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Abstract: Privacy-preserving data mining technologies have been studied extensively, and as a general ap-
proach, du Pin Calmon and Fawaz have proposed a data distortion mechanism based on a statistical inference
attack framework. This theory has been extended by Erdogdu et al. to time-series data and been applied
to energy disaggregation of smart-meter data. However, their theory assumes both smart-meter data and
sensitive appliance state information are available when applying the privacy-preserving mechanism, which
is impractical in typical smart-meter systems where only the total power usage is available. This issue was
partially solved by the work we presented at ACISP 2017, but the experiment was done against a non-public
dataset and this prevented interested researchers from conducting replication studies. In this paper, we con-
duct additional experiments against a publicly-available power usage dataset called the UK-DALE dataset.
The results exhibited a similar tendency to those we obtained in ACISP 2017; namely, our privacy-utility
mechanism works highly effectively when high-power appliances such as kettle are designated as sensitive.
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1. Introduction

The proliferation of personal devices capable of Internet

connectivity has enabled new applications and services [3].

Examples include healthcare advice service based on the

user’s activity data captured by fitness tracking devices,

navigation services based on the GPS data from the user’s

smart phone, and demand response services based on the

power consumption data of household smart-meters. Such

new services will definitely enrich our everyday life.

At the same time, however, these services will collect

users’ personal data intentionally or unintentionally, which

may in some cases violate their privacy [29]. In a well-known

case, a retail company identified a teenage girl as pregnant

based on her shopping habits [6], which can be thought of as

illegal acquisition of sensitive information. The primary tar-

get of the paper is smart-meter data, which has been shown

to potentially reveal the behavior of individuals [24,25].

These privacy concerns in the era of Internet of Things

have triggered re-examination of privacy regulation around

the world. For instance, the EU Parliament passed the Gen-

eral Data Protection Regulation (GDPR) in 2016 which will

be enforced in 2018. Most of the new privacy regulations,

including the GDPR, now require explicitly that “natural

persons should have control of their own personal data.”*1

It is therefore required for any service providers to treat

users’ personal data solicitously according to the demands

1 Mitsubishi Electric Corporation
a) Hattori.Mitsuhiro@eb.MitsubishiElectric.co.jp
*1 In Recital 7 of the GDPR.

of each individual. This social trend motivates the rapid de-

velopment of privacy-preserving data mining technologies.

A prominent line of privacy-preserving techniques is k-

anonymity [28,31] and its derivatives such as ℓ-diversity [21],

t-closeness [20] and m-invariance [32]. Their primary goal

is to convert an aggregation of personal data into a non-

personal (anonymous) dataset while preserving information

as much as possible. Although their privacy metrics are

intuitive and easy to evaluate, it is difficult or almost im-

possible to protect users’ privacy according to the detailed

demands of each individual. Indeed, their basic strategy is

to anonymize individuals by bundling similar records into

indistinguishable bunches via generalization and omission

of data. However, by nature of these metrics, privacy on an

individual basis cannot be addressed.

Differential privacy [7, 8] is in another line of research.

Unlike k-anonymity and its derivatives, differential privacy

defines the privacy metrics based on a rigorous mathemati-

cal framework. The privacy definition of differential privacy

is such that an adversary querying the database, which con-

tains personal data of many individuals, should face diffi-

culty in determining whether the data record of any spe-

cific individual is even in the database. Anonymity is their

primary concern and accommodating users’ specific privacy

demands is therefore almost outside of their scope.

The most relevant work to ours is the consideration

of privacy within a statistical inference attack framework

[4,5,10,11,27]. In this framework, privacy is modeled as the

amount of information obtained about the sensitive data

when observing the released data. It is therefore possible
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to evaluate privacy on an individual basis by modeling the

system with an appropriate definition of the sensitive and

useful data. The primary goal of this framework is to find an

optimal balance between privacy of an individual and utility

of the service, and the problem of finding an optimal balance

is formalized as an optimization problem where the objec-

tive function and constraint functions represent the privacy

and utility. A solution of the optimization problem gives an

optimal privacy mapping which distorts the useful data to

obtain privacy while still proving utility.

