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概要：本稿では，Eurocrypt 2010において提案された Gama-Nguyen-Regevの確率的格子点探索手法に関
して，計算量の下界を具体的に計算するための一手法を提案する．この手法は，原論文において導入され
た以外の仮定を用いず，単純な幾何学的定理から出発しているため効率的な数値計算が可能である．また，
数値実験によりこの下界がどの程度正確であるかを検証した．
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A theoretical cost lower bound of lattice vector enumeration
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Abstract: We establish an efficiently computable method to give a cost lower bound for Gama-Nguyen-
Regev’s extreme pruning technique for lattice vector enumeration published in Eurocrypt 2010. Our lower
bound stands on a simple geometric lemma and does not require any heuristic assumptions except for that
used in their paper. We also showed the result of our preliminary experiments to show the sharpness of our
bound.
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1. Introduction

The extreme pruning strategy for lattice vector enumer-

ation introduced by Gama, Nguyen and Regev [10] has a
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lot of success on lattice reduction algorithms [4], [6], [11]

and applications for hardness estimations of lattice based

cryptography [2], [7].

On the other side of success, we need to consider its

drawbacks in the reproducibility. In particular, to find

the optimal complexity of pruned enumeration of a desired

probability sharply, it needs to optimize the cost function

defined over a sequence of real numbers 0 < R1 ≤ R2 ≤
· · · ≤ Rm = 1 which are called pruning coefficients. To

solve it, the original paper [10] proposed a random pertur-

bation method, which is too slow and is not numerically

stable in practice. Since then, modified methods are pub-

lished: the cross-entropy algorithm in Chen’s doctor thesis

[5], a modified random perturbation method the progres-

sive BKZ library [4], and the Nelder-Mead method in the

fpLLL library [8]. Despite these efforts, the numerical op-

timization problem is still practically inefficient and we

can not know how the sequence (R1, . . . , Rm) is far from
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the optimal during the computation.

The same kind of problems can arise if we want to use

a simulator that calls a subroutine for simulating pruned

enumeration for cryptanalyses. Such simulator based es-

timation must have errors originated from the numerical

instability. It causes troubles in security/hardness estima-

tion of lattice problems/cryptosystems.

Another issues for such types of security estimations

is bounding direction. To our best knowledge, some of

recent security estimations on lattice cryptosystems are

based on mixed use of practical upper/lower bound or

average estimation of algorithms [2], [4], [7], [14]. These

estimations has been making complicated and has added

new (somehow debatable) heuristic assumptions more and

more. On the other hand, a few number of investigation

has been considered (p. 53 in [16], [6]) nevertheless its

importance.

In this paper, we propose a theory and algorithms to

overcome the problems, i.e., we provide easily computable

and reproducible procedures to compute the cost lower

bounds of lattice algorithms.

1.1 Our Contributions

For a given lattice basis B ∈ Qn×m, searching ra-

dius and success probability, the cost estimation (4) by

Gama et al. [10] is the linear combination of vol(Ck) for

k = 1, . . . ,m where Ck is a k-dimensional cylinder inter-

section parametrized by real numbers (R1, . . . , Rm) which

are called pruning coefficients. The volumes depend on

the combination of Ri, and the best enumeration cost un-

der the fixed parameters is given by the optimal combi-

nation; for detail, see the brief overview in Section 2.2 or

the original paper [10].

In Section 3, we give a general theory for a simple

lower bound of each vol(Ck) for a fixed success proba-

bility and input Gram-Schmidt lengths. The estimation

stands on the simple geometrical lemma (Lemma 1) on m-

dimensional convex bodies and its projections. The lower

bound (9) for single usage of enumeration algorithm is

immediate and it can be easily adopted Gama et al.’s ex-

treme pruning strategy that uses M ≥ 2 randomized re-

duced bases with probability p/M to achieve total success

probability p. We show the complexity is bounded from

lower by a linear function on p even if we assume the cost

of basis randomization is zero. Thus, there is a limita-

tion on the effect of using many randomized basis in this

strategy. Interestingly, the lower bound can be computed

without knowing pruning coefficients; thus, it might not

be useful to construct the pruning coefficients.

