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Abstract: Deep learning methods such as convolutional neural networks have brought breakthroughs in many
machine learning tasks. In this paper, we present a protocol for privately evaluating non-linear convolutional
neural networks. The protocol operates under the secure two-party setting with semi-honest adversaries,
where the service provider holds a convolutional neural network model, and the client provides a query. At
the end of the protocol execution, the client learns only the prediction output on his query along with few
descriptive parameters of the model; the service provider learns nothing. We implement the protocol and
show that it can process a non-linear convolutional network with eight hidden layers in one minute and a
modest amount of bandwidth. Compared to the previous private CNN evaluation protocol, we demonstrate
a ten-fold improvement in computation time, with about 32% higher prediction accuracy.
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1. Introduction

The recent explosive evolution of deep learning research

has led to breakthroughs in many machine learning tasks.

The application area covers not only image and speech

recognition but also diverse types of predictive and cogni-

tive modeling. The unprecedented accuracy of deep learn-

ing models enables various novel services that might have

marked effects on our society, for example, human virus de-

tection [7], and drug discovery [3]. Such highly influential

services often involve treatment of private or confidential in-

formation. For a research institute (service provider, SP for

short) hosting a deep learning-based prediction service that

forecasts pharmacological activities of chemical compounds

upon requests from clients, and presuming that a pharma-

ceutical company (client) wishes to issue queries to investi-

gate pharmacological activities of chemical compounds un-

der development, then in view of the client, the query com-

pounds are regarded as extremely confidential information.

Consequently, clients might not wish to reveal the contents

of their queries for some application domains.

Considered from the opposite point of view, the SP might

require privacy for deep learning models. Typically, tremen-

dous amounts of resources must be used to build the predic-

tive model. In addition, the model details often include com-

mercial secrets of the SP. Consequently, the SP must take

pains to ensure that the model details are not leaked through

the entire process of the forecasting service. Additionally,

the deep learning model might have been trained from sen-
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Fig. 1 Crypt-CNN.

sitive data or confidential data that should not be released

publicly. Such sensitive or confidential data might be recov-

ered from the models through reverse engineering [10]. Con-

sequently, revealing the particular model parameters might

increase risks of violating privacy and confidentiality.

In this work, we specifically examine one popularly used

deep learning-based classifier: convolutional neural networks

(CNNs). The initial concept of CNNs dates back several

decades [21]. Their prediction performance has improved

rapidly in recent years by virtue of highly efficient compu-

tation provided by GPGPU, particularly in areas such as

human face detection and object recognition. Recent lit-

erature [29], [31] has included reports that the precision of

image recognition by the state-of-the-art CNN exceeds the

precision of image recognition by humans.

We present Crypt-CNN, an interactive and practical pro-

tocol that privately evaluates nonlinear CNNs (Fig. 1). In

our setting, a CNN model is privately held by a SP. The

client provides private input to the model for prediction.

Our desired security property is that, in the phase of pre-

diction, after the execution of Crypt-CNN, the SP should

not learn anything about the client’s input (input privacy).

The client should not learn anything about the SP’s model

except what can be inferred directly from the prediction re-

sult (model privacy).

Related Work. The problem of private evaluation of
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Fig. 2 Six-layered neural network with four hidden layers.

CNNs falls under the general framework of private evalua-

tion of machine learning classifiers. Many efforts have been

made to develop secure two-party computation (2PC) proto-

cols for the private evaluation of the classic machine learning

classifiers, which include decision tree [34], k-nearest neigh-

bor classifier [33], support vector machine [5], Fisher linear

discriminant classifier, logistic regression [15], and percep-

tron [2]. Because of the rapid and continuous improvement

of deep learning methods, the classification accuracy of deep

learning-based classifiers, such as CNN, markedly outper-

forms that of the classic classifiers. The unprecedented ac-

curacy of the deep learning methods and concerns for data

and model privacy motivate researchers to develop private

evaluation protocols of deep learning methods.

