# 無線物理層セキュリティを用いた IoT ネットワークの検討

高野 泰洋1 白石 善明1 森井 昌克1

概要:本稿は,物理層・セキュリティを利用した Internet of Things (IoT) 無線ネットワークを検討する. Multi-input single-output (MISO) システムを想定したケース・スタディを通じて,情報理論的安全な無 線伝送の必要条件が確認される.更に,チャネル・レシプロシティにおけるなりすましを抑止する通信プ ロトコルが検討される.

キーワード: Internet of Things (IoT),物理層セキュリティ,秘匿チャネル容量,チャネル・レシプロシティ,情報理論的安全性.

# A Study of IoT Networks using Wireless Physical Layer Security

YASUHIRO TAKANO<sup>1</sup> YOSHIAKI SHIRAISHI<sup>1</sup> MASAKATSU MORII<sup>1</sup>

**Abstract:** This paper studies Internet of Things' (IoT) wireless networks utilizing physical layer security. Case studies assuming a multi-input single-output (MISO) system confirm necessity conditions to perform information-theoretic secured wireless transmission. Moreover, a protocol to prevent an identity theft attack in channel reciprocity is discussed.

*Keywords:* Internet of Things (IoT), physical layer security, secrecy capacity, channel reciprocity, information-theoretic security.

## 1. はじめに

無線伝送は通信ノードの物理的な配置を自由にする. 従って、多くの Internet of Things (IoT) 端末は無線伝送 を用いた情報通信を行っている.しかし、無線伝送は常に 第三者から傍聴されうる.従って、Bluetooth [1] 等の比較 的近距離の無線通信を想定した伝送プロトコルであって も、セキュリティ向上のため暗号化に対応している.しか し、バッテリーレスかつメンテナンスフリーを目的とした センサディバイスにとって、必ずしも高度な暗号化処理が 実現できるとは限らない.

近年,第5世代移動通信を想定した大規模 Multiple-input multiple-output (MIMO) システム [2] が広く研究されてい る.多数のアンテナを利用する大規模 MIMO 伝送は,空 間自由度を利用して,スペクトラム利用効率を向上させる. 物理層セキュリティの概念や理論を紹介する文献は多数 ある([3], [4] 等).しかし,現実的なシステム実装に起因 する課題はまだ十分に議論されていない.そこで本稿は, ケース・スタディを通じて,情報理論的安全な無線伝送の 動作原理を確認し,更に,その通信プロトコルについて検 討する.

本稿の構成は次の通りである. 第2章は物理層セキュリ ティを概説する. 第3章は, Multiple-input single-output

更に,多数の送信アンテナを用いたビームフォーミング 伝送は,電波に指向性を持たせ,特定の通信相手のスルー プットを高めることを可能にする.そこで,大規模 MIMO 信号処理を想定し,情報理論的安全な通信を目指した物理 層セキュリティが注目を集めている.物理層セキュリティ は,従来の計算量的安全な暗号化の完全な代替手段を与え るものではない.しかし,両者を組み合わせることで,暗 号化処理の軽量化,もしくは,更なるセキュリティ向上が 可能になると期待される.

神戸大学 Kobe University

(MISO) システムを想定し,情報理論的安全な伝送方法の 原理を説明し,また,数値例を通じて,その実現可能性を 議論する.第4章は,情報理論的安全な伝送を可能にする プロトコルを検討する.第5章は,本稿の結論をまとめる.

#### 2. 物理層セキュリティ

# 2.1 秘匿チャネル容量 (Secrecy capacity)

Alice から Bob への情報伝送を Eve が傍聴しているとする. Alice と Bob の間の秘匿チャネル容量  $C_8$  は,

$$\mathcal{C}_{\mathcal{S}} = \mathcal{C}_B - \mathcal{C}_E \tag{1}$$

により定義される. 但し、 $C_B$  と  $C_E$  は、それぞれ、Alice と Bob 間および Alice と Eve 間の非負のチャネル容量とす る. 秘匿チャネル容量  $C_s$  は、情報理論的安全な通信が可 能な伝送レートを示す.