The theoretical aspect of this framework is proposed and

analyzed by du Pin Calmon and Fawaz [5]. Salamatian et

al. applied the theory to a Census dataset and TV rating

dataset, and showed that it is indeed possible to reduce the

revelation of political affiliation while enabling TV program

recommendation services [27]. Erdogdu et al. extended the

theory to time-series datasets and applied the extended the-

ory to energy disaggregation of smart-meter data [10, 11].

They showed that it is possible to modify power data to

conceal the usage of a sensitive appliance while still allow-

ing detection of the usage of a useful appliance, where the

useful and sensitive appliances in their experiments were the

washer-dryer and microwave, respectively.

Although Erdogdu et al. [10,11] made a significant step to-

wards applying the theory to real systems, there is still much

room for improvement. For example, they considered only

the case where both the smart-meter data and usage data

of the sensitive appliances are directly observable. However,

in actual use cases such as ordinary smart-meter systems,

individual appliance usage data may not be directly observ-

able. Therefore, it is desirable to achieve the optimal privacy

mapping even in the case where usage of sensitive appliances

is not available.

These issues were partially solved by the work we pre-

sented at ACISP 2017 [15], where we modified the optimiza-

tion problem of Erdogdu et al. [10, 11] in such a way that

individual appliance energy usage data is not required. We

also conducted in [15] several experiments of applying the

proposed mechanism to the power usage data which we col-

lected at an actual house. However, since the data was not

publicly available, it was difficult for such researchers that

are interested in the work to conduct replecation studies.

In this paper, we conduct additional experiments against a

publicly-available power usage dataset called the UK-DALE

dataset [18]. The procedure of the experiments is almost

same as that we conducted in [15], except for the insertion

of an additional step which converts the power usage data

of individual appliances into binary operation data (ON and

OFF). This additional step is required to fill a gap between

the UK-DALE dataset and the ACISP dataset. The exper-

imental results exhibited a similar tendency to those we ob-

tained in [15]; namely, our privacy-utility mechanism works

highly effectively when high-power appliances such as kettle

are designated as sensitive. As with [15], we elaborate in

this paper the steps we conducted, the parameters we com-

puted and the inference results we obtained in detail, so that

interested researchers can follow our work using the same or

a similar dataset.

The rest of the paper is organized as follows. For the sake

of self-containment and understandability, Sect. 2 reviews

our target application and defines a system model and an

adversary model, and Sect. 3 gives our theoretical analy-

sis and proposition, both of which have already been given

in [15]. Our experimental results against the UK-DALE

dataset and discussions are described in Sect. 4. Section 5

concludes the paper with future directions.

2. Target Application: System and Ad-

versarial Models

In this section, we first elaborate our target application

and its privacy issue. Then we define a system model of

the application and an adversary model of an “honest-but-

curious” service provider.

2.1 Target Application and Privacy Issue

The target application we consider in this paper is an

anomaly detection service of elderly residents living alone.

More concretely, we consider an application where smart

meter data, which is the aggregated power usage of all the

appliances in a household, is collected from the house and

disaggregated on a remote monitoring site, and appliance

states are inferred whereby anomalies of the residents are

detected. This service is proposed by Alcalá et al. [1,2] and

implemented by Song et al. [30].

The use of smart-meter for an anomaly detection is prefer-

able in that unlike anomaly detection using additional sen-

sors such as wearable medical devices, we need no extra

devices since smart-meters have already been installed in

many countries and are ready for use. The rapid develop-

ment of energy disaggregation technologies, also known as

non-intrusive appliance load monitoring (NILM) [14, 17, 19,

22, 23], also motivates the use of smart-meter as a sensor

device for anomaly detection.

A straightforward way of implementing this service will

be to disaggregate and detect the anomaly state on the user

side and notify it to the service provider. However, energy

disaggregation and anomaly detection could be too compu-

tationally intensive to be performed efficiently in a typical

smart-meter with limited processing and memory capabili-

ties. Besides, the correctness of anomaly detection can be

improved by comparing the smart-meter data of a user with

that of other users, which is easily conducted on the provider

side but difficult on the user side.