Gilad-Bachrach et al. [12] presented the first private eval-

uation protocol for CNNs using fully homomorphic encryp-

tion (FHE). Because of the increased complexity in com-

puting nonlinear operations from FHE, Gilad-Bachrach et

al. reported replacement and approximation of the nonlin-

ear operations with linear operations. As a result, their ap-

proach enables the client to send encrypted input to the SP

using FHE, and allows the SP perform all the computation

needed in the linear CNN evaluation with no interaction

with the client. However, linear CNN is fundamentally a

linear classifier. Therefore, the classification performance of

the linear CNN is only slightly better than the classic lin-

ear classifiers such as support vector machine and logistic

regression. This report is the first of the relevant literature

to describe a study examining practical protocols for the

private evaluation of a large and nonlinear CNN.

Another possible approach would be the use of differen-

tial privacy techniques [1], [9], [26] which allow the SP to

protect the model privacy by introducing random noises. In

fact, these techniques are orthogonal to our 2PC approach.

Specifically, we can leverage these techniques to enforce pro-

tection of the classifier model of the SP.

Our Contributions. We begin by showing that matrix–

vector multiplication of two types is necessary to evaluate

a CNN. Specifically, for the first type, the client input is

a long vector, and the input of the SP is a large-scale ma-

trix. In this case, only a single matrix–vector multiplication

is performed. For the second type, the input of the client

is a few matrices, and input of the SP is the same number

of vectors. In this case, batch evaluation of matrix–vector

multiplications is needed.

Then, we present the first private nonlinear CNN evalu-

ation protocol by combining our FHE-based building blocks

(presented in our first paper) with the garbled circuit in a

delicate way. Our hybrid protocol runs in a multi-round

manner and provides provable security against semi-honest

adversaries. To demonstrate the practicality of our proto-

col, we conduct experiments with a ten-layer nonlinear CNN

model (Table 2). We compare the performance of our pro-

tocol against the protocol of Gilad-Bachrach et al. [12]. We

demonstrate greater than ten-fold reduction in computation

time while providing higher classification accuracy on the

same image recognition task, that is, 82.8% accuracy by

ours as opposed to 50.2% accuracy of the model of Gilad-

Bachrach et al.

2. Preliminaries

2.1 Notation

Notation follows the same notations in our first paper (i.e.,

Crypt-CNN(I): Secure Two-party Computation of Large-

scale Matrix-vector Multiplication)

2.2 Cryptographic Primitives

This section presents details about the cryptographic

primitives used in our construction.

Fully Homomorphic Encryption. In this paper, we

prefer the Ring-LWE [23] variant of BGV’s scheme [6] whose

properties enable us to build practical private CNN evalu-

ation protocols. The setup parameters of BGV’s scheme

consist of three positive integers m, t, and L where t is an

exponent of prime values. In our construction, we specify

m as an exponent of 2 for efficiency concerns. The message

space of this scheme is given as a ring At := Zt[X]/(Xm+1).

We give brief descriptions related to the scheme. Let

(sk, pk) be a key pair generated with parameters m, t, and

L. For any element A,B ∈ At, we leverage the following

properties of BGV’s scheme in our construction.

• Asymmetric scheme:

Decsk(Encpk(A)) = A mod (Xm + 1, t)

• Additive homomorphism:

Decsk(Encpk(A)⊕ Encpk(B)) = A+B mod (Xm + 1, t)

Decsk(Encpk(A)⊕B) = A+B mod (Xm + 1, t)

• Multiplication with scalars:

Decsk(Encpk(A)⊗B) = A×B mod (Xm + 1, t)

The operators ⊕ and ⊗ respectively indicate homomorphic

addition and homomorphic multiplication. Also, we write

	 to denote the homomorphic subtraction.

Yao’s Garbled Circuit. Yao’s garbled circuits (GC) were

developed for secure two-party computation [16], [35]. The

main idea of Yao’s garbled circuits is to transform a Boolean

circuit C, {0, 1}ib → {0, 1}ob to a garbled circuit C̃ along

with ib pairs of encodings {w0
i , w

1
i }ib−1
i=0 . Then for any input

x ∈ {0, 1}ib, the combination of the garbled circuit C̃ and

the encodings Sx = {w(x)i
i }ib−1

i=0 enable a person to evaluate

C(x), and yet reveal nothing else about x.

