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ABSTRACT  
Learning records represent the activities of learners on a learning 
platform. Because learning takes place at different institutions, 
organizations and/or platforms, it is important to connect learning 
records belonging to the same learner on these various platforms 
for a wider spectrum of analytics. With decentralization at the heart 
of the blockchain technology, we show the implementation of a 
blockchain based learning analytics platform. By using smart 
contracts, we enforce restricted access to learner’s data and 
empower learners with more control over their learning records. To 
ensure that learning records are immutable, we use a hashing 
strategy to detect changes between earliest version of a learning 
record and subsequently retrieved versions. Finally, we propose 
some tests to be carried out and identify some concerns. 

KEYWORDS 
Learning analytics; blockchain; learning data; smart contracts; 
learning management systems; Ethereum, learning record store; 
privacy 

1 INTRODUCTION 
Learning data reflect the activities performed by learners while 
learning. From information on a learner’s behavior to performance 
in quizzes and assignments, these data form a reference point for 
evaluating and improving engagement and performance towards 
realization of learning goals. With many learning organizations and 
institutions, the multiplicity of different implementations of 
learning platforms is inevitable. As such, it becomes necessary to 
ensure a standard for learning data. Common standards such as Tin 
Can Experience API [1], IMS Caliper Discovery API [2] have been 
developed to help reduce the burden of system interoperability. It 
is on the awareness of these standards that learning data silos 
otherwise known as Learning Record Stores (LRS) are maintained. 
These record stores form the backbone for learning analytics. 

1.1 Limitations of Learning Analytics Platforms 
Despite the availability of reference standards for maintaining 
learning data on an LRS, it is still difficult to achieve 
interoperability without some limitations. These problems include:  

•  Connecting learning histories of a learner on different learning 
platforms on a single immutable trail. 

                                                             
  

•  Ensuring privacy of learners’ records with ease of access control. 

•  Integrating research and production systems for advancing 
learning.  

1.1.1 Connecting Learning Histories. While learners typically 
move from one provider’s learning platform to another, their 
learning records are stored distinctly and in a disconnected fashion 
in separate LRSs. Consequently, each system has to pay the cost of 
growing learner’s data from scratch even for very simple cases. 
While this might not be a repeated effort for first time learners, it is 
almost impossible to tell if they are truly first timers or not. This 
also causes a “cold start” problem in training recommender systems 
due to unavailability of students’ previous learning actions [16]. 
Proposed systems should allow learners to take their learning data 
with them in the same way they can take their certificates easily 
from one institution to another. 

1.1.2    Privacy, Security and Access Control. This is another 
challenge faced when sharing learning records with third parties. 
Although, learning analytics helps in improving the performance of 
learners [3] [4], Alan and Kyle [5] in one wide and four narrow 
questions about conditions for learner’s privacy, argue that 
whatever the gains of learning analytics are, they must be 
commensurate to respecting learner’s privacy and associated rights. 
The psychological trauma that could result from a single point of 
privacy compromise can be quite devastating as it is possible to 
reveal more confidential information from a single point [6]. 
Proposed systems should ensure prioritization of learner’s privacy 
and learners should be in control of their learning data. 

1.1.3    Integrating Research and Production Systems. Availability 
of learning data for research fosters innovation. In cases where 
learning data are collected from production and/or research 
systems, learning analytics researchers are often faced with the 
heinous task of anonymizing personally identifying information in 
order to protect privacy of stakeholders and consequently 
impacting negatively on personalized results [7]. As real-time 
learning data becomes more desirable for learning analytics 
research [7], it is crucial to develop new ideas on how to carry out 
such seamless integration and interoperability of both research and 
production systems while maintaining privacy of stakeholders 
involved. 