The privacy issue we need to resolve in this application is

that the service provider may infer states of the appliances

that the user think of as sensitive, as well as those required

for anomaly detection. For example, the kettle is ideal for

anomaly detection because many people, especially those in

the UK, use it regularly and also they often think of it as a

non-sensitive appliance. The hairdryer, on the other hand,

is useful but many people (especially women) would think

of it as sensitive because usage of the dryer implies that the
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Fig. 1 Our system model. We assume App. 1 through App. M∗

are the appliances that a user U designated as sensitive,
and App. M∗ + 1 through App. M are those that U des-
ignated as non-sensitive. Solid lines represent observable
data and dotted lines represent unobservable data.

user must have taken a bath. The difficulty of this issue lies

in the fact that appliances in a household differ from person

to person and the sensitivity to each appliance also differ.

It is therefore required to develop a privacy technology that

can prevent the service provider from inferring states of the

appliances that the user thinks of as sensitive while allowing

inference of states of the non-sensitive appliances, based on

the preference of each user.

From the cryptography perspective, the service provider

can be thought of as so-called “honest-but-curious” adver-

sary, because he basically obeys the protocol (providing

anomaly detection service to the user) but at the same time

he tries to extract as much sensitive information as possible

(inferring states of the appliances that the user think of as

sensitive). We capture this adversarial situation with our

adversary model in Sect. 2.2.

2.2 System and Adversary Models

2.2.1 System Model

Our system model is depicted in Fig. 1.

Suppose there are M appliances in the house of a user U .
Each appliance App. m (m = 1, . . . ,M) has several operat-

ing states denoted by 1, . . . ,Km, where Xm ∈ {1, . . . ,Km}
denotes the realization of its operating state, and Ym de-

notes its energy consumption. Note however that we cannot

directly measure either Xm or Ym, and can only measure

the aggregated power usage Y =
∑M

m=0 Ym at the smart-

meter, where Y0 is the background noise. The smart-meter

data Y is then passed to the privacy mapping module which

takes as input Y and maps it into the distorted data Z.

Here the mapping from Y to Z is according to the condi-

tional probability distribution pZ|Y which is computed be-

forehand by solving the privacy-utility tradeoff problem pro-

posed in Sect. 3. The distorted data Z is then sent to a ser-

vice provider P, and P will conduct energy disaggregation

with Z and infer the appliance states X̂ = (X̂1, . . . , X̂M )

using some inference algorithms.

The smart-meter measures the power usage Y regularly

(typically every one minute), and the distorted data Z is

sent to P successively. P may store all the time-series

Z(1), . . . , Z(T ) for some time period T (typically one day;

we used nine days for our experiment in Sect. 4) and use

them for inference of X̂
(1)

, . . . , X̂
(T )

.

We should note here that although we modeled in Fig. 1

that the privacy mapping module is on the outside of the

smart-meter, this is only for clarity and in practice it can be

integrated into the smart-meter. Indeed, the privacy map-

ping operation is lightweight and can be executed with lim-

ited processing power and memory.

2.2.2 Adversary Model

The goal of an adversarial service provider P is to infer

states of the appliances that U thinks of as sensitive. Sup-

pose that U designated appliances App. 1 through App. M∗

as sensitive and App. M∗ + 1 through App. M as non-

sensitive. In this case, the adversarial goal of P is to infer

X1, . . . , XM∗ from Z.

We assume that P knows all the appliances in U ’s house.
Also, we assume P knows the statistical distribution of each

appliance.

The most typical probabilistic model used in energy dis-

aggregation is the factorial hidden Markov model (FHMM)

[12]. In FHMM, the emission distribution, transition proba-

bilities and initial probabilities of all the appliances are used

for inference of the hidden states. Therefore, concretely we

make the following assumptions. First, we assume that P
knows App. 1, . . . , App. M , including the fact that U desig-

nated App. 1 through App. M∗ as sensitive and App. M∗+1

through App. M as non-sensitive. P also knows the emis-

sion distribution p
Y

(t)
m |X(t)

m
(ym|xm,k) for all m = 1, . . . ,M

and k = 1, . . . ,Km. I.e., we assume that P knows the

probability distribution of the power usage of App. m at

the state xm,k, for all m and k. P additionally knows

the transition probabilities P
X

(t+1)
m |X(t)

m
(xm,k′ |xm,k) and the

initial probabilities P
X

(1)
m

(xm,k) for all m = 1, . . . ,M and

k, k′ = 1, . . . ,Km, i.e., the probability with which App. m

transits the state from xm,k to xm,k′ when the time steps

from t to t+ 1.