In Section 4, we give our method to bound the cost to

solve the lattice problems. Roughly speaking, our target-

ing lattice problem is defined for given lattice basis and

target point, the goal is to find desired points. In our

model (15), we separate the algorithm into two part: the

lattice reduction part and the enumeration parts. Thus,

the lower bound is achieved by searching the minimum of

sum of two costs. For this purpose, we need to know the

cost and output of lattice reduction part. It is a difficult

task if we simulate them sharply. However, using a new

assumption (Assumption 1) deduced from our computer

experiments, the situation makes much simpler. Roughly

speaking, if we use a typical lattice reduction algorithm,

the cost of enumeration with input basis can be bounded

lower by the cost with a basis satisfying Schnorr’s geomet-

ric series assumption (GSA), which claims the graph of

log ∥b∗i ∥2 is a line of slope r < 1. Although the GSA does

not hold in practice from many observations, it is useful

to discuss the lower bound cost. This is the new usage

of GSA. Hence, the situation what we need to consider is

that the output basis of lattice reduction satisfies GSA. It

means that we have only one parameter r to optimize.

Accepting the assumption, we can bound the time for

lattice reduction as follows. For our best knowledge, all

the lattice reduction algorithms except for the LLL must

call a subroutine of lattice vector enumeration to find a

short vector; here, the length is parametrized by r. Also,

the dimension is bounded lower by the Gaussian heuris-

tic assumption. With these information, we can find the

lower bound of searching radius, probability, lattice di-

mension of enumeration that was called from lattice re-

duction algorithm.

As a simple application, we give the lower bound cost

to solve an approximate shortest vector problem in Sec-

tion 4.4.

2. Preliminaries

For natural numbers n ≤ m, [n,m] is the set {n, . . . ,m}
and we denote [m] := [1,m]. Throughout this paper, m

and k are usually used for the considered and projected

dimension respectively.

The gamma and beta functions are defined by

Γ(a) =

∫ ∞
0

ta−1e−tdt

and

B(α, β) =

∫ 1

0

zα−1(1− z)β−1dz.
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The basic relations Γ(a + 1) = aΓ(a) and B(a, b) =

Γ(a)Γ(b)/Γ(a+ b) hold.

For m ∈ N, let Bm(x, c) be the m-dimensional ball

whose center is x ∈ Rm and radius c > 0. The center-

origin ball is Bm(c) := Bm(0, c). The volume of m-

dimensional ball of radius c is Vm(c) = πm/2cm

Γ(m
2 +1) . In par-

ticular, we denote Vm := Vm(1). Sm is the surface of

Bm(1).

2.1 Incomplete Beta Functions

For α, β > 0, the incomplete beta function is

Ix(α, β) :=

∫ x

0
zα−1(1− z)β−1dz

B(α, β)
,

and its inverse function is defined by x = I−1y (α, β) ⇔
y = Ix(α, β). Both functions are strictly increasing from

[0, 1] to [0, 1].

A simple bound

Ix(a, b) ≤
∫ x

0
za−1dz

B(a, b)
=

xa

a ·B(a, b)

holds and thus

I−1x (a, b) ≥ (aB(a, b)x)1/a. (1)

Fact1 Suppose (x1, . . . , xm)← Sm. Then, x2
1 + · · ·+

x2
k follows the beta distribution of parameters (α, β) =(
k
2 ,

m−k
2

)
. Thus,

Pr
(x1,...,xm)←Sm

[
x2
1 + · · ·+ x2

k ≤ C
]

= IC

(
k

2
,
m− k

2

)
:=

∫ C

0
x

k
2−1(1− x)

m−k
2 −1dx

B(k2 ,
m−k
2 )

.

In particular, (x1, . . . , xm−2) follows the uniform distribu-

tion in Bm−2(1).