Handcrafting the garbled circuits is an error-prone and

time-consuming task. We use automation tools [22], [30]
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Fig. 3 Convolution on a 2D-matrix with s = 2.

for this task. For our experiments, we use the ObliVM li-

brary [22] to transform a Java program to the equivalent

garbled circuit counterpart.

3. Convolutional Neural Networks

CNNs have been the most influential innovations in the

area of pattern recognition and image recognition. Let us

take image recognition as an example. The image recog-

nition is a task that classifies an image of an object ac-

cording to its visual content. The classification performance

of CNNs has improved rapidly in recent years. The CNN

of Krizhevsky et al. [20] won the 2012 ImageNet competi-

tion [27] by dramatically dropping the classification error

record from 26% to 15%. Two years later, the CNN model

of Simonyan et al. [29] has improved the classification error

to 7.32%.

The input image of the CNN can be an RBG picture (i.e.,

a 3D tensor) or a gray scale picture (i.e., a 2D matrix). Usu-

ally, we already know how many categories to classify. For

each category, the CNN outputs a real value of 0.0 – 1.0.

This value is interpreted as the confidence of classifying the

input image to that category. Thereby, we choose the cate-

gory with maximum confidence as the classification result.

The common architecture of CNNs such as [20], [29] forms

a multi-layer neural network structure. Fig. 2 portrays a

typical six-layer CNN. Aside from the input layer and the

output layer, we can have layers of three kinds: the convolu-

tion layer, the pooling layer, and the fully-connected layer.

The pooling layer usually comes after the convolution layer.

The fully-connected layer is usually placed in the last few

layers of the network. Layers that are neither the input layer

nor the output layer are called hidden layers. Between two

hidden layers, there might be an activation operation. We

now give descriptions of the three hidden layers. We also

introduce two activation functions that are commonly used

for CNNs: rectified linear unit and softmax.

3.1 Convolution Layer

The term CNN indicates that it involves a mathemati-

cal operation called convolution. The convolution operation

preserves the spatial relations among pixels by learning fea-

tures of images using small areas of the input images.

We have three arguments for a convolution operation: two

tensors T ∈ Rn×n×c , K ∈ Rh×h×c, and a positive integer

s. T is designated as the input tensor. K is designated as

the kernel. s is designated as the stride. We consider the

following convolution T ′ = conv(T ,K, s).

(T ′)i′,j′ =

c−1∑
k=0

h−1∑
i=0

h−1∑
j=0

(K)i,j,k · (T )si′+i,sj′+j,k

for i′, j′ ∈ [n′] and n′ = b(n− h)/sc+ 1.

Here b·c returns the greatest preceding integer. The output

tensor T ′ is designated as the feature map. Fig. 3 depicts a

convolution evaluated to a 4× 4 matrix.

In the equation above, we use a single kernel. The out-

put forms a matrix. In practice, we prefer to use multiple

K = {Kw}c
′−1
w=0 kernels to learn multiple spatial features

such as edges and curves. In this case, the convolution layer

computes conv independently for each Kw with the T :

Conv(T ,K, s) = conv(T ,K0, s), . . . , conv(T ,Kw−1, s)

(1)

The feature map T ′ then becomes an n′ × n′ × c′ tensor.

3.1.1 Convolution Evaluation Revisit

Our practical building block for the convolution evalu-

ation uses a transformation T , by which the convolution

(Eq. 1) is reduced to matrix–vector multiplication. In ad-

dition, T is commonly used in deep learning libraries, as

described by Chainer [32].

In our private CNN evaluation setting, the client uses T
as a local pre-processing (with public parameters s and h in-

formed by SP). Given the n×n×c tensor T and parameters

s and h, the client performs T (T , s, h) = {Uk}c−1
k=0, where

the matrix size is n′2 × h2 (n′ = b(n− h)/sc) for each Uk.

The SP reshapes each channel of the kernel Kw into vectors

for w ∈ [c]. Particularly, the SP reshapes the h×h×c kernel

Kw into c vectors {vkw}c−1
k=0, where the length |vkw| = h2.