We now elaborate the justification of these assump-

tions. In actual use cases, P does not necessarily need to

know the parameters for the sensitive appliances App. 1,

. . . , App. M∗. Namely, P does not need to know

p
Y

(t)
m |X(t)

m
(ym|xm,k) and P

X
(t+1)
m |X(t)

m
(xm,k′ |xm,k) for m =

1, . . . ,M∗. However, we make this assumption to consider

a more adversarial P.

3. A Proposed Privacy-Utility Tradeoff

Mechanism

In this section, we modify the optimization problem of

Erdogdu et al. [10, 11] in such a way that appliance usage

data is not required. We formalize the optimization prob-

lem with definitions of privacy and utility in Sect. 3.1. Then

in Sect. 3.2 we modify the problem by applying the linear

Gaussian model assumption.

3.1 Formalization of the Problem

Here we formalize the privacy-utility tradeoff problem in

a rigorous way.

3.1.1 Notation

Suppose X ∈ X is a discrete random variable and Y ∈ Y
is a continuous random variable, where X and Y are some
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(possibly infinite) sets. We use capital PX(x) for the proba-

bility mass function ofX and small pY (y) for the probability

density function of Y . EY [f(Y )] denotes the expected value

of function f(Y ), i.e., EY [f(Y )] =
∫
Y pY (y)f(y)dy. We use

N (µ, σ2) to denote the Gaussian distribution with mean µ

and variance σ2, and pY |X=x ∼ N (µ, σ2) denotes that given

that X = x, Y is conditionally distributed according to the

Gaussian distribution with mean µ and variance σ2.

Let X = (X∗, X̄) be a vector of discrete random

variables representing the appliance states, where X∗ =

(X1, X2, . . . , XM∗) are discrete random variables of the sen-

sitive appliance states and X̄ = (XM∗+1, XM∗+2, . . . , XM )

are those of the non-sensitive appliance states, both of which

are designated by U .
3.1.2 Definitions of Privacy and Utility

The privacy metric we consider in this paper is as follows.

Definition 1 (Privacy metric). The privacy metric is the

mutual information of sensitive appliance statesX∗ and dis-

torted smart-meter data Z; i.e.,

I(X∗;Z)

=
∑

x∗∈X∗

PX∗(x∗)

∫
Z
pZ|X∗(z|x∗) log

pZ|X∗(z|x∗)

pZ(z)
dz .

(1)

The mutual information I(X∗;Z) represents the quantity

of information one can obtain about X∗ from the observed

Z. It is therefore used extensively in the literature as a pri-

vacy metric [5, 10, 11, 26, 33]. Note however that X∗ is a

vector of discrete random variables while Z is a continuous

random variable, which is different from the situation con-

sidered in the literature where all the random variables were

discrete. We therefore extended the theory.

Utility is measured by the following distortion metric.

Definition 2 (Distortion metric). Let d : Y × Z → R+

be some distortion function.*2 The distortion metric is the

expectation of d(Y,Z); i.e.,

EY,Z [d(Y,Z)] =

∫∫
Y×Z

pZ|Y (z|y)pY (y)d(y, z)dydz .

(2)

Lower distortion intuitively corresponds to better utility.

However, the distortion metric in Definition 2 may ap-

pear slightly different from what we should deal with in

this paper. Indeed, the ideal distortion metric would be

the one that directly captures the degradation of the results

of appliance usage analysis. However, the outcome of the

appliance usage analysis depends heavily on the algorithms

used for the analysis and therefore it is infeasible to estimate

the degradation in general. Also, empirically the distortion

metric in Definition 2 is effective, as shown in Sect. 4.