Corollary1

Pr
(x1,...,xm)←Bm(1)

[
x2
1 + · · ·+ x2

k ≤ C
]
= IC

(
k

2
,
m+ 2− k

2

)
.

2.2 Lattice, Enumeration Algorithm, and Cost

Estimation

For an independent set of vectors b1, . . . ,bn ∈ Qm, the

lattice is defined by the set of the all integer linear com-

bination:

L(b1, . . . ,bn) =

{
n∑

i=1

aibi : ai ∈ Z

}
.

For a basis, its Gram-Schmidt basis is defined by re-

cursively b∗1 = b1 and b∗i = bi −
∑i−1

j=1 µi,jb
∗
j where

µi,j = ⟨bi,b
∗
j ⟩/⟨b∗j ,b∗j ⟩ for i = 2, . . . , n. The new ba-

sis b∗1, . . . ,b
∗
n that are orthogonal to each other spans the

same space to the original basis:

span(L) :=

{
n∑

i=1

wibi : wi ∈ R

}
=

{
n∑

i=1

xib
∗
i : xi ∈ R

}
.

Thus, any lattice point v =
∑n

i=1 aibi can be presented

by using Gram-Schmidt basis: v =
∑n

i=1 xib
∗
i . For this

presentation, the j-th projection is πj(v) =
∑n

i=j xib
∗
i .

For a lattice L, denote λ1(L) the smallest nonzero norm

of points in L, i.e., the length of shortest vector. The prob-

lem for searching v ∈ L so that ∥v∥ = λ1(L) is called the

shortest vector problem. The approximate Hermite short-

est vector problem (HSVPα) [9] is the problem of finding

vector v shorter than α · det(L)1/n.
Consider a continuous set S ⊂ span(L) and denote

its volume by vol(S). The Gaussian heuristic assump-

tion claims that the number of lattice points in S is ap-

proximately given by vol(S)/vol(L). In particular, we

can see λ1(L) is close to ℓ = V
−1/n
n det(L)1/n so that

Vn(ℓ) = det(L). We denote this length GH(L) and call

the Gaussian heuristic length of L.

Root-Hermite factor and geometric series assump-

tion: From the experimental observations by Gama,

Nguyen and Stehlé [9], [15] for lattice reduction algorithms

that works on any lattice dimension n, there exists a con-

stant δ0 so that the output of lattice reduction algorithm

over random lattices satisfies ∥b1∥ ≈ δn0 det(L)1/n. This

δ0 is called the root Hermite factor of the algorithm. We

call the basis is δ0-reduced if ∥b1∥ ≤ δn0 det(L)1/n holds,

thus, it is a solution of HSVPδn0
problem.

Depending varieties of algorithms, the shapes of Gram-

Schmidt lengths can be changed if they all achieve the

same root Hermite factor δ0. However, they are typically

concave curves close to a line. Schnorr’s geometric se-

ries assumption (GSA) [18] claims that ||b∗i ||2 is approx-

imated by ||b1||2ri−1 by a constant r < 1. Hence, each

Gram-Schmidt lengths of a δ0-reduced basis can be ap-

proximated by

||b∗i || = r
2i−1−n

4 det(L)1/n where r = δ
−4n
n−1

0 . (2)

Figure 1 shows the graph of log ||b∗i || between an output

of a BKZ variant by Aono et al. [4] and a line from GSA of

the same ∥b1∥. We call the sequence (||b∗1||, . . . , ||b∗n||) =
(r(1−n)/4 det(L)1/n, . . . , r(n−1)/4 det(L)1/n) the δ0-GSA

basis, which is an abnormal notation because it is not

lattice basis.

This assumption was used to estimate the practical
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hardness of lattice cryptography. However, for highly re-

duced lattice basis, such as BKZ-100, the last ||b∗i || does
not form a line in general. Such phenomenon is justified

by the Gaussian heuristic. Hence, it is not reasonable to

estimate the expected complexity by using GSA. On the

other hand, we will demonstrate it can be used for a lower

bound in Section 4.