#### 2.2 物理層セキュリティにおける「情報理論的安全性」

本節は、秘匿チャネル容量  $C_8$  と情報理論的安全性の関 係を考察する. m(C) を 伝送レート C [bps/Hz] で送信さ れる平文,その推定値  $\hat{m}$  とする. 情報理論的安全性は、秘 匿チャネル容量  $C_8$  を使って定義できる:  $0 \le \forall \epsilon < 1$  と 伝送レート  $C_E$  [bps/Hz] の受信信号  $\mathbf{r}(C_E)$  に対し、

$$|\mathbf{P}_{\mathbf{r}}\{\hat{\mathbf{m}} = \mathbf{m}(\mathcal{C}_B)\} - \mathbf{P}_{\mathbf{r}}\{\hat{\mathbf{m}} = \mathbf{m}(\mathcal{C}_B) \mid \mathbf{r}(\mathcal{C}_E)\}| < \epsilon$$

を満たすよう、 $C_S = C_B - C_E > 0$ を決定できる.

この定義から分かるように、物理層セキュリティにおける情報理論的安全性は、暗号化による「安全」 – (鍵が無い限り)暗号文を入手しても平文を解読できない – とは異なることに注意されたい.  $C_S > 0$ は、 $C_S \leq 0$ でない (伝送情報が Eve へ筒抜けではない)ことを意味するのであって、Eve へ  $C_E$ の情報量が漏洩する. ところが、ターボ符号や Low-density parity-check (LDPC)符号などのシャノン限界に漸近する伝送レート特性を持つ伝送路符号化を施して  $C_B$ のチャネル容量を使い切れば、Eve は漏洩した  $C_E$ の情報量から何も有意な情報を復号できない.

# 3. ケース・スタディ

#### 3.1 信号モデル

図1に示す通り、Alice は長さ  $L_x$  のデータ・シンボルベ クトル  $\mathbf{x}(l)$ を  $N \times 1$  MISO システムを使って Bob へ伝送 する.スロット・タイミング l における Bob の受信シンボ ルベクトル  $\mathbf{y}_B(l)$ は、フラットフェージング・チャネル  $\mathbf{h}_B(l) = [h_{B,1}(l), \cdots, h_{B,N}(l)]^{\mathrm{T}}$ と Additive white Gaussian noise (AWGN) ベクトル<sup>\*1</sup>  $\mathbf{z}_B \sim \mathbb{CN}(\mathbf{0}_{L_x}, \sigma_{z,B}^2 \mathbf{I}_{L_x})$ の



影響を受け,

$$\mathbf{y}_B(l) = \mathbf{x}(l)\mathbf{w}^{\mathrm{T}}(l)\mathbf{h}_B(l) + \mathbf{z}_B$$
(2)

と書ける.ここで、 $\mathbf{w}(l) = [w_1(l), \cdots, w_N(l)]^{\mathrm{T}}$ は送信 重みベクトルである.同様に、傍聴者 Eve の受信信号  $\mathbf{y}_E(l) \in \mathbb{C}^{L_x}$ は、長さ N シンボルのチャネルベクトル  $\mathbf{h}_E(l)$ と AWGN ベクトル  $\mathbf{z}_E(l) \sim \mathbb{CN}(\mathbf{0}, \sigma_{z,E}^2 \mathbf{I}_{L_x})$ に対し

$$\mathbf{y}_E(l) = \mathbf{x}(l)\mathbf{w}^{\mathrm{T}}(l)\mathbf{h}_E(l) + \mathbf{z}_E$$
(3)

である.

#### 3.2 秘匿チャネル容量

Alice と Bob の間のチャネル容量  $C_B$  と Alice と Eve の 間のチャネル容量  $C_E$  は、それぞれ、信号モデル (2)、(3) に対応して、

$$\mathcal{C}_B = \mathbb{E}\left[\log_2\left(1 + |\mathbf{w}^{\mathrm{T}}(l)\mathbf{h}_B(l)|^2 \sigma_x^2 / \sigma_{z,B}^2\right)\right]$$
(4)

$$\mathcal{C}_E = \mathbb{E}\left[\log_2\left(1 + |\mathbf{w}^{\mathrm{T}}(l)\mathbf{h}_E(l)|^2 \sigma_x^2 / \sigma_{z,E}^2\right)\right]$$
(5)

である.ここで,  $\sigma_x^2$  は送信ベクトル  $\mathbf{x}(l)$  の各要素の分散 である.

