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概要：本稿では、BLS曲線における Pseudo 8-Sparse乗算を用いた効率的なMillerのアルゴリズムの実装
方法について記す。近年新たな離散対数問題の解法アルゴリズム (exTNFS)が発表されたため，本稿では
これに対応する最新のパラメータを用いて、BLS曲線と KSS曲線について効率的な Optimal-Ateペアリ
ングの実装を行った。その結果、一回のペアリングにかかる時間は BN曲線よりも BLS曲線のほうが高速
に実装することができた。
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Efficient Optimal-Ate Pairing on BLS-12 Curve Using Pseudo 8-Sparse
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Abstract: This paper shows an efficient Miller’s algorithm implementation technique by applying pseudo
8-sparse multiplication over Barreto-Lynn-Scott (BLS12) curve of embedding degree 12. The recent devel-
opment of exTNFS algorithm for solving discrete logarithm problem urges researchers to update parameter
for pairing-based cryptography. Therefore, this papers applies the most recent parameters and also shows a
comparative implementation of optimal-Ate pairing between BLS12 curve and Barreto-Naehrig (BN) curve.
The result finds that pairing in BLS12 curve is faster than BN curve.
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1. Introduction

At the beginning of this century, Sakai et al. [21] and

Joux [12] independently proposed a cryptosystem that has

unlocked many novel ideas to cryptography researchers.

Many researchers tried to find out security protocol that

exploits pairings to remove the need of certification by

a trusted authority. In this consequence, several inge-
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nious pairing based encryption scheme such as ID-based

encryption scheme by Boneh and Franklin [6] and group

signature authentication by Nakanishi et al. [19] has come

into the focus. In such outcome, Ate-based pairings such

as Ate [7], Optimal-ate [24], twisted Ate [16] and χ-Ate

[20] pairings and their applications in cryptosystems have

caught much attention since they have achieved quite ef-

ficient pairing calculation. But it has always been a chal-

lenge for researchers to make pairing calculation more ef-

ficient for being used practically as pairing calculation is

regarded as quite a time-consuming operation.

Generally, a pairing is a bilinear map e typically de-

fined as G1 × G2 → G3, where G1 and G2 are additive
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cyclic sub-groups of order r on a certain elliptic curve E

over a finite extension field Fpk and G3 is a multiplicative

cyclic group of order r over F∗
pk . This paper chooses an

asymmetric variant of pairing named as Optimal-Ate [24]

with Barreto-Lynn-Scott (BLS) [4] pairing friendly curve

of embedding degree k = 12 named as BLS-12.

Acceleration of Optimal-Ate pairing depends not only

on the optimization of Miller algorithm’s loop parameter

but also on efficient elliptic curve arithmetic operation and

efficient final exponentiation. This paper has proposed a

pseudo 8-sparse multiplication to accelerate Miller’s loop

calculation in the BLS-12 curve by utilizing the property

of rational point groups. In addition, this paper has shown

an enhancement of the elliptic curve addition and dou-

bling calculation in Miller’s algorithm by applying implicit

mapping of its sextic twisted isomorphic group.

The recent development of NFS by Kim and Barbulescu

[15] requires updating the parameter selection for all the

existing pairings over the well know pairing friendly curve

families such as BN [5], BLS [4] and KSS [13]. Barbulescu

and Sylvain [3] has proposed new parameters that for

128-bit security level and found BLS-12 is the most effi-

cient choice for Optimal-Ate pairing than well studied BN

curve. Therefore the authors focus on the efficient imple-

mentation of the BLS-12 curve for Optimal-Ate pairing

by applying most recent parameters. The authors also

applied final exponentiation algorithm of [10] and com-

pared the experimental implementation result with BN

with similar implementation technique.

The simulation result shows that the given pseudo 8-

sparse multiplication for BLS-12 achieved more efficient

Miller’s loop calculation for optimal-Ate pairing than BN

curve.

Related Works.