Fig. 1 Comparison of ||b∗
i || between real reduced basis and

equivalent δ0-GSA basis

Pruned enumeration and its complexity: Let us fix

a lattice basis B of rank m and its Gram-Schmidt lengths

||b∗1||, . . . , ||b∗m||, bounding radius c. Suppose we have a

sequence of pruning coefficients 0 < R1 ≤ R2 ≤ · · · ≤
Rm = 1. Define the set

Ck =

{
(x1, . . . , xk) ∈ Rk :

ℓ∑
i=1

x2
i < R2

ℓ for ∀ℓ ∈ [k]

}
.

(3)

Then, the cost for pruned lattice vector enumeration

[10] is given as follows under the Gaussian heuristic as-

sumption.

N =
1

2

m∑
k=1

ckvol

{
x ∈ Rk :

ℓ∑
i=1

x2
i < R2

ℓ for ∀ ℓ ∈ [k]

}
∏m

i=m−k+1 ∥b∗i ∥

=
1

2

m∑
k=1

ckvol(Ck)∏m
i=m−k+1 ∥b∗i ∥

(4)

Note that the factor 1/2 is from the symmetry in the

shortest vector computation, it is vanished if we consider

the closest vector problem and its variants.

In [10], they assume the probability model for the short-

est vector problem. Under the reasonable assumption, the

probability to find a vector v by using searching radius

c = ∥v∥ is given by

p := Pr
(x1,...,xm)←Sm·∥v∥

[
ℓ∑

i=1

x2
i < ∥v∥2 ·R2

ℓ for ∀ ℓ ∈ [m]

]
.

(5)

Hence, the best enumeration algorithm of success prob-

ability p0 is given by best combination of (R1, . . . , Rm)

that minimizes (4) subject to that (5) is larger than p0.

However, it is not easy task to find optimal pruning coef-

ficients. We will give a lower bound of enumeration cost

without computing exact coefficients.

3. Bounding Cost for Lattice Vector

Enumeration

3.1 Geometric Lemma and General Theory

In order to bound the cost, we need to bound each vol-

ume factor vol(Ck) in (4). The following geometric lemma

have a crucial role.

Lemma1 Let Ck be a finite k-dimensional object, i.e.,

the k-dimensional volume vol(Ck) <∞. Let τk be the ra-

dius so that Vk(τk) = vol(Ck). Fix a radial basis function

r(x) = ϕ(∥x∥) where ϕ(∥x∥) is a positive decreasing func-

tion on the radius: ϕ(x) ≥ ϕ(y) ≥ 0 for any 0 ≤ x ≤ y.

Then we have

∫
Ck

r(x)dx ≤
∫
Bk(τk)

r(x)dx. (6)

Proof. By Vk(τk) = vol(Ck), V := vol(Ck \ Bk(τk)) =

vol(Bk(τk) \ Ck) holds. Since ϕ(∥x∥) is decreasing, we

have the inequalities

∫
Ck\Bk(τk)

r(x)dx ≤ V · ϕ(τk) ≤
∫
Bk(τk)\Ck

r(x)dx

Hence,

∫
Ck

=

∫
Ck∩Bk(τk)

+

∫
Ck\Bk(τk)

≤
∫
Ck∩Bk(τk)

+

∫
Bk(τk)\Ck

=

∫
Bk(τk)

.

2

If the LHS of (6) is known value and the RHS is an eas-

ily invertible function F (τk) with respect to the radius,

we have τk ≥ F−1(LHS) since F is always a strictly in-

creasing function. Thus, it derives the lower bound.

vol(Ck) = Vk(τk) ≥ Vk(F
−1(LHS)) (7)

3.2 Application to Short Vector Search

We start our argument at the single usage of Gama et

al.’s pruned enumeration [10]. Fixing the pruning coef-

ficients R1, . . . , Rm, the intermediate searching areas Ck

are fixed by (3). The probability (5) is bounded upper as
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p = (5) ≤ Pr
x←Sm·∥v∥

[
ℓ∑

i=1

x2
i < ∥v∥2 ·R2

ℓ for ∀ ℓ ∈ [m− 2]

]
(by relaxed condition)

= Pr
x←Bm−2(1)

[
ℓ∑

i=1

x2
i < R2

ℓ for ∀ ℓ ∈ [m− 2]

]
=

vol(Cm−2)

Vm−2(1)
.