In fact, Eq. 1 is equivalent to the following computation

c−1∑
k=0

Ukvk0,

c−1∑
k=0

Ukvk1, . . . ,

c−1∑
k=0

Ukvkc′−1,

which is done by c · c′ matrix–vector multiplications. Eval-

uation of a fully-connected layer is also performing matrix–

vector multiplication. Therefore, we can state that matrix–

vector multiplication is a fundamental operation for evalu-

ating CNNs.

3.1.2 Pooling Layer

Pooling is an important concept of CNNs. Pooling lay-

ers serve to reduce the feature map size, and therefore con-

trol overfitting. A common pooling function is max pool-

ing [28]. A max pooling layer uses a sliding window to

partition each channel of the feature map into many non-

overlapping sub-regions, and outputs the maximum values

of these sub-regions. Let ρ be the sliding window size. We

consider the following max pooling T̂ = Pool(T ′, ρ):

(T̂ )î,ĵ,k = max
(
{(T ′)îρ+i,ĵρ+j,k}i,j∈[ρ]

)
, (2)

where î, ĵ ∈ [bn′/ρc], and k ∈ [c′]. In other words, the (max)

pooling operation sub-samples the
n′

ρ
×n
′

ρ
×c′ tensor T̂ from

the feature map T ′. Figure 4 presents an example of a max
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Fig. 4 (Left) Pooling operation sub-samples the feature map but
keeps the number of channels unchanged. (Right) Max
pooling on a 2D-matrix with ρ = 2.

pooling operation. It is noteworthy that the only parameter

of a pooling layer is ρ. The pooling does not change the

number of channels c′.

3.2 Fully-connected Layer

The input of a fully-connected layer is a vector. We write

this vector as x ∈ Rn̂1 , and denote the weight matrix of the

layer as W ∈ Rn̂2×n̂1 . To evaluate a fully-connected layer

we simply do matrix–vector multiplication

FC(W ,x) = Wx, (3)

which requires O(n̂1n̂2) additions and multiplications.

Flatten Operation. The output of the convolution layer

and pooling layer are tensors, whereas the input to the fully-

connected layer is vectors. To connect a convolution layer

(or a pooling layer) with a fully-connected layer, we need to

“flatten” the output tensor from the convolution layer (or

pooling layer). For one of the channels of the tensor (i.e., a

2D-matrix), we concatenate the rows one by one and output

a column vector. We process all the channels and output one

long vector by concatenating all the column vectors.

3.3 Activation Functions

As described in this paper, we consider two popularly

used nonlinear activation functions: rectified linear unit

(ReLU) [20] and softmax.

ReLU is the most popular activation function used in

many modern CNNs. For a real value x, it outputs

ReLU(x) = max(0, x). (4)

For the case of a real vector x or a real tensor T , ReLU

is separately evaluated on each element of x and T . We

simply write ReLU(x) and ReLU(T ) for this case.

The softmax function is often used in the output layer.

Assuming that we have τ categories to classify, the softmax

takes as input a real vector y ∈ Rτ and outputs a real vector

y′ such that (y′)i = e(y)i/
∑
j e

(y)j for i ∈ [τ ]. The value of

(y′)i is interpreted as the probability that the input belongs

to the i-th category. We argue that we need not implement

the softmax in the domain of secure computation because

1) the softmax is commonly applied as the last operation

of a CNN, and 2) what can be inferred from y′ is exactly

the same as what can be inferred from y. Thereby, in our

construction, the softmax function is evaluated as the post-

process with the plaintext of y.

Table 1 Matrix-vector multiplication of two kinds.

Client SP
Input Output Input Output

MvM-v v + r Mv + r′ {M , r} r′

MvM-m {Mi + Ri}
∑
iMivi + r′ {vi,Ri} r′

4. Problem Formulation

4.1 Matrix–vector Multiplication of Two Kinds

Even the evaluation of the convolution layer and the eval-

uation of the fully-connected layer can be accomplished

through the matrix–vector multiplication. It is noteworthy

to note that the matrix–vector multiplication used in the

fully connected layer differs from the matrix–vector mul-

tiplication used in the convolution layer. Specifically, for

the fully-connected layer, the client’s input is a long vector.

Only one large scale matrix-vector multiplication is needed

for the evaluation. However, the client’s input consists of

small matrices in the case of the convolution layer. A batch

of matrix-vector multiplications must be used. Based on

this subtle but significant difference, we design a building

block separately for these two layers (see our first paper).