Aranha et al. [1], Section 4 and Costello et al. [8] have

well optimized the Miller’s algorithm in Jacobian coordi-

nates by 6-sparse multiplication *1 for BN curve. Mori et

al. [18] and Khandaker et al. [14] have shown a specific

type of sparse multiplication for BN curve and KSS-18

curve respectively where both of the curves supports sex-

tic twist. It is found that pseudo 8-sparse was clearly

efficient than 7-sparse and 6-sparse in Jacobian coordi-

nates. The authors have extended the previous works for

the sextic twisted BLS-12 curve.

*1 6-Sparse refers the state when in a vector (multi-
plier/multiplicand), among the 12 coefficients 6 of them are
zero.

2. Fundamentals

2.1 BLS-12 Curve

Barreto, Lynn and Scott propose polynomial parame-

terizations by an integer variable u for certain complete

pairing-friendly curve families for specific embedding de-

grees [4]. The target curve of this paper is such pairing-

friendly curve, usually called BLS-12 of embedding degree

k = 12, defined over extension field Fp16 as follows:

E/Fp12 : y2 = x3 + b, (b ∈ Fp) and b ̸= 0, (1)

where x, y ∈ Fp12 . Similar to other pairing-friendly curves,

characteristic p, Frobenius trace t and order r of this curve

are given by the following polynomials of integer variable

u also known as mother parameter.

p(u) = (u− 1)2(u4 − u2 + 1)/3 + u, (2a)

r(u) = (u4 − u2 + 1) (2b)

t(u) = u+ 1, (2c)

where u is such that 6|(p − 1). The total number of

rational points #E(Fp) is given by Hasse’s theorem as,

#E(Fp) = p+ 1− t. When the definition field is the k-th

degree extension field Fpk , rational points on the curve E

also forms an additive Abelian group denoted as E(Fpk).

2.2 Extension Field Arithmetic and Towering

In extension field arithmetic, higher level computations

can be improved by towering. In towering, higher degree

extension field is constructed as a polynomial of lower de-

gree extension fields. In some previous works, such as

Bailey et al. [2] explained tower of extension by using irre-

ducible binomials. In what follows, Let 6|(p−1), where p is
the characteristics of BLS-12 curve and −1 is a quadratic

and cubic non-residue in Fp. Since BLS-12 curve is defined

over Fp12 , this paper has represented extension field Fp12

as a tower of sub-fields to improve arithmetic operations.
Fp2 = Fp[α]/(α

2 + 1),

Fp6 = Fp2 [β]/(β3 − (α+ 1)),

Fp12 = Fp6 [γ]/(γ2 − β).

(3)

Extension Field Arithmetic of Fp12

Among the arithmetic operations multiplication, squar-

ing and inversion are regarded as expensive operation

than addition/subtraction. The calculation cost, based

on number of prime field multiplication Mp and squaring

Sp is given in Table 1. The algorithms for extension field

operation are implemented from [9]. The arithmetic oper-

ations in Fp are denoted asMp for a multiplication, Sp for
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a squaring, Ip for an inversion and m with suffix denotes

multiplication with basis element.

2.3 Optimal-Ate Pairing on BLS-12 Curve

In the context of pairing on the targeted pairing-friendly

curves, two additive rational point groups G1,G2 and a

multiplicative group G3 of order r are considered. G1, G2

and G3 are defined as follows:

G1 = E(Fpk)[r] ∩Ker(πp − [1]),

G2 = E(Fpk)[r] ∩Ker(πp − [p]),

G3 = Fpk/(Fpk)r,

e : G1 ×G2 → G3, (4)

here e denotes Optimal-Ate pairing [24]. E(Fpk)[r] de-

notes rational points of order r and [i] denotes i times

scalar multiplication for a rational point. πp denotes the

Frobenius map given as πp : (x, y) 7→ (xp, yp).

In the case of BLS-12, the above G1 is just E(Fp). In

what follows, rest of this paper considers P ∈ G1 ⊂ E(Fp)

and Q ∈ G2 ⊂ E(Fp12) for BLS-12 curve. Optimal-Ate

pairing e(Q,P ) is given as follows:

e(Q,P ) = fu,Q(P )
p12−1

r , (5)

where fu,Q(P ) is the Miller’s algorithm’s result and

⌊log2(u)⌋ is the loop length. The bilinearity of Ate pair-

ing is satisfied after calculating the final exponentiation
p12−1

r .