(8)

For any k ≤ m− 2,

vol(Cm−2) =

∫
Ck

vol{z ∈ Cm−2 : (z1, . . . , zk) = x)}dx

≤
∫
Ck

vol{z ∈ Bm−2(1) : (z1, . . . , zk) = x)}dx

where the volumes are the (m−2−k)-dimensional volume

defined on the coordinates (zk+1, . . . , zm−2). The latter

integrating function

r(x) = vol{z ∈ Bm−2(1) : (z1, . . . , zk) = x)}

=

{
Bm−2−k(

√
1− ∥x∥2) (if ∥x∥ ≤ 1)

0 otherwise

satisfies the requirement of Lemma 1. Thus, we have

vol(Cm−2) ≤
∫
Bk(τk)

r(x)dx = Vm−2(1)·Iτ2
k

(
k

2
,
m− k

2

)
,

and have the lower bound of the radius

τk ≥

√
I−1vol(Cm−2)/Vm−2(1)

(
k

2
,
m− k

2

)
≥

√
I−1p

(
k

2
,
m− k

2

)
.

Therefore, we obtain our lower bound for the enumera-

tion of probability p and radius c:

1

2

m∑
k=1

ckVk(1)
[
I−1p

(
k
2 ,

m−k
2

)] k
2∏m

i=m−k+1 ∥b∗i ∥
. (9)

Model to find multiple points: By a similar argument,

the lower bound for another model can be derived. By

Gaussian heuristic, the number of lattice points within the

searching area is about N = cmvol(Cm)/ det(L). Thus,

we can also bound the complexity of the enumeration to

find multiple points shorter than c by setting the condi-

tion vol(Cm) ≥ N det(L)/cm. By the same argument with

above, we have

τk ≥

√
I−1vol(Cm)/Vn(1)

(
k

2
,
m− k

2

)
and thus, our lower bound for the enumeration cost to

find N vectors shorter than c is given as follows:

1

2

m∑
k=1

ckVk(1)

[
I−1N det(L)

Vn(c)

(
k
2 ,

m+2−k
2

)]k/2
∏n

i=n−k+1 ∥b∗i ∥
. (10)

This is valid for the parameters satisfying N det(L) ≤
Vm(c).

3.3 Multiple Usage of Lattice Bases

Using our lower bound for single usage of enumera-

tion algorithm, we can bound the cost of Gama-Nguyen-

Regev’s extreme pruning that uses multiple random bases.

For a reasonably high success probability p, they run M

trials of probabilistic enumeration with a low probability

p/M with using randomized bases. Thus, the total cost is

the sum of (M − 1) randomizations and M lattice reduc-

tions ∗, and M enumerations.

We estimate the lower bound cost by

TotalCost = (M − 1) · Cost(LatticeReduction)

+M · Cost(Enumeration)

> M · Cost(Enumeration).

(11)

The cost of M enumerations can be bounded lower for

each situation.

Probability model: For the lower bound for Gama-

Nguyen-Regev’s probabilistic model, we can show the

lower bound by using (1):

TotalCost >
M

2

m∑
k=1

Vk(c)
[
I−1p/M

(
k
2 ,

m−k
2

)] k
2∏m

i=m−k+1 ∥b∗i ∥

>
p

4

m∑
k=1

Vk(c) · k ·B
(
k
2 ,

m−k
2

)∏m
i=m−k+1 ∥b∗i ∥

.