3.1.3 The Privacy-Utility Tradeoff Problem

Suppose for now that the joint distribution pX∗,Y is al-

ready known. Then given pX∗,Y , a distortion function d

and a distortion constraint δ, the privacy mapping pZ|Y that

*2 Examples of distortion function include the L1 norm, L2 norm
and more generally Lp norm.

minimizes the privacy information leakage can be found by

solving the following optimization problem:

inf
pZ|Y

I(X∗;Z) subject to EY,Z [d(Y,Z)] ≤ δ . (3)

3.2 Gaussian Model Assumption

We assumed in Sect. 3.1 that pX∗,Y is already known.

In practical smart-meter systems, however, this assump-

tion does not hold and we need to substitute pX∗,Y with

other known parameters. We propose here the substitution

method.

First, observe that from the law of total probability,

pX∗,Y (x∗, y) =
∑
x̄∈X̄

pX∗,X̄,Y (x∗, x̄, y) =
∑
x̄∈X̄

pX,Y (x, y)

=
∑
x̄∈X̄

PX(x)pY |X(y|x) .

(4)

Now, computing pX∗,Y (x∗, y) boils down to computing

PX(x) and pY |X(y|x).
In order to compute pY |X(y|x), we apply a linear Gaus-

sian model. This model has been used extensively to simu-

late the emission of home appliances in the energy disaggre-

gation literature [13,19,22].

Let Y0 be a random variable of the background noise and

Ym be that of the emission of appliance m. Then,

Y = Y0 +

M∑
m=1

Ym , (5)

pY0
∼ N (µ0, σ

2
0) , (6)

pYm|Xm=xm,k
∼ N (µm,k, σ

2
m,k) , (7)

where µ0 and σ2
0 are the mean and variance of the Gaussian

distribution of the background noise, and µm,k and σ2
m,k

are those of appliance m in state k. Then, according to the

standard probability theory [9],

pY |X=x ∼ N

(
µ0 +

M∑
m=1

µm,k, σ2
0 +

M∑
m=1

σ2
m,k

)
. (8)

Equation (8) implies that computing pY |X is now reduced

to obtaining the parameters Θ = {µ0, σ
2
0 , {µm,k, σ

2
m,k}}.

These parameters can be obtained either from the specifica-

tion documents or reference models of the appliances, or by

doing preliminary training activities.

Assuming that the variance of the total power data Y is

independent of states of the appliances, (8) can further be

simplified as

pY |X=x ∼ N

(
µ0 +

M∑
m=1

µm,k, σ2

)
, (9)

where σ2 is the variance of Y . In this case, computing

pY |X can be reduced to obtaining the parameters Θ′ =

{µ0, {µm,k}, σ2}. We use this simplified model in Sect. 4.

PX(x) can also be obtained from the reference models of

the appliances or by doing preliminary training activities.

Now, it is easy to see that pX∗,Y can be obtained from Θ′

and PX and therefore the optimization problem is solvable.
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4. Experiments on Household Power Us-

age Data

This section exhibits our experimental results of apply-

ing the proposed mechanism to the power usage data of an

actual household. We give an overview of our experiments

in Sect. 4.1, and we discuss in Sect. 4.2 the power usage

dataset that we used for the experiments. Section 4.3 shows

the datasets and parameters that we obtained in the exper-

iments. The optimization problem is solved and the privacy

mapping is applied in Sect. 4.4. Section 4.5 evaluates the

privacy and utility aspects of our mechanism quantitatively,

and the implications of the results are discussed in Sect. 4.6.

4.1 Overview

We used as an actual household dataset the UK-DALE

dataset. This dataset contains both the whole-house power

usage data and the individual power usage data of each

appliance. In order to fill a gap between the UK-DALE

dataset and the dataset we used in the ACISP 2017 work [15]

(the ACISP dataset, hereafter), we converted the individual

power usage data into binary operation data (ON and OFF)

using the threshold power usage value described in the meta-

data of the UK-DALE dataset.

Then, we considered four use cases: 1) tv is designated

as sensitive; 2) kettle is designated as sensitive; 3) toaster

is designated as sensitive; and 4) hair dryer is designated

as sensitive. For each case, we chose an appropriate dis-

tortion constraint δ by trial-and-error, and with Θ′, PX

and δ, we solved the convex optimization problem (3) and

obtained a privacy mapping pZ|Y . We then distorted the

power usage data according to pZ|Y , and obtained distorted

power usage data. In order to evaluate the privacy and util-

ity of our mechanism, we applied an inference algorithm to

the distorted data to infer the appliance usage of the sensi-

tive and non-sensitive appliances, and compared the perfor-

mance with that of the original data.