Put abstractly, our building blocks are reduced to the

secure 2PCs presented in Table 1. MvM-v signifies the

matrix–vector multiplication with a vector as the client’s

input. We suppose MvM-v is used for the large-scale matrix–

vector multiplication in the fully-connected layer. MvM-m

denotes the matrix–vector multiplication with matrices as

the client’s input. We suppose MvM-m is used for the batch

matrix–vector multiplication in the convolution layer. In

both settings, we assume the client generates the key pair

(sk, pk) while the SP can only access to the public key pk.

4.2 Private CNN Evaluation

We introduce a new notation. For a protocol P, we write

P(U ,V)→ (X ,Y) to denote an execution of P. We make an

arrangement that the first argument (i.e., U) of P denotes

the input from the client, and the second argument denotes

the input from the SP. X and Y denote the output of the

client and the output of the SP at the end of the protocol

execution, respectively.

We write W to denote the set of weight matrices used in

the CNN, that is, W = {W j} where W j is the weight ma-

trix used in the j-th layer, which is a fully-connected layer.

Similarly, we write K = {Ki} to denote the set of kernels

used in the CNN, where Ki is the set of kernels used in the

i-th layer, which is a convolution layer. Given T as the pri-

vate input of the client, our goal is to develop a practical

protocol that correctly and privately computes

CNN(T , {K,W})→ (y, ∅). (5)

The client can learn the classification result by applying y

to the softmax as a post-processing.

Security Model. We assume that the SP and the client

behave semi-honestly [35]. Our protocol reveals descriptive

information about the CNN. Precisely, the client knows the

CNN structure: the number of layers, the order of layers,
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Table 2 Description of the CNN we used.

Layer Output Size Activation Note
Input 32× 32× 3 - RGB image
Conv-1 30× 30× 32 ReLU c′ = 32, h = 3, s = 1
Conv-2 28× 28× 32 ReLU c′ = 32, h = 3, s = 1
MaxPool-1 14× 14× 32 - ρ = 2
Conv-3 13× 13× 64 ReLU c′ = 64, h = 2, s = 1
Conv-4 12× 12× 64 ReLU c′ = 64, h = 2, s = 1
MaxPool-2 6× 6× 64 - ρ = 2
FC-1 512× 1 ReLU 2304× 512
FC-2 10× 1 Softmax 512× 10

Algorithm 1 PrivateReLU.

Input of the client: random share of private tensor T ′ + R.
Input of the SP: random share of private tensor R.
Output of the client: random share of the output tensor

ReLU(T ′) + R′.
Output of the SP: random share of the output tensor R′.

Note: The size of T ′,R ∈ Zn
′×n′×c′
t is known in advance.

1: The client generates a garbled circuit counterpart C̃ of Alg. 4,
and sends C̃ (along with the needed information for the circuit
evaluation) to the SP.

2: The SP samples the new private share R′
$← Zn

′×n′×c′
t .

3: The client and the SP cooperate to evaluate the garbled circuit
C̃: C̃(T ′ + R, {R,R′})→ (ReLU(T ′) + R′, ∅).

Algorithm 2 PrivateReLUPool.

Input of the client: random share of private tensor T ′ + R.

Input of the SP: random share of private tensor R.

Output of the client: random share of the output tensor

ReLU(Pool(T ′, ρ)) + R′.

Output of the SP: random share of the output tensor R′.

Note: The size of T ′,R ∈ Zn
′×n′×c′
t and ρ are already known.

1: The client generates a garbled circuit counterpart C̃ of Alg. 5,

and sends C̃ (along with the needed information for the circuit

evaluation) to the SP.

2: The SP samples the new share R′
$← Z(n′/ρ)×(n′/ρ)×c′

t .

3: The client and the SP cooperate to evaluate C̃:

C̃(T ′ + R, {R,R′})→ (ReLU(Pool(T ′, ρ)) + R′, ∅).

and the number of kernels used in convolution layers, the

size of pooling window, and the size of fully-connected lay-

ers. For our security analysis, we assume that the SP in-

forms these descriptive information related to the CNN to

the client in advance. Our security analysis follows the sim-

ulation paradigm of [8], [13].

