2

w

)
+

1
b

2∑
k=1

GT
k diag(a)Gk


−1 (

Pµw ◦ y
)
, (70)

σ2
x =

b (
(Pµw)◦2 + P◦2σ2

w

)
+

2∑
k=1

G◦2k
Ta


◦−1

. (71)

5.3.2 Vignetting Function
Setting the derivative of Eq. (69) with respect to µw and σ2

w to
zero, the parameters of q(w) are obtained as follows:

µw =

(
PT diag

(
µ◦2x + σ2

x

)
P +

z
b

FTF
)−1

PT (
µx ◦ y

)
, (72)

σ2
w =

(
bP◦2T (

µ◦2x + σ2
x

)
+ zF◦2Ti

)◦−1
. (73)

13ⓒ 2018 Information Processing Society of Japan

Vol.2018-CVIM-212 No.37
2018/5/10



IPSJ SIG Technical Report

Here, the mean of the vignetting function µw depends on clean
image estimate µx in Eq. (60), Thus, the vignetting function is
stably estimated in VB inference by considering the noise-free
version of the degraded image y, unlike in previous MAP-based
methods that consider the noisy degraded image y only.
5.3.3 Weights

While previous non-VB methods have required manual tuning
of weight parameters [29], our VB method can tune such param-
eters automatically by estimation through inference. Since the
optimal values of such parameters greatly vary between images,
this grants wider applicability to the proposed VB method than
non-VB methods. Specifically, setting the derivative of Eq. (69)
with respect to b, ai, and z to zero, these weight parameters can
be obtain as follows:

b =
n

j ·
(

(y − Pµw ◦ µx)◦2 + P◦2σ2
w ◦ σ

2
x

+ (Pµw)◦2 ◦ σ2
x + P◦2σ2

w ◦ µ
◦2
x

) , (74)

ai =
1∑2

k=1

(
(Gkµx)◦2 + G◦2k σ

2
x
)

i

, (75)

z =
m

i ·
(
(Fµw)◦2 + F◦2σ2

w
) . (76)

Here, ai depends on the inverse of the local image variation at
the ith pixel; thus, it becomes small around an edge (a large
variation) and weakens smoothing, thereby preserving the edge.
Moreover, VB-specific variance terms appear in the denomina-
tors, e.g., terms dependent on the variance of the clean image σ2

x
in the update of the local smoothness parameter a in Eq. (75).
This positive term effectively work as additional regularizers [7]
that prevent the weight parameter from reaching infinity, thereby
contributing to stability.

5.4 Experiments
To evaluate the effectiveness of the proposed devignetting

method experimentally, we used synthetic images to assess im-
age quality quantitatively with respect to ground truth, and also
real images to examine real-world performance qualitatively.

The proposed method was compared with the previous method
used for initialization of the proposed method, i.e., the state-of-
the-art method proposed by Cho et al. [34], which reportedly
outperforms more classical methods such as the one proposed by
Zheng et al. [36]. For the parameters of this previous method, the
default values suggested in its original paper were used.
5.4.1 Evaluation for Synthetic Images

A degraded images was prepared synthetically by processing
the Lena standard test image, whose size was n = 512 × 512 pix-
els. First, following previous devignetting studies [34], [36], [37],
vignetting was produced by the off-axis illumination component
of the Kang-Weiss model [40], where the optical center of the
vignetting function was assumed to be the center of each image.
Then, as in typical restoration studies [17], [29], zero-mean Gaus-
sian noise was added, whose level was measured via the signal-
to-noise ratio (SNR) [18]. Here, the focal length parameter f of
the Kang-Weiss vignetting was set to 250 to obtain noticeable vi-
gnetting, and the standard deviation σ = 1

√
b

of the noise was
chosen to obtain SNR values of 40 and 20, which correspond to

Table 4: Image quality of Lena (PSNR [dB]).
Noise Degraded Previous Proposed
Weak 9.9 26.9 26.1
Strong 9.9 20.8 23.5

(a) (b) (c)

Fig. 13: Lena images with strong noise: (a) degraded; (b) restored
by the previous method; and (c) restored by the proposed method.

(a) (b)

Fig. 14: Closeups of the top-left corners of Lena images with
strong noise: (a) restored by the previous method; and (b) re-
stored by the proposed method.

weak and strong noise, respectively. For each of these degraded
images, restoration by each method was performed to obtain an
estimate of the original clean image.