(12)

Short vector search: For the target number N of lat-

tice points that we want to find, if we use M randomized

bases, at least N/M target number is necessary for each

basis. It should be larger than N/M since duplication

of found vectors. For these parameters, (11) is bounded

lower by using (10), and by the inequality (1), we have

M · Cost(Enumeration)

>
M

2

m∑
k=1

ckVk(1)

[
I−1N det(L)

MVm(c)

(
k
2 ,

m+2−k
2

)]k/2
∏m

i=m−k+1 ∥b∗i ∥

>
N det(L)

4Vm(c)

m∑
k=1

Vk(c) · k ·B
(
k
2 ,

m+2−k
2

)∏m
i=m−k+1 ∥b∗i ∥

=
N

4

m∑
k=1

[
m−k∏
i=1

∥b∗i ∥
c

]
· k · Vk(1)

Vm(1)
·B

(
k

2
,
m+ 2− k

2

)
=

N

2

m∑
k=1

[
m−k∏
i=1

∥b∗i ∥
c
√
π

]
· Γ

(
m+ 2− k

2

)
=

N

2

m∑
k=1

[
k∏

i=1

∥b∗i ∥
c
√
π

]
· Γ

(
k

2

)
.

(13)

The last equation holds by swapping index m− k by k.

∗ This lattice reduction level may be weaker than the original
basis.
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Remark that we do not need to consider the number of

randomized bases in these cases. These inequalities mean

that the affects of extreme pruning are limited by linear

functions of probability or number of target points.

3.4 Computer Experiments

Systematic Upper bound: To show the sharpness of

our lower bound, we give a method to compute upper

bound cost. In contrast to the lower bound situation, a

possible upper bound can be computed by setting feasible

bounding coefficients. Thus, using a finite set of bounding

coefficients whose probability is larger than p, an upper

bound is given by the minimum cost among the coeffi-

cients. For this purpose, we define the pruning coefficients

in dimension m parametrized by α ∈ R and j ∈ [m] by

Ri(α, j) = min((i/j)α, 1). (14)

For given parameters (||b∗1||, . . . , ||b∗n||, c, p), and for

each integer j, we can compute α so that the lower bound

probability is p by the binary search. Then, compute the

minimum of upper bound cost among all j, we can ob-

tain an upper bound of enumeration cost of probability p.

Here, we remark that for given pruning coefficients, there

is polynomial time algorithms [10] to compute good lower

and upper bounds for the cost and probability.

Comparison: Figure 2 shows the comparison among the

systematic upper bound defined in this section, expected

enumeration cost (4), lower cost bound for single usage of

pruned enumeration (9), and the lower cost bound for ex-

treme pruning technique (13). Here we used LLL reduced

bases of random 100 and 160 dimensional lattices, and

the radius is c = GH(L). In 160 dimension, for p < 10−4,

we can see the gap between ENUMCost and GNR Lower

is less than 106, and gap between Systematic Upper and

GNR Lower is less than 1010.

Fig. 2 Simulation of pruned enumcost and upper/lower bound

for LLL bases of 100 and 160 dimensions

4. Bounding Cost of Lattice Problems

The cost of lattice problem is typically given by the fol-

lowing model. For a given lattice basis and target point,

separate a considered algorithm into two parts: lattice re-

duction and lattice point search, the cost of attacker is

defined by

Cost(Problem)

= min
Cost(LatticeReduction) + Cost(PointSearch)

Success probability
.

(15)

Here, the minimum is taken over all typical lattice reduc-

tion algorithms and the pruned lattice enumeration algo-

rithm. Parameters in each step are optimized via suitable

preliminary simulations.

Since we now have the lower bound for lattice point

search, what we need to discuss is the lower bound for

the lattice reduction part and the output Gram-Schmidt

lengths of it. We divide the class of lattice reduction al-

gorithm by the root Hermite factor δ0. Then, for a fixed

total success probability, the minimizing problem in (15)

is

min
δ0

min
LR(δ0)

[CostLR(δ0) + CostEnum(LR(δ0))]. (16)

Note that this is still a very abstract representa-

tion. LR(δ0) is the set of all lattice reduction al-

gorithm that achieve the root Hermite factor δ0, and

CostEnum(LR(δ0)) is the enumeration cost for the ba-

sis outputted by such algorithm. In this section, we give

reasonable lower bound for the above two costs.