Alice は、 $C_B$  を最大化するよう、定数 P の電力制約  $||\mathbf{w}(l)||^2 \leq P$  の下で送信重み  $\mathbf{w}(l)$  を最適化できる.送信 重みの最適値  $\hat{\mathbf{w}}(l)$  は、

$$\hat{\mathbf{w}}(l) = \arg \max_{\mathbf{w}} |\mathbf{w}^{\mathrm{T}} \mathbf{h}_{B}(l)|^{2}$$
$$= \mathbf{h}_{B}^{*}(l) / \sqrt{||\mathbf{h}_{B}(l)||^{2}}$$
(6)

である.このとき,秘匿チャネル容量は

$$\mathcal{C}_{\mathcal{S}} = \mathbb{E}\left[\log_2 \frac{\sigma_{z,B}^2 \sigma_{\mathbf{h},B}^2 + \sigma_x^2 \sigma_{\mathbf{h},B}^4}{\sigma_{z,B}^2 \sigma_{\mathbf{h},B}^2 + \sigma_x^2 |\mathbf{h}_B^H(l)\mathbf{h}_E(l)|^2/\alpha}\right]$$
(7)

と書ける. 但し,  $\sigma_{\mathbf{h},B}^2 = \mathbb{E}[||\mathbf{h}_B(l)||^2]$ ,  $\alpha = \sigma_{z,E}^2 / \sigma_{z,B}^2$  である.

## 3.3 チャネル・レシプロシティ

送信重み (6) は  $\mathbf{h}_B(l)$  を使って算出される. しかし,端 末の移動を前提とする無線通信では,チャネルベクトル  $\mathbf{h}_B(l)$  は変動しうる. 従って,チャネル推定ベクトル  $\hat{\mathbf{h}}_B(l)$ は通信中に推定しなければならない. そこで, Alice は Bob から送信された長さ  $L_p$  の既知のパイロット信号ベクトル

 <sup>\*1</sup> 簡潔な記述のためインデックス *l* を省略するが, 熱雑音ノイズ
 **z**<sub>B</sub> はスロット・タイミング毎に異なる. また, CN(μ, Σ) は平 均ベクトル μ, 分散行列 Σ の複素多変量正規分布を記す.

## $\mathbf{p}_B$ を用いて $\hat{\mathbf{h}}_B(l)$ を推定する.\*2

しかし,一般的な無線システムでは全二重伝送を想定し ないため,  $\mathbf{p}_B$  と  $\mathbf{x}(l)$  は異なるスロット・タイミングに伝 送される必要がある.電波伝搬の性質上,スロット間隔 をチャネルのコヒーレンス時間より十分短く設定すれば, チャネルパラメータが緩やかに変動するとみなしてよい. チャネル・レシプロシティは,

$$\mathbf{h}_B(l) \approx \mathbf{h}_B(l-1) \tag{8}$$

なる近似に基づき算出した送信重みを用いたビームフォー ミングを行う伝送手法である.チャネル・レシプロシティ 伝送時の秘匿チャネル容量の上限は

$$\mathcal{C}_{S} \leq \mathbb{E} \left[ \log_{2} \frac{\sigma_{z,B}^{2} \sigma_{\mathbf{h},B}^{2} + \sigma_{x}^{2} |\mathbf{h}_{B}^{\mathrm{H}}(l-1)\mathbf{h}_{B}(l)|^{2}}{\sigma_{z,B}^{2} \sigma_{\mathbf{h},B}^{2} + \sigma_{x}^{2} |\mathbf{h}_{B}^{\mathrm{H}}(l-1)\mathbf{h}_{E}(l)|^{2}/\alpha} \right]$$
(9)

である.

#### 3.4 数值例

秘匿チャネル容量 (9) はチャネルパラメータの性質や signal-to-noise ratio (SNR) に依存する.本節では,具体 的なシステムパラメータを想定し,情報理論的安全な無線 伝送の実現可能性を確かめる.

#### 3.4.1 パラメータ設定

アンテナ数は、(Alice, Bob, Eve) の三者において (8,1,1) である.キャリア周波数と伝送帯域幅は、それぞれ、2 GHz と1 MHz とする. 伝送路符号化のフレーム単位は  $L_F = 10$ スロットで構成され、1 スロットの長さは  $L_x = 1000 シン$ ボルとする. 送信電力制限は  $P \le 1$  である.また、チャネ ルパラメータはレイリーフェージングに従うと想定する. 更に、本稿では、理想的な演算精度でチャネル推定値が得 られると仮定する.