Since the UK-DALE dataset contains discrete values only,

in the experiments we regard Y and Z as discrete random

variables Ỹ and Z̃ respectively, and compute and apply a

conditional probability mass function PZ̃|Ỹ .

4.2 Data Source

We use as a publicly available dataset the UK-DALE

dataset [18] for our experiment. Among several publicly

available datasets, this is one of the most desirable dataset

in that it contains fine-grained and long-period power us-

age data as well as detailed metadata and it can be readily

available from the website.*3 Details of the dataset includ-

ing the environment of the data acquisition, types of the

data obtained, and the statistics of the data, can be avail-

able at [16,18].

*3 http://jack-kelly.com/data/

4.3 Datasets and Parameters

4.3.1 Power Usage and Appliance Usage Datasets

The UK-DALE dataset contains five household data. For

our experiment, we use House 1 data because it has mini-

mum data loss among the five.*4 The House 1 data consists

of three different forms of data: the 6 second data, the 1

second data and the 16 kHz data, each of which is captured

according to the specified frequency (6 second means power

usage is captured every 6 seconds). We use 6 second data,

and downsample it to 1 minute resolution in order to obtain

a dataset whose time resolution is identical to those of the

ACISP dataset.

The difference between the UK-DALE dataset and the

ACISP dataset is not only the time resolution; the format

of the appliance usage data is also different. In the ACISP

dataset, the appliance usage is collected manually in binary

form (ON and OFF) based on actual operation of the appli-

ance. In the UK-DALE dataset, however, only the actual

power usage of each appliance is available.*5 We therefore

convert the power usage data into binary operation data us-

ing the threshold power usage value given in the metadata

of the UK-DALE dataset.

The House 1 data starts on November 9, 2012, 22:28:15

GMT and ends on April 26, 2017, 18:35:53 BST. In our ex-

periment, we use the one-month data starting on August

1, 2016, 0:00 GMT and ending on August 31, 2016, 23:59

for both the supervised learning of the model parameters

described in Sect. 4.3.2 and the evaluation of privacy and

utility described in Sect. 4.5.

4.3.2 Model Parameters

In order to obtain the model parameters Θ′ and PX from

the power usage data and the ground truth, we used a super-

vised learning algorithm in the same way as we did against

the ACISP dataset.

For simplicity, we employed a couple of simplification

techniques. First, we modeled the hidden states of the appli-

ances with the factorial hidden Markov model (FHMM) [12].

The FHMM assumes that the hidden states between ap-

pliances are independent, which reduces the computational

complexity of learning and inference. This assumption is

reasonable in our situation and therefore we used this model

to simplify the computation of Θ′ = {µ0, {µm,k}, σ2}.
Second, we assumed each appliance has only two possible

states: Xm = {ON,OFF} for all m ∈ {1, 2, . . . ,M = 53}.
This two-state assumption simplifies the computation of

PX . Note here that since we have assumed all the appli-

ances behave independently from each other, we can com-

pute PX(x) as the product of probability of each appliance;

i.e., PX(x) =
∏M

m=1 PXm
(xm). We also assume that the

appliance state Markov chains have already converged to

the steady-state, that is, the initial state distributions are

equal to the steady-state distributions implied by the transi-

*4 Refer to Figure 3 in [18] for details.
*5 To be precise, several appliances are accompanied by a binary

operation data. However, they are not necessarily perfect and
reliable.
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Table 1 Appliances used in the House 1 of the UK-DALE dataset
where the estimated mean power is greater than 100
Watts, and their parameters obtained from the super-
vised learning. µm,ON is the estimated mean power of
appliance m. am and bm are the estimated transition
probabilities of transiting from OFF to ON and from ON
to OFF, respectively.

m Appliance µm,ON am bm
0 background noise 239.68
5 washing machine 425.42 0.001394 0.037783
6 dishwasher 1013.42 0.000762 0.024756
7 tv 231.73 0.001455 0.009122
8 kitchen lights 123.16 0.00847 0.050728