5. ReLU and Max Pooling

We suppose to use GC for the private evaluation of the

ReLU and the max pooling. To do so, we need data oblivi-

ous [24] algorithms of the ReLU and the max pooling.

We can directly construct data oblivious ReLU and data

oblivious max pooling using the multiplexer function. In

Appendix A.1, we detail the data oblivious ReLU (Alg. 4)

and the data oblivious max pooling (Alg. 5).

5.1 Private ReLU

The private ReLU used in our construction is presented

in Alg. 1. In Step 2, the SP samples his new private share

R′, and applies it to the GC execution in Step 3 so that

after the GC execution the ReLU result (e.g., ReLU(T ′)) is

distributed in the form of secret shares.

Algorithm 3 Crypt-CNN.

Input of the client: (public) encryption key pk; (private) the

input image T and the decryption key sk.

Input of the SP: (public) descriptive information of its CNN

model; (private) the kernels {Ki} and the weight matrices

{W j}.
Output of the client: y.

Output of the SP: ∅.

1: The client sends the encryption key pk to the SP. The SP sends

the descriptive information of the CNN to the client. The client

then initializes T = T . The SP initializes R = 0.

2: for η = 1; η < l; η = η + 1 do

if the η-th layer is a convolution layer then

3: The client and the SP cooperate to run Alg. ??

PrivateMvM-m({T, sk}, {R,Kη})→ (T ′ + R′,R′),

else if the η-th layer is a fully-connected layer then

4: The client and the SP cooperate to run Alg. ??

PrivateMvM-v({T, sk}, {R,W η})→ (W ηx + r′, r′).

if the ReLU is used in the η-th layer then

if the next layer is a max pooling layer then

5: The client and the SP cooperate to run Alg. 2

PrivateReLUPool(T,R)→ (ReLU(Pool(T ′, ρη+1)) + R′,R′),

where ρη+1 is the pooling size used in the η+1-th layer.

else (that is the next layer is NOT a pooling layer)

6: The client and the SP cooperate to run Alg. 1

PrivateReLU(T,R)→ (ReLU(T ′) + R′,R′).

7: end for

8: To this end, the SP gives the share R to the client, so that the

client can obtain y from T and R.

5.2 Private Max Pooling with ReLU

In the typical CNN architecture, max pooling follows af-

ter an activation, that is, ReLU in our CNN. We note

that the computation result is unchanged no matter we

do the ReLU first or do the max pooling first, that is,

Pool(ReLU(T ), ρ) = ReLU(Pool(T , ρ)) holds. However, the

computation complexity of the first one is larger than that

of the second one. From a simple calculation, we can know

the computation complexity is 2n′2 and n′2 + n′2/ρ2, re-

spectively. Moreover, both ReLU and max pooling require

the max operation only. This motivates us to evaluate

ReLU(Pool(·)) by combining the ReLU operation with the

following max pooling operation (if exist).

To be precise, Alg. 5 is a data oblivious algorithm for the

ReLU(Pool(·)). The private evaluation of this function is

presented in Alg. 2, in which the pool size ρ is known by

assumption. Also, the SP samples the new private share R′

and applies it to the GC execution in Step 2.

6. Crypt-CNN

Finally, we present Crypt-CNN, the algorithm of private

evaluation of non-linear CNN in Alg. 3. The algorithm is

designed by a straightforward combination of the primitives

presented in the last section layer by layer.
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Fig. 5 The end-to-end processing time for ReLU and
ReLU(Pool(·)) evaluations, and the bandwidth consum-
mation. The the size of the input tensor was n× n× c.

In order to privately convey information from layer to

layer, we use a local stateful variable R on the SP’s side and

another stateful variable T on the client’s side. T and R store

the input of the client and the input of the SP, respectively.

Also, these variables store output of the sub-protocols used

in the algorithm. For instance, in Step 4, PrivateMvM-v is

used to evaluate the fully-connected layer. After the exe-

cution of PrivateMvM-v, the client will overwrite its local

variable T with W ηx+r′, and the SP will overwrite R with

r′. These overwritings are implicitly done in Alg. 3.