#### 3.4.2 秘匿チャネル容量の検証

図 2 は, Bob と Eve が 5 km/h で移動する場合の秘匿 チャネル容量を示す. Bob と Eve の位置はフレーム毎にラ ンダムに選ばれ,二者と Alice の距離は SNR に応じて決定 されるとする. Bob と Eve が Alice から同一半径の位置に 配置される場合, $\alpha = 1$ , つまり, (Bob の SNR)/(Eve の SNR) = 0 dB となる.このとき, 図 2 の曲線: $\alpha = 0$  dB が示す通り,秘匿チャネル容量 (7) は 全 SNR 領域にて  $C_s > 0$  が成り立つ.また,秘匿チャネル容量  $C_s$  は, Bob の SNR が増加しても 3.8 [bps/Hz] に飽和することが分か る.これは,SNR 増加に伴い $\sigma_{z,B}^2 \rightarrow 0$  となるが,

$$\mathcal{C}_{\mathcal{S}} \leq \mathbb{E}\left[\log_2 \frac{\sigma_{\mathbf{h},B}^4}{|\mathbf{h}_B^{\mathrm{H}}(l)\mathbf{h}_E(l)|^2/\alpha}\right] = 3.8 \tag{10}$$



図2 Rayleigh フェージングにおける秘匿チャネル容量 (7).



図 3 秘匿チャネル容量の上限 (10).

が成り立つためである.図3に示す通り,秘匿チャネル容 量の上限は,Aliceのアンテナ数に比例する.つまり,秘 匿チャネル容量の上限は,チャネルパラメータの相関特性 に加えて,Aliceのアンテナ数とBobとEveのSNR比を 表すパラメータαにより決定される.

図 2 において,直線:  $\sigma_{z,E}^{-2} = 20$  dB は, Eve の SNR を 20 dB に固定した際の秘匿チャネル容量を示す.図 2 から 分かるように,この直線は SNR = 8 < 20 - 11 dB にて  $C_8 < 0$  となる.即ち,Eve が Alice に近づき  $\alpha < -11$  dB となる場合,情報理論的安全な無線伝送は実行できない. この問題の解決策は,図 3 から分かるように,Alice のア ンテナ数を増やすことである.

次に, チャネル・レシプロシティが前提とする近似(8) について検証する.図4に示す通り,移動速度が5km/h のとき,秘匿チャネル容量(7)と(9)は一致する.これは, 移動速度が低速であるとき,近似(8)が正確なためである. しかし,移動速度が高速になると,(8)の近似誤差は無視で きない.図4において,移動速度が50km/hのとき,秘匿 チャネル容量(9)は(7)より0.3 [bps/Hz] 劣化する.従っ

<sup>\*2</sup> 例えば, Aice の  $N \times L_p$  の受信シンボル行列  $\mathbf{Y}_A(l) = \mathbf{h}_B(l)\mathbf{p}_B^{\mathrm{T}} + \mathbf{Z}_A$  に対し, Least squares (LS) チャネル推定値 は  $\hat{\mathbf{h}}_B(l) = \mathbf{Y}_A(l)\mathbf{p}_B^* \cdot (\mathbf{p}_B^{\mathrm{T}}\mathbf{p}_B^*)^{-1}$  により与えられる.



図 4 秘匿チャネル容量 (7): No delay と (9): 1 slot delay の比較.



図5 チャネル・レシプロシティのプロトコル・シーケンス.

て,高速移動を想定する場合,スロット間隔 *L<sub>x</sub>*を短くして,(8)の近似精度を改善する必要がある.

# 4. プロトコルの検討

#### 4.1 チャネル・レシプロシティを実現するプロトコル

図5により、チャネル・レシプロシティを実行するために 必要な最低限のプロトコル・シーケンスを説明する.通信 中に変化するチャネルベクトルの推定値 $\hat{\mathbf{h}}_B(l)$ 更新のため、 毎スロット、Bob は Alice に対しパイロット  $\mathbf{p}_B$  を伝送す る.近似 (8) とチャネル推定が十分高精度であれば、Alice から重み付け送信された信号  $\mathbf{x}(l)\hat{\mathbf{w}}^{\mathrm{T}}(l)$ は、Bob には

 $\mathbf{y}_B(l) = \sqrt{||\mathbf{h}_B(l)||^2} \cdot \mathbf{x}(l) + \mathbf{z}_B$ 

として受信される. つまり, Bob はチャネル推定および チャネル等化を行う必要がない.