4.1 Enumeration Cost over a Reduced Basis

Fix the root Hermite factor δ0. The cost we want to

bound in this section is CostEnum(LR(δ0)), that is, the

cost (4) for a given radius and success probability, and

the Gram-Schmidt lengths of output of a lattice reduc-

tion algorithm; ∥b1∥ = δ0 det(L)
1/m is known but other

projected lengths are unknown.

From our experiments, we observed the cost (4) for δ0-

GSA basis is typically lower than the cost for original basis

in many situations. Figure 3 shows the cost comparison

among the simulated cost for original basis and equivalent

GSA basis, and the lower bound cost (9) with parameters

p = 10−3 and c = GH(L). From the observation, we claim

the following assumption.

Assumption1 For reasonable success probability p

and searching radius c, the cost (4) of an output ba-

sis of a typical lattice reduction algorithm, is larger
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than the cost of δ0-GSA basis where δ0 is computed by

(∥b1∥/det(L)1/m)1/m.

Note that we may be able to consider an artificial coun-

terexample to break this assumption. For example, for an

LLL-reduced basis, apply strong BKZ algorithm for its

projected sublattice π2(b2), . . . , π2(bm).

Fig. 3 Comparison of various simulated costs between real re-

duced basis and equivalent GSA basis. Parameters are

p = 10−3 and c = GH(L).

4.2 Bounding cost for lattice reduction

We give our lower bound for finding δ0-reduced basis

by a lattice reduction algorithm. For readability, we use

CostLR(m, δ0) to denote the cost for lattice reduction cost

by giving lattice dimension m explicitly. This is the mat-

ter what we want to bound in this section.

Clearly, CostLR(m, δ0) > CostLR(n, δ0) holds for m >

n. However, there exists the lower bound on the dimen-

sion from the Gaussian heuristic, i.e., the dimension must

satisfy δm0 > V
−1/m
m . If m and δ0 do not satisfy it, the

cost bound is not valid since it is hard to exist a vector

shorter than δm0 det(L)1/m.

We fix m by the smallest integer satisfying this inequal-

ity, thus, δn0 < V
−1/n
n for n < m. Except for the LLL

algorithm, all the known lattice reduction algorithms for

finding a vector shorter than c must have at least one call-

ing of a subroutine of lattice vector enumeration work-

ing over a first sublattice Bn = (b1, . . . ,bn) with the

radius c = δm0 det(L)1/m and target volume vol(Cn) ≥
det(Bn)/c

n. We denote this cost by CostENUM(n, ℓ̃n)

where ℓ̃n := (∥b1∥, . . . , ∥bn∥). The lower bound cost is

given by (13). Thus, writing CostLR(m, ℓ̃n) as the mini-

mum cost to find an m-dimensional lattice basis Bm such

that ∥b∗i ∥ = ℓi for all i ∈ [n], we have the relation

CostLR(m, δ0) = min
n,ℓ̃n

[
CostLR(m, ℓ̃n) + CostENUM(n, ℓ̃n)

]
.

(17)

Here, ℓ̃n is taken over all possible combination satisfying

ℓ1 ≥ δm0 det(L)1/m.

Lemma2 In the cost model (17), the subdimension n

must be m.

Proof. Suppose n < m and the enumeration subrou-

tine runs over the sublattice Bn = (b1, . . . ,bn). By

the Gaussian heuristic, the found vector is longer than

V
−1/n
n det(Bn)

1/n ≥ δn0 det(Bn)
1/n. We show this is

larger than δm0 det(Bm)1/m > V
−1/m
m det(Bm)1/m, i.e.,

there is no vector in the searching range which makes a

contradiction.