We remark that the stateful variables T and R can be a

tensor or a vector. The client and the SP perform the neces-

sary pre-processing on these variables, according to the type

of the current layer. For instance, in Step 4, the current layer

is a fully-connected layer, and thus the client flatten T into

a vector before calling MvM-v. We omit the descriptions of

these pre-processing in Alg. 3.

Theorem 1. Assume the client and the SP behave semi-

honestly. Then Alg. 3 correctly and privately computes

Eq. 5. The client learns the confidence vector y but noth-

ing else. The SP learns nothing.

7. Experiments

Settings. We implemented Alg. 1 and Alg. 2 using the

Java-based GC library, i.e., ObliVM [22]. For the GC, we

used 16-bit fixed point values and used the optimizations

such as [17], [18], which are all already provided by ObliVM.

All experiment codes were run by machines with a 2.60GHz

Xeon E5-2640 v3 processor and 32GB of RAM. The net-

work speed in our experiments was about 940 Mbps. Multi-

threads programming was not employed.

We used the parameters m = 213, t = 2574, and L = 5 of

BGV’s scheme, which provides at least 128-bit security level

according to the security analysis of [11]. The combination

of these parameters provides ` = 128 plaintext slots and

about 32-bit plaintext space. This combination satisfies the

requirement of the double-packing. Under this parameters

setting, the size of pk was around 5.4 MB and the size of

one FHE ciphertext was about 1.2 MB.

Measurements. We measured the computation time and

the bandwidth cost for one call of the FHE-based building

blocks. The computation time consists of three: time for

encryption on the client’s side, time for homomorphic oper-

ations on SP’, and the decryption time on the client’s side.

The packing on the SP’s side can be considered as a pre-

processing, and thus was not included in our experiments.

For the GC implementations of the ReLU and the max

pooling, we measured the end-to-end running time and the

bandwidth cost.

The bandwidth cost consists of the upstream and down-

stream cost. The upstream cost means the total amount of

data that sent by the client, and the downstream cost means

the total amount of data sent by the SP.

Datasets. Also, to measure the prediction performance

of our CNN (described in Table 2), we trained the CNN

on three real datasets, i.e., MNIST [21], SVHN [25] and

CIFAR-10 dataset [19]. These training were performed in

plaintexts. The prediction accuracy of our CNN on these

datasets is about 99.1%, 92.7% and 82.8%, respectively.

7.1 Scalability of the Core Components

The process of our private CNN evaluation protocol is

basically a sequential independent calls of four core compo-

nents, that is, the private evaluation of MvM-v, the private

evaluation of MvM-m, and the private evaluation of ReLU

and max pooling. Thus, to see the scalability of these com-

ponents, we separately measured the performance of them

with various input sizes.

MvM-v and MvM-m. The performances of our matrix-

vector multiplication approaches refer to our first paper.

ReLU and ReLUPool. We present the performance of

the private ReLU and ReLU(Pool(·))) evaluations in Fig. 5.

The input for these experiments was an n × n × c tensor

where c ∈ {3, 16} and n was changed from 4 to 124. Also,

we fixed the pooling window ρ = 2 for the ReLU(Pool(·)))
evaluations.

7.2 Private CNN Evaluation

We benchmarked our private CNN evaluation protocol on

the pre-trained CNN described in Table 2. We measured the

evaluation time and bandwidth for each layer, separately.

The results are shown in Table 3, in which the third column

and the fourth column denote the amount of data sent by

the client and sent by the SP, respectively.

7.3 Discussion and Conclusion

The benchmarks on Fig. 5 show that our GC implementa-

tions for the ReLU and ReLUPool were not practical enough

when the input tensor is large, e.g., a 124× 124× 16 tensor.

It cost about 100 seconds and consumed about 1000 MB

bandwidth. We remark that our GC implementations are

far from optimal and we can use tools such as [4], [30], to

generate more compact circuits.

According to the experimental results in Table 3, our pri-

vate CNN evaluation protocol (Alg. 3) costs less than one

minute to privately evaluate a ten-layer non-linear CNN,

which is ten times faster than the past work of [12] in which

more than 570 seconds were needed to evaluate a six-layer

linear CNN. Moreover, we can easily accelerate our proto-

col by employing the parallel computation in our building

blocks. Our protocol consumed slightly more bandwidth
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Table 3 Experimental results of our private CNN evaluation pro-
tocol. The evaluation time includes the computation
time and the communication time.