In Table 4, the PSNR values of the degraded and restored im-
ages are shown. For visual comparison, the images with strong
noise are also shown in Fig. 13. As seen from these results, both
methods successfully improved the quality of each degraded im-
age in terms of PSNR. However, the proposed method consis-
tently achieved higher image quality than the previous method
when noise was strong. Looking at the restored images, it can
be visually seen that the proposed method could remove not only
vignetting but also noise. These results demonstrate the stabil-
ity of the proposed VB approach, which exhibits good restoration
performance regardless of noise. Although the previous method
achieved a slightly higher PSNR value than that of the proposed
method for weak noise, this can be attributed to its näive devi-
gnetting scheme, i.e., pixelwise division with an estimated vi-
gnetting function without using any image priors, which does not
remove and even preserves noise in ground-truth images. When
noise was increased, the previous method overestimated pixel
values, as observed in the corners of the closeups in Fig. 14(a).
While the whited-out pixels in these regions could be attributed
to underestimated values of vignetting functions, they were suc-
cessfully corrected by the proposed method after refining these
estimates through joint inference, as shown in Fig. 14(b). Over-
all, the performance of the proposed method was stable and com-
parable with the previous method for weak noise, and better than
it for strong noise, as intended in designing the prior-based VB
method.
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(a) (b) (c)

Fig. 15: Real vignetted images: (a) degraded; (b) restored by the
previous method; and (c) restored by the proposed method.

(a) (b)

Fig. 16: Closeups of the top-left corners of real vignetted images:
(a) restored by the previous method; and (b) restored by the pro-
posed method.

5.4.2 Evaluation for Real Images
Following previous studies [34], [36], an image with real vi-

gnetting effect from the Berkeley Segmentation Dataset [41] was
used. The optical center of each image was estimated by a previ-
ously proposed technique [37] and fed to each method as a known
parameter. Since the degradation-free image as ground truth was
not available, only qualitative evaluation by visual comparison
was possible here.

The results are shown in Fig. 15. Here, both of the two meth-
ods yielded images whose peripheral parts were brighter than the
corresponding degraded images, which indicate successful devi-
gnetting, As seen from the closeup in Fig. 16, however, the pro-
posed method also corrected whiteout artifacts produced by the
previous method, and also removed noise in the background sky
and compression artifacts around trees, thereby demonstrating the
effectiveness of our VB approach in the real world.

5.5 Conclusion
In this section, a method of single-frame devignetting in con-

sideration of noise has been presented. Through prior-based
VB inference, the proposed method jointly estimates both a vi-
gnetting function and a clean image without vignetting nor noise.
Thus, it maintains good performance even when noise is not neg-
ligible, as confirmed experimentally.

6. Conclusion
The standard degradation model of image restoration can be

adapted to various problems by considering different types of
transformation. In this work, we established a VB image restora-
tion methodology, which stably estimates an unknown transfor-
mation parameter jointly with a clean image and other parameters
from degraded images under flexible parameterization. To this

end, we made full use of variational Bayesian techniques to derive
an algorithm of principled statistical inference under a problem-
specific Bayesian model. Specifically, we developed VB methods
for three problems, i.e., multiframe denoising, deblurring, and de-
vignetting. As confirmed in experiments, the proposed VB meth-
ods can consistently perform high-quality restoration for a wide
range of images, dealing with a variety of transformation stably
even in the presence of degradation. Therefore, our VB approach
realizes effective image restoration with automatic parameter tun-
ing, which facilitates various image-based applications in the real
world.

There are many future perspectives on this work. For exam-
ple, we may improve the proposed VB methods so that they
can handle a wider range of image degradation by introducing
more flexible nonlinear transformations and non-Gaussian noise
distributions to degradation models. While we used traditional
edge-preserving smoothing priors for image models, modern pri-
ors such as ones based on deep learning [42] may help the pro-
posed methods to achieve higher image quality. Stochastic ap-
proximation techniques such as random sampling [43] may also
enable more accurate inference when combined with determinis-
tic VB techniques. Moreover, the proposed VB methodology is
general enough to cover other image restoration problems beyond
our current scope, e.g., correction of image distortion [2] and ex-
posure [33], both of which can be described by linear transfor-
mations with unknown parameters. Finally, application to other
fields such as computer vision [2] and computational photogra-
phy [44], which benefit from high-quality image restoration with
automatic parameter tuning enabled by VB, is also of interest.
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