10 kettle 2300.00 0.002338 0.675325
11 toaster 1601.85 0.000898 0.377358
13 microwave 1381.56 0.000381 0.253731
22 hoover 1688.85 0.000472 0.164063
36 coffee machine 179.18 0.000135 0.022814
39 hair dryer 793.82 0.000202 0.230769
40 straighteners 226.56 0.00008963 0.266667
44 child’s table lamp 313.50 0.000134 1.000
49 office lamp2 130.49 0.000113 0.013736
51 office pc 265.53 0.000293 0.058559
53 LED printer 144.12 0.0000672 0.103448

σ2 = 68618.95

tion distributions. Thus, each PXm
(xm) is stationary across

time and can be computed from the transition probabilities

of the appliance states.

Let am be the transition probability of appliance m from

OFF to ON and bm be that of the opposite direction (ON to

OFF). Then,

PXm
(ON) =

am
am + bm

, PXm
(OFF) =

bm
am + bm

. (10)

Hence, PX can be computed by {am, bm}. In addition, we

assumed that µm,OFF = 0 for all m.

We used all of the one-month data of power usage and

appliance usage for the supervised learning, and obtained

Θ′ = {µ0, {µm,ON}, σ2} and {am, bm}. Especially, the

mean values are computed by solving the normal equation

of the linear regression. For the sake of simplicity, though,

we discarded the appliances whose estimated mean power

is below 100 Watts and regarded them as a part of the

background noise. We repeated the computation of the nor-

mal equation several times while excluding the low-power-

consuming appliances. The results are shown in Table 1.

4.4 Optimization and Distortion

As we explained in Sect. 4.1, we considered the following

four use cases:

Case 1 tv (m = 7) is designated as sensitive,

Case 2 kettle (m = 10) is designated as sensitive,

Case 3 toaster (m = 11) is designated as sensitive,

Case 4 hair dryer (m = 39) is designated as sensitive.

For each case, we solved the convex optimization problem

and obtained a discrete privacy mapping PZ̃|Ỹ . For ease of

computation, though, we quantized ỹ and z̃ into 20-Watt-

resolution data y̆ and z̆, respectively, and computed PZ̆|Y̆ as

an alternative of PZ̃|Ỹ . We used as a distortion metric the

L1 distance d(y̆, z̆) = |y̆− z̆|. The optimization problem was

solved by the convex optimization software CVX,*6 where

*6 http://cvxr.com/cvx/

we used δ = 750 for Case 1, δ = 10 for Case 2, δ = 75 for

Case 3 and δ = 100 for Case 4. Then we distorted the power

usage data according to PZ̆|Y̆ (z̆|y̆).

4.5 Evaluation of Privacy and Utility

We now evaluate both the privacy and utility aspects of

the distorted power usage data.

Since our goal of the privacy-utility tradeoff is to retain

the inference of the non-sensitive appliance states while pre-

venting that of the sensitive appliance states, we evaluate

them by measuring the degradation of the appliance state

inference. We therefore apply an inference algorithm to the

raw data and the distorted data (for all the four cases) to

infer the hidden states of the appliances, and evaluate the

detection rates.

We again model the hidden states with the FHMM ac-

companied by the parameters we obtained in the supervised

learning, and infer the hidden states for the same one month

using an approximate inference algorithm called the com-

pletely factorized variational approximation (CFVA) [12].

CFVA is used to avoid the computational complexity of ex-

act inference algorithms. For this binary (ON and OFF)

classification, the CFVA algorithm provides marginal pos-

terior likelihoods which we can threshold at custom values

to obtain a receiver operating characteristic (ROC) curve in

order to evaluate the inference performance across different

tradeoffs between true positive and false positive rates. We

can also compute the area under the curve (AUC) which

quantifies the inference performance across this tradeoff in

a single number. We perform and compare this evaluation

between the raw data and the distorted data.

Figure 2 shows the ROC curve of the inference results of

several appliances, where the analysis was performed on the

raw dataset. The AUC values are evaluated and shown in

Table 2. As the AUC values tell, the states of the kettle and

oven toaster are inferred almost correctly, the states of the

tv and hair dryer are inferred with high accuracy, and the

states of the office pc are inferred with marginal accuracy.