Let D = (dm, . . . ,d1) and (d×m, . . . ,d×1 ) be the dual

basis of Bm and its Gram-Schmidt basis. The projective

sublattice Di is the lattice spanned by the projections of

di, . . . ,d1 onto dm, . . . ,di+1. By the Gaussian heuristic

on the projective sublattice of D, we have

∥d×i ∥ ≥ GH(Di) = V
−1/i
i

i∏
j=1

∥d×i ∥
1/i = δi0

i∏
j=1

∥d×i ∥
1/i.

Using the well known relation ∥b∗i ∥ = 1/∥d×i ∥, we have∏i
j=1 ∥b∗j∥1/i > δi0∥b∗i ∥ which derives

i∏
j=1

∥b∗j∥1/i > δ
i+1
i

0

i+1∏
j=1

∥b∗j∥1/(i+1).

Thus,

δn0 det(Bn)
1/n > δ

n+n+1
n +···+ m

m−1

0 det(Bm)1/m > δm0 det(Bm)1/m.

Therefore, the sublattice Bn does not have a vector

shorter than δm0 det(Bm)1/m if n < m. 2

Neglecting cost for lattice reduction in the cost (17), we

have CostLR(m, δ0) > CostENUM(m, ℓ̃m) where ℓ̃m is

from a reduced basis so that ℓ1 ≥ c. Using Assumption 1,

it is bounded lower by the δ0-GSA basis and also bounded

by (13). In conclusion, our lower bound for lattice reduc-

tion to find a short vector is

CostLR(m, δ0) >
1

2

m∑
k=1

r
k(k−1)

4 · π−k/2 · Γ
(
k

2

)
(18)

for the smallest integer m such that δm0 > V
−1/m
m .

4.3 Comparison with Previous Models

In many existing works, they have given models of the

relation between computing time and achieved root Her-

mite factor δ0. To compare our lower bound with them,

we give a short survey.

Lindner-Peikert [12] estimated log2(tBKZ [sec]) =
1.8

log2(δ)
− 110 from their experiments using NTL-BKZ for

q-ary lattices derived from random LWE instances. They

claimed it as a practical lower bound line from their curve

fitting.
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Albrecht et al. [2] estimated log2(tBKZ [sec]) =
0.009

log2(δ)
2 − 27 that is an extrapolation of the points from

BKZ 2.0 simulating in [13] whose origin is proposed in [6].

The time is expectation from the simulator.

Albrecht et al. [1], [3] proposed log2(tBKZ [sec]) =

Θ
(

log(1/ log δ)
log δ

)
under the assumption that we have a β-

dimensional SVP oracle that works in time 2Θ(β).

These estimations and our lower bound is summarized

are Figure 4.

Fig. 4 Comparison among several models to achieve the root

Hermite factor δ0. Our estimation is (18) divided by

225 to convert number of nodes to seconds; [LP2011]

is [12]; [ACFFP2015] is [2]; [APS2015] is [3] with the

constant c = 0.05.

4.4 Estimating the Approximate-SVP

We give a simple example to demonstrate our the-

ory. To solve an α-approximate SVP, it needs

to find a vector shorter than about αGH(L) =

(α1/mV
−1/m2

m )m det(L)1/m, the root Hermite factor must

be smaller than α1/mV
−1/m2

m . Figure 5 shows the corre-

sponding lower cost bound (18) for α = 1, 1.05, 1.5 and

dimensions. Remark that α = 1.05 corresponds a rough

estimation for TU Darmstadt SVP Challenge [17].

Fig. 5 Lower bound for solving SVP Challenge and comparison

to current records
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238–256. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006.

[16] P. Q. Nguyen and B. Valle. The LLL Algorithm: Survey
and Applications. Springer Publishing Company, Incor-
porated, 1st edition, 2009.

[17] M. Schneider and N. Gama. SVP challenge. Available at
http://www.latticechallenge.org/svp-challenge/.

[18] C.-P. Schnorr. Lattice reduction by random sampling
and birthday methods. In H. Alt and M. Habib, editors,
STACS 2003, volume 2607 of Lecture Notes in Com-
puter Science, pages 145–156. Springer, 2003.

－287－c⃝ 2017 Information Processing Society of Japan