なお、送信信号  $\mathbf{x}(l)\hat{\mathbf{w}}^{\mathrm{T}}(l)$ は Eve へ漏洩するが、その情報量は  $\mathcal{C}_{E} < \mathcal{C}_{B}$ となる、従って、Eve はフレームデータを正しく復号することが困難である、また、Eve はパイロット  $\mathbf{p}_{B}$  信号を受信し、Eve と Bob 間のチャネルパラメータ  $\mathbf{h}_{BE}(l)$ を推定できる、しかし、(9) に示した通り、秘匿チャネル容量は  $\mathcal{C}_{s}$ は  $\mathbf{h}_{B}(l)$ と  $\mathbf{h}_{E}(l)$ により決定され、 $\mathbf{h}_{BE}(l)$ には依存しないことに注意されたい、

#### 4.2 課題

しかしながら,図5に示したプロトコルは,妨害波やな りすましに対し脆弱である.

## 4.2.1 妨害波

Eve は Bob の Request (REQ) 伝送時に妨害波を送信し Alice のチャネル推定  $\hat{\mathbf{h}}_B(l)$ を妨げることができる. この 攻撃に対し, Alice と Bob は,先ず,妨害波の存在を検出 しなければならない. 能動的な攻撃者の検出は [5] 等で議 論されている.次に, Alice は干渉キャンセル処理 ([6] 等) により,問題を改善することができる. しかし,干渉キャ ンセル処理の多くはマルチアンテナを前提とする. 従っ て, Bob が 1 本アンテナで受信している場合, Alice の Acknowledgement (ACK) 伝送時の妨害波への対策は,再 送処理が挙げられる.

#### **4.2.2** なりすまし

図 5 のシーケンスにおいて, Bob の REQ 前に, Eve が パイロット  $\mathbf{p}_B$  を送信することで, 容易に Eve は Bob に なりすませる. あるいは, Eve は Bob の REQ を受けて, Alice になりすまして偽の ACK を Bob に通知することで, 正常な通信を阻害できる.

この問題への対策として,認証フェーズを追加したプロ トコル・シーケンスを図6に示す.認証フェーズにおいて, Alice と Bob はそれぞれの公開鍵  $(k_p^A, k_p^B)$  を事前に共有 していると仮定する.また,平文*m*,公開鍵  $k_p$ ,秘密鍵  $k_s$ に対し,  $e = E(m, k_p)$  を任意の非対称暗号化関数,対応す る復号関数を  $m = D(e, k_s)$  と記す.認証フェーズの詳細 は,次の通りである:

- i) Bob は Alice の公開鍵  $k_p^A$  を使い,自身の識別番号 ID<sub>B</sub> を  $e_{\text{REQ}} = E(\text{ID}_B, k_p^A)$  により暗号化する.
- ii) Bob は デフォルトのパイロット信号 p<sub>REQ</sub> と e<sub>REQ</sub>
   を Alice へ送る.
- iii) Alice は、 自身の秘密鍵  $k_s^A$  を使い、 $e_{\text{REQ}}$  から識別番 号 ID<sub>B</sub> を復号して Bob の要求を検知する.
- iv) Alice は, Bob の要求を受けて, 乱数 r を生成する.
- v) Alice は, Bob の公開鍵  $k_p^B$  を使い  $e_{ACK} = E(r, k_p^B)$ により乱数を暗号化する.
- vi) Alice は、 p<sub>REQ</sub> に対応する受信信号から送信重み
   ŵ(0) を算出する.
- vii) Alice は、送信重み ŵ(0) を使って e<sub>ACK</sub> を Bob へ送る.
- viii) Bob は, 自身の秘密鍵  $k_s^B$ を使い,乱数  $r = D(e_{ACK}, k_s^B)$ を復号する.
- ix) これにより、Alice と Bob は 乱数 r を共有する.
- x) ハッシュ値  $\mathcal{H}(r,l) = s_{\mathcal{H}} をシードにして決定される擬$  $似乱数 <math>PN(s_{\mathcal{H}})$  に基づき, Alice と Bob は パイロッ ト信号  $\mathbf{p}_B(l)$  を決定する.
- xi) 以後, 共有された  $\mathbf{p}_B(l)$  を使い, Alice と Bob はチャ ネル・レシプロシティ伝送を行う.