The generalized calculation procedure of Opt-Ate pair-

ing is shown in Alg. 1. In what follows, the calculation

steps from 1 to 5, shown in Alg. 1, is identified as Miller’s

Algorithm and step 6 is the final exponentiation. Steps 3

and 5 are the line evaluation together with elliptic curve

doubling (ECD) and addition (ECA) inside the Miller’s

loop. These line evaluation steps are the focus point of

this paper for acceleration. The authors extended the

work of [18],[14] for BLS-12 curve to calculate pseudo 8-

sparse multiplication described in Sect. 3. The ECA and

ECD are also calculated efficiently in the twisted curve.

Step 6, FE is calculated by applying Ghammam et al.’s

final exponentiation algorithm [10].

Algorithm 1: Optimal Ate pairing on BLS-12 curve

Input: u, P ∈ G1, Q
′ ∈ G′

2

Output: (Q,P )

f ← 1, T ← Q′1

for i = ⌊log2(u)⌋ downto 1 do2

f ← f2 · lT,T (P ), T ← [2]T3

if u[i] = 1 then4

f ← f · lT,Q′(P ), T ← T +Q′5

f ← f
p12−1

r6

return f7

2.4 Sextic Twist of BLS-12 Curve

In the context of Optimal-Ate, there exists a twisted

curve with a group of rational points of order r, isomor-

phic to the group where rational point Q ∈ E(Fpk)[r] ∩
Ker(πp − [p]) belongs to. This sub-field isomorphic ratio-

nal point group includes a twisted point of Q, typically

denoted as Q′ ∈ E′(Fpk/d), where k is the embedding de-

gree and d is the twist degree.

Since points on the twisted curve are defined over a

smaller field than Fpk , therefore ECA and ECD becomes

faster. However, when required in the Miller’s algorithm’s

line evaluation, the points can be quickly mapped to

points on E(Fpk). Since the pairing-friendly BLS-12 [4]

curve has CM discriminant of D = 3 and 6|k, therefore
sextic twist is available. Let (α+1) be a certain quadratic

and cubic non residue in Fp2 . The sextic twisted curve E′
b

of curve Eb and their isomorphic mapping ψ6 are given as

follows:

E′
b : y2 = x3 + b(α+ 1), b ∈ Fp,

ψ6 : E′
b(Fp2)[r] 7−→ Eb(Fp12)[r] ∩Ker(πp − [p]),

(x, y) 7−→ ((α+ 1)−1xβ2, (α+ 1)−1yβγ). (6)

where Ker(·) denotes the kernel of the mapping and πp

denotes Frobenius mapping for rational point.

Table 2 shows a the vector representation of Q =

(xQ, yQ) = ((α + 1)−1xQ′β2, (α + 1)−1yQ′βγ) ∈ Fp12 ac-

cording to the given towering in (3). Here, xQ′ and yQ′

are the coordinates of rational point Q′ on sextic twisted

curve E′ defined over Fp2 .

3. Proposal Overview

Before going to the details, the overall procedure can

be described as follows:

( 1 ) First we define the line equation for rational point

P ∈ E(Fp) and Q
′, T ′ of sextic twisted curve E′(Fp2).
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Table 1 Number of arithmetic operations in Fp12 based on (3)

Mp2 = 3Mp + 5Ap + 1mα → 3Mp Sp2 = 2Sp + 3Ap → 2Sp

Mp6 = 6Mp2 + 15Ap2 + 2mβ → 18Mp Sp6 = 2Mp2 + 3Sp2 + 9Ap2 + 2mβ → 12Sp

Mp12 = 3Mp6 + 5Ap6 + 1mγ → 54Mp Sp12 = 2Mp6 + 5Ap6 + 2mγ → 36Sp

Table 2 Vector representation of Q = (xQ, yQ) ∈ Fp12

1 α β αβ β2 αβ2 γ αγ βγ αβγ β2γ αβ2γ

xQ 0 0 0 0 b4 b5 0 0 0 0 0 0

yQ 0 0 0 0 0 0 0 0 b8 b9 0 0

( 2 ) Next we obtain more sparse form by multiplying y−1
P

with line equations obtained at step 1.