Figure 3 gives ROC curves of the inference results with

the distorted data for Case 1. The inference performance

for the target appliance is degraded as required, but at the

same time other appliances are also degraded severely.

Figure 4 gives ROC curves of the inference results with

the distorted data for Case 2. The inference performance for

the target appliance is degraded as required, and the other

appliances are not damaged at all.

Figure 5 gives ROC curves of the inference results with

the distorted data for Case 3. The inference performance for

the toaster is degraded severely. The inference performance

for the kettle and hair dryer is degraded to some extent. The

inference performance for the tv and office pc is preserved

almost identically.

Figure 6 gives ROC curves of the inference results with the

distorted data for Case 4. The inference performance for the

hair dryer is degraded severely. The inference performance

for the kettle and toaster is degraded to some extent. The
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Table 2 AUC values of the ROC curves (Figures 2, 3, 4, 5 and 6)

AUC
m Appliance raw (Fig. 2) tv (Fig. 3) kettle (Fig. 4) toaster (Fig. 5) hair dryer (Fig. 6)
7 tv 0.927 0.542 0.928 0.923 0.916

10 kettle 0.988 0.783 0.523 0.821 0.846
11 toaster 0.982 0.822 0.931 0.558 0.692
39 hair dryer 0.951 0.659 0.964 0.664 0.611
51 office pc 0.887 0.499 0.895 0.877 0.874
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Fig. 2 ROC curves of the results of inference with raw data
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Fig. 3 ROC curves of the results of inference with distorted data
(sensitive appliance is tv and δ = 750)
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Fig. 4 ROC curves of the results of inference with distorted data
(sensitive appliance is kettle and δ = 10)

inference performance for the tv and office pc is preserved

almost identically.
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Fig. 5 ROC curves of the results of inference with distorted data
(sensitive appliance is toaster and δ = 75)
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Fig. 6 ROC curves of the results of inference with distorted data
(sensitive appliance is hair dryer and δ = 100)

4.6 Discussion

As we have shown in Sect. 4.5, the distortion works highly

effectively for the case where the sensitive appliance is the

kettle. This may be due to the fact that the kettle is re-

alistically modeled with only two states: {ON, OFF}, and
therefore our simplified model fits well. Moreover, the con-

sumed power is as high as 2,300 Watts, which enables us

to compute an optimal privacy mapping PZ̃|Ỹ that attains

both small mutual information and small distortion such as

δ = 10.

On the other hand, for the case where the sensitive appli-

ance is the television, the distortion renders inference of the

sensitive appliance almost impossible but at the same time

makes inference of the other appliances degraded severely.

This may stem from the fact that the television consumes

a relatively low power of 232 Watts and thus distortion of

middle power values would affect other middle-power appli-
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ances.

We should discuss the impact of the assumptions and ap-

proximations we made in the evaluation. We modeled the

hidden states of the appliances with FHMM. FHMM is used

typically in the energy disaggregation literature [19] and

therefore this can be thought of as a reasonable modeling,

but other inference algorithms such as neural networks [17]

may give greater advantage to an adversarial P. We used

a binary-state (ON and OFF) assumption for all the appli-

ances. This may fit to some appliances (e.g. kettle) but not

to others (e.g. tv). Multiple-state model will definitely give

higher performance to both benign and adversarial P. Use

of an exact inference algorithm will make the performance

better at the price of computational complexity.

5. Conclusion

In this paper, we extended the work we presented at

ACISP 2017 by conducting additional experiments against a

publicly-available power usage dataset called the UK-DALE

dataset. We followed almost the same procedure as that of

the ACISP 2017 work, and obtained the results exhibiting

a similar tendency; namely, our privacy-utility mechanism

works highly effectively when high-power appliances such as

kettle are designated as sensitive. Since we elaborated the

steps we conducted, the parameters we computed and the

inference results we obtained in detail, interested researchers

can follow our work using the same or a similar dataset.

Future work will be to extend this theory to the case where

the service provider uses other inference algorithms such as

neural networks.
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