図 6 認証フェーズを追加したプロトコル・シーケンス.

図 6 に示す通り,認証フェーズにより,Alice は 共有され たパイロット信号により,Eve のなりすましを棄却できる. 従って,Eve が Bob になりすまして Alice から情報を盗み 出すことに成功する確率は  $|{PN(s_{\mathcal{H}})| \forall s_{\mathcal{H}}}|^{-L_F}$ である. つまり,なりすましを防止するためには,広い値域を持つ 擬似乱数と十分大きな  $L_F$  を採用する必要がある.

従来のセキュアな無線伝送は、伝送路符号化の上で、プ レゼンテーション層などの上位レイヤにおいて認証データ やペイロード・データの暗号化を実施していた.一方、図 6 のプロトコルは、Alice から Bob へのデータベクトル **x**(*l*) に対し、伝送路符号化のみ行う.暗号化は、認証フェーズ のみ実施され、実データ **x**(*l*) に対しては利用されていな いことに注意されたい.

#### 5. まとめ

本稿は,無線物理層セキュリティを利用するための必 要条件を確認し,そのプロトコルについて検討した. IoT ネットワークを想定した MISO システムでのケース・スタ ディを通じて,情報理論的安全な無線伝送が成立するため の必要条件を確認した.具体的には,

- 送信者 Alice のアンテナ数が多いこと,
- 正規受信者 Bob と傍聴者 Eve の SNR 比が所定値より 大きいこと,
- スロット間隔  $L_x$  がチャネルのコヒーレント時間より 小さいこと,

が必要である.これらの条件下で,秘匿チャネル容量の上限が(10)により決定されるチャネル・レシプロシティ伝送が実行可能となる.しかし,チャネル・レシプロシティ伝送は,なりすましの脆弱性がある.その対策として,本稿は,相互認証を考慮したプロトコルを検討した.また,プロトコルの安全性を高めるために,

- 1 フレームのスロット分割数 *L<sub>F</sub>* が大きいこと,
- パイロット信号生成に利用する擬似乱数が広い値域を

持つこと,

の必要性を議論した.

本稿では、無線物理層セキュリティの動作原理を確認す るため、MISO システムに注目した.今後の課題として、 本研究は、Eve が多数のアンテナで傍聴しうることを考慮 し、MIMO システムを想定した物理層セキュリティの安全 性評価に取り組む.

謝辞 本研究は JSPS 科研費 17K06423 および電気通信 普及財団の助成を受けたものである.

#### 参考文献

- C. Bisdikian. An overview of the Bluetooth wireless technology. *IEEE Communications Magazine*, Vol. 39, No. 12, pp. 86–94, Dec 2001.
- [2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta. Massive MIMO for next generation wireless systems. *IEEE Communications Magazine*, Vol. 52, No. 2, pp. 186–195, February 2014.
- [3] Y. S. Shiu, S. Y. Chang, H. C. Wu, S. C. H. Huang, and H. H. Chen. Physical layer security in wireless networks: a tutorial. *IEEE Wireless Communications*, Vol. 18, No. 2, pp. 66–74, April 2011.
- [4] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst. Principles of physical layer security in multiuser wireless networks: A survey. *IEEE Communications Surveys Tutorials*, Vol. 16, No. 3, pp. 1550–1573, Third 2014.
- [5] D. Kapetanovic, A. Al-Nahari, A. Stojanovic, and F. Rusek. Detection of active eavesdroppers in massive MIMO. In 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), pp. 585–589, Sept 2014.
- [6] N. Zhao, F. R. Yu, M. Jin, Q. Yan, and V. C. M. Leung. Interference alignment and its applications: A survey, research issues, and challenges. *IEEE Communications Surveys Tutorials*, Vol. 18, No. 3, pp. 1779–1803, thirdquarter 2016.