( 3 ) To reduce the computational overhead introduced in

step 2, we obtain an isomorphic map of P 7→ P̄ and

same map for Q 7→ Q̄ defined over curve Ē.

( 4 ) Q̄ ∈ Ē(Fp12) is isomorphic to E, however it’s sextic

twisted Q̄ defined over the curve Ē(Fp2) is not isomor-

phic. Therefore, we again obtain the twisted map of

Q̄ ∈ Ē(Fp12) to Q̄′, defined over Ē′(Fp2).

( 5 ) The mapping of step 2 and 3 reduces the overhead

computation and help us to achieve pseudo 8-sparse

multiplication.

Obtaining line equations

Let us consider T = (γxT ′ , γωyT ′), Q = (γxQ′ , γωyQ′)

and P = (xP , yP ), where xp, yp ∈ Fp be given in affine co-

ordinates on the curve E(Fp12) such that T ′ = (xT ′ , yT ′),

Q′ = (xQ′ , yQ′) are in the twisted curve E′ defined over

Fp2 . Let the elliptic curve doubling of T +T = R(xR, yR).

The 7-sparse multiplication for BLS-12 can be derived as

follows.

lT,T (P ) = (yp − yT ′(α+ 1)−1βγ)−

λT,T (xP − xT ′(α+ 1)−1β2), when T = Q,

λT,T =
3x2

T ′βγ

2yT ′β2 = λ′T,T
γ
β = λ′T,T (α+ 1)−1β2γ. (7)

The line evaluation and ECD are obtained as follows:

lT,T (P ) = yp + (λ′T,TxT ′ − yT ′)(α+ 1)−1βγ

−λ′T,TxP (α+ 1)−1β2γ,

x2T ′ = ((λ′T,T )
2 − 2xT ′)(α+ 1)−1β2,

y2T ′ = ((xT ′ − x2T ′)λ′T,T − yT ′)(α+ 1)−1βγ.

The above calculations can be optimized as follows:

A = 1
2yT ′

, B = 3x2T ′ , C = AB,D = 2xT ′ ,

x2T ′ = C2 −D,E = CxT ′ − yT ′ ,

y2T ′ = E − Cx2T ′ ,

lT ′,T ′(P ) = yP + (α+ 1)−1Eβγ −

(α+ 1)−1CxPβ
2γ, (8a)

y−1
P lT ′,T ′(P ) = 1 + (α+ 1)−1Ey−1

P βγ

−(α+ 1)−1CxP y
−1
P β2γ. (8b)

The elliptic curve addition phase (T ̸= Q) and line

evaluation of lT,Q(P ) can also be optimized similar to

the above procedure. Let the elliptic curve addition of

T +Q = R(xR, yR).

lT,Q(P ) = (yp − yT ′)(α+ 1)−1βγ −

λT,Q(xP − xT ′)(α+ 1)−1β2, T ̸= Q,

λT,Q =
(yQ′−yT ′ )(α+1)−1βγ

(xQ′−xT ′ )(α+1)−1β2 = λ′T,Q(α+ 1)−1β2γ,

xR = ((λ′T,Q)
2 − xT ′ − xQ′)(α+ 1)−1β2,

yR = (xT ′λ′T,Q − xR′λ′T,Q − yT ′)(α+ 1)−1βγ.