Evaluation (ms)
Bandwidth (MB)

client → SP SP → client

Conv-1 339± 2.88 15.08 2.23

ReLU 13678± 335.64 23.52 78.96

Conv-2 3464± 38.34 160.48 2.23

ReLUPool 9218± 32.29 12.12 58.07

Conv-3 2355± 14.75 71.47 1.12

ReLU 6015± 175.55 9.60 32.22

Conv-4 4672± 34.05 142.95 1.12

ReLUPool 3395± 100.86 3.88 18.59

FC-1 4152± 2.77 4.47 10.05

ReLU 524± 13.12 0.41 1.37

FC-2 763± 0.53 0.56 2.23

Total 48575± 750.78 444.54 208.19

than the past work of [12], that was, 65 MB per layer of

ours as opposed to 62 MB per layer of [12]. This gap can be

shrunk by optimizing the GC of ReLU and ReLUPool.

Comparison with the CryptNets. Gilad-Bachrach et

al. [12] presented the first private CNN evaluation proto-

col, i.e., CryptNets. Our private CNN evaluation protocol

is more practical than theirs. Gilad-Bachrach et al.’s ap-

proach cost more than 570 seconds to evaluate a six-layer

linear CNN. Our protocol cost less than one minute to pri-

vately evaluate a ten-layer non-linear CNN.

We also compared the prediction performance of our CNN

with the CNN employed by CryptNets using the MNIST,

SVHN and CIFAR-10 datasets. The MNIST dataset con-

sists of gray scale images of handwritten digits. The SVHN

dataset also consists of color images of digits while these

images were sampled from natural street images. CIFAR-10

dataset consists of color images in 10 classes, such as air-

plane, cat, and horse etc. The task of recognizing natural

objects is much harder than the task of recognizing digits.

The experimental results are shown in Table 4. From the

results, we can see that our non-linear CNN significantly

outperforms the linear CNN of [12], especially on the com-

plicated image recognition tasks, such as CIFAR-10. We

remark that the prediction perform ace of our CNN is in-

ferior to the state-of-the-art CNNs. However, our protocol

can evaluate a non-linear CNN that provides more than 82%

prediction accuracy without compromising the input privacy

and the model privacy, at the cost of one minute computa-

tion time and 600 MB bandwidth. We thus consider our

approach is useful for the CNN-based applications that re-

quire both model privacy and input privacy.

Conclusion. We conclude that our FHE-based approaches

are practical enough for large-scale matrix-vector multipli-

cation under the secure two-party computation setting. We

consider our approaches are useful for the development of

secure protocol of evaluating deep learning algorithm such

as convolutional neural networks.
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Table 4 Comparison with the model of CryptNets [12].

#hidden
linearity

prediction accuracy

layers MNIST SVHN CIFAR-10

CryptNets 4 linear 99.0% 57.6% 50.2%

ours 8 non-linear 99.1% 92.7% 82.8%

[29] [14] ≥ 9 non-linear 99.3% 97.8% 92.4%
(non-private)
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Appendix

A.1 Data Oblivious Algorithms

We firstly introduce notations. The indicator function

1{P} returns 1 if P is true. Otherwise, it returns 0. The

MUX(a, b, c) function returns a if bit c = 0. Otherwise, it

returns b. Here a and b are strings of bits. For two length-

ξ bit strings, we can implement this MUX function with ξ

non-XOR gates [18].

We now present the data oblivious ReLU in Alg. 4. When

a < 0, we have b = 1, and thus a∗ = r′ = ReLU(a) + r′.

On the other hand, when a ≥ 0, the MUX function returns

a∗ = a+ r′ which is also equivalent to ReLU(a) + r′.

The data oblivious ReLUPool is presented in Alg. 5. From

Step 1 to Step 2, we firstly do the max pooling using a MAX

circuit (Figure A·1) to compute the maximum value from an

array of input. From Step 3 to Step 6, the oblivious ReLU

operation is performed. The correctness of this algorithm

can be reduced to the correctness of Alg. 4.
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