Representing the above line equations using variables as

following :

A = 1
xQ′−xT ′

, B = yQ′ − yT ′ , C = AB,D = xT ′ + xQ′ ,

xR′ = C2 −D,E = CxT ′ − yT ′ , yR′ = E − CxR′ ,

lT ′,Q′(P ) = yP + (α+ 1)−1Eβγ −

(α+ 1)−1CxPβ
2γ, (9a)

y−1
P lT ′,Q′(P ) = 1 + (α+ 1)−1Ey−1

P βγ

−(α+ 1)−1CxP y
−1
P β2γ, (9b)

Here all the variables (A,B,C,D,E) are calculated as

Fp2 elements. The position of the yP , E and C in Fp12

vector representation is defined by the basis element 1,

βγ and β2γ as shown in Table 2. Therefore, among the

12 coefficients of lT,T (P ) and lT,Q(P ) ∈ Fp12 , only 5 co-

efficients yP ∈ Fp, CxP y
−1
P ∈ Fp2 and Ey−1

P ∈ Fp2 are

non-zero other 7 coefficients are zero. These zero coeffi-

cients leads to an efficient multiplication in Miller’s loop

usually called sparse multiplication.
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3.1 Pseudo 8-sparse Multiplication

The line evaluations of (9b) and (8b) are identical

and more sparse than (9a) and (8a). Such sparse form

comes with a cost of computation overhead i.e., computing

y−1
P lT,Q(P ) in the left side and xP y

−1
P , Ey−1

P on the right.

But such overhead can be minimized by the following iso-

morphic mapping, which also accelerates the Miller’s loop

iteration.

Isomorphic mapping of P ∈ G1 7→ P̄ ∈ G′
1 :

Ē : y2 = x3 + bz̄,

Ē(Fp)[r] 7−→ E(Fp)[r],

(x, y) 7−→ (z̄−1x, z̄−3/2y), (10)

where z̄ ∈ Fp is a quadratic and cubic residue in Fp. Equa-

tion (10) maps rational point P to P̄ (xP̄ , yP̄ ) such that

(xP̄ , y
−1
P̄

) = 1. The twist parameter z̄ is obtained as:

z̄ = (xP y
−1
P )6 (11)

From the (11) P̄ and Q̄′ is given as

P̄ (xP̄ , yP̄ ) = (xP z
−1, yP z

−3/2)

= (x3P y
−2
P , x3P y

−2
P ) (12a)

Q̄′(xQ̄′ , yQ̄′) = (x2P y
−2
P xQ′ , x3P y

−3
P yQ′) (12b)

Using (12a) and (12b), the line evaluation of (8b) becomes

y−1
P̄
lT̄ ′,T̄ ′(P̄ ) = 1 + (α+ 1)−1Ey−1

P̄
βγ −

(α+ 1)−1CxP̄ y
−1
P̄
β2γ,

l̄T̄ ′,T̄ ′(P̄ ) = 1 + (α+ 1)−1E(x−3
P y2P )βγ −

(α+ 1)−1Cβ2γ. (13a)

Equation (9b) becomes similar to (13a). However,

the to get the above form we need the following pre-

computations once in every Miller’s Algorithm execution.

• Computing P̄ and Q̄′,

• (x−3
P y2P )

Here (α + 1)−1 term can precomputed once since it is

just inversion of the basis element. The above terms can

be computed from x−1
P and y−1

P by utilizing Montgomery

trick [17], as shown in Alg. 2. The pre-computation re-

quires 21 multiplication, 2 squaring and 1 inversion in Fp

and 2 multiplication, 2 squaring in Fp4 . Finally, pseudo

8-sparse multiplication for BLS-12 is given in Alg. 3.

Algorithm 2: Pre-calculation and mapping P 7→ P̄ and

Q′ 7→ Q̄′

Input: P = (xP , yP ) ∈ G1, Q
′ = (xQ′ , yQ′) ∈ G′

2

Output: Q̄′, P̄ , y−1
P

A← (xP y
−1
P )1

B ← Ax2P2

C ← AyP3

D ← DxQ′4

xQ̄′ ← DxQ′5

yQ̄′ ← BDyQ′6

xP̄ , yP̄ ← DxP7

y−1
P ← C3y2P8

return Q̄′ = (xQ̄′ , yQ̄′), P̄ = (xP̄ , yP̄ ), y
−1
P9

Algorithm 3: Pseudo 8-sparse multiplication for BLS-12

curves

Input: a, b ∈ Fp12

a = (a0 + a1β + a2β
2) + (a3 + a4β + a5β

2)γ,

b = 1 + b4βγ + b5β
2γ

where ai, bj , ci ∈ Fp2(i = 0, · · ·, 5, j = 4, 5)

Output: c = ab =

(c0+ c1β+ c2β
2)+(c3+ c4β+ c5β

2)γ ∈ Fp12

c4 ← a0× b4, t1 ← a1× b5, t2 ← a0 + a1, S0 ← b4 + b51

c5 ← t2 × S0 − (c4 + t1), t2 ← a2 × b5,2

t2 ← t2 × (α+ 1)

c4 ← c4 + t2, t0 ← a2 × b4, t0 ← t0 + t13

c3 ← t0 × (α+ 1), t0 ← a3 × b4, t1 ← a4 × b5,4

t2 ← a3 + a4

t2 ← t2 × S0 − (t0 + t1)5

c0 ← t2 × (α+ 1), t2 ← a5 × b4, t2 ← t1 + t26

c1 ← t2 × (α+ 1), t1 ← a5 × b5, t1 ← t1 × (α+ 1)7

c2 ← t0 + t18

c← c+ a9

return c = (c0 + c1β + c2β
2) + (c3 + c4β + c5β

2)γ10

3.2 Final Exponentiation

Scott et al. [23] shows efficient final exponentiation

fp
k−1/r by decomposing it using cyclotomic polynomial

Φk as

(pk−1)/r = (pk/2−1) ·(pk/2+1)/Φk(p) ·Φk(p)/r.(14)

Here, the 1st 2 terms of the right part is denoted as easy

part, since it can be easily calculated by Frobenius map-

ping and 1 inversion in affine coordinates. The last term

is called hard part which mostly effects the computation

performance. According to (14), the exponent decompo-

sition of the BLS-12 curve is shown in (15).

(p12 − 1)/r = (p6 − 1) · (p2 + 1) · (p4 − p2 + 1)/r (15)
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To efficiently carry out FE for the target curves we applied

p-adic representation as shown in [10]. For scalar multi-

plication by prime p, i.e., p[Q] or [p2]Q, skew Frobenius

map technique by Sakemi et al. [22] has been adapted.

4. Experimental Result Evaluation

This gives details of the experimental implementation.

Table 3 shows implementation environment. Parame-

Table 3 Implementation and experiment settings

CPU
Intel(R)

Core(TM) i5-6500 CPU @ 3.20GHz

OS Ubuntu 16.04 LTS

Memory 4Gb

L1 Cache 256 KiB

Language C

ters chosen from [3] is shown in Table 4.

Table 4 Selected parameters for 128-bit security level [3]

BLS-12 BN

u u = −277 + 250 + 233 u = 2114 + 2101 − 214 − 1

HW(u) 3 4

⌊log2 u⌋ 77 115

⌊log2 p(u)⌋ 461 462

⌊log2 r(u)⌋ 308 462

⌊log2 pk⌋ 5532 5535

Table 5 shows execution time in millisecond for a sin-

gle Opt-Ate pairing. Results here are the average of 10

pairing. Table 6 shows complexity of Miller’s algo-

Table 5 Comparative results of Miller’s Algorithm and Final

Exp. in [ms]

Pairing

Miller Algo. Final Exp. Total time [ms]

BN 7.53 20.63 28.16

BLS-12 4.79 18.88 23.67

rithm and final exponentiation. From the results we find

that Miller’s algorithm took fewer time for BLS-12 than

BN curve. Total pairing time also faster for BLS-12 curve

than BN curve. The major time difference is made by the

calculation of hard part of the final exp.

5. Conclusion and Future Work

This paper has presented an efficient Miller’s loop calcu-

lation technique for BLS-12 curve and experimentally ver-

ifies that for 128-bit security level BLS-12 curve is sutable

than BN curve in pairing-based cryptography.
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