 

IPSJ SIG Technical Report

1ⓒ 2018 Information Processing Society of Japan

Vol.2018-CLE-24 No.18
2018/3/21



 
 

 
 
 

1.2 Blockchain Features as a Solution 
This work addresses previously identified limitations of current 
systems in enhancing learning analytics. We propose solutions to 
mobility of learner’s learning records, distributed consensus in 
maintaining learning history, privacy and access control 
mechanisms with prioritized learner’s interest and interoperability 
of different systems (production and research). A blockchain is a 
distributed database of records or public ledger of all transactions 
or digital events that have been executed and shared among 
participants [8]. Below, we identify some of the features of 
blockchain technology that are key to our proposed solution. 

1.3.1    Distributed Consensus and Immutability Features. With its 
first implementation in Bitcoin [9], blockchain technology is based 
on a distributed consensus where nodes on the network have access 
to and keep track of all events that occur on the network. Ledger 
entries are stored as timestamped, chained immutable blocks. To 
ensure security and consistency of ledger entries, some nodes on 
the network offer to add new blocks to the ledger by competing 
among themselves to solve a computationally intensive puzzle 
known as the Proof of Work. These nodes are called miners and are 
rewarded for being the first to provide a correct solution to the 
Proof of Work. The computing power required for solving this 
puzzle makes it more difficult to rewrite blocks as such rewrite by 
dishonest nodes would require resolving associated Proof of Work 
and acceptance of such solution by honest nodes. These features of 
blockchain technology provide answers to connecting different 
learning records from different learning providers with high data 
consistency. 

1.3.2    Smart Contract-based Privacy, Security and Access 
Control. The blockchain technology has a smart contract feature 
that facilitates enforcing the terms of agreement between two 
parties in a contract; in this case, between learners and learning 
providers or between learning providers. We propose policies that 
are deployable on the blockchain to control data access and ensure 
privacy of learner’s records and mutual interests of learning 
providers.  

1.3.3    Single Ledger, Multiple Participants. We leverage on the 
distributed consensus and single ledger-multiple-participants 
features of the blockchain technology to enhance interoperability 
of both research and production systems. We propose Learning 
Blockchain APIs and Datastore Wrappers for ensuring seamless 
and secure communications between the blockchain and LRSs of 
learning providers. We suggest potential candidates for enforcing 
non-intrusive access request and provision for foreign systems. 

1.3 Related Work 
In fields other than education and learning analytics, there is 
existing research on applying blockchain technology to non-
financial products, such as: medical information [10] and domain 
name registry [11]. Zyskind et al’s work on using blockchain to 
protect personal data provides insight on achieving privacy 
preservation on a decentralized network with user control and 
auditing [12]. While these ideas are fundamental to our discovery 

of our novel approach, there are many aspects of learning systems 
that present unique problems that need to be solved, such as: 
connecting distributed or disconnected learning data, smart 
contract-based privacy and access control frameworks, and 
interoperability of different learning systems for both research and 
production environments. This paper proposes an innovative 
blockchain based system with important modifications to address 
the specific needs of education and learning systems. 

2 BLOCKCHAIN FOR LEARNING 
ANALYTICS 

2.1 Overview 
In figure 1, we propose a paradigm shift from current 
implementations of learning management systems and platforms to 
the blockchain technology. Block content represent pointers to 
learning data with ownership and access policies. Nodes on the 
peer-to-peer network represent learning providers and learners. 
Learning activities performed by learners on the learning platforms 
of learning providers on the network are logged on the blockchain 
as string representation of queries that can be executed on an 
external database of learning providers to retrieve such activities. 
To ensure data consistency and immutability, at block creation 
time, we execute accompanying queries on the external database 
and include a cryptographic hash of obtained result as part of the 
block information. Future response from the execution of this query 
can be compared to the stored hash and if different, the response is 
invalid and rejected. We propose herein a secure box for executing 
these queries against providers’ databases with reference to the 
blockchain network in order to maintain established permissions.  
In the next sections, we will discuss further the design of our 
proposed system and the underlying principles. 

2.2 Ethereum Blockchain 
It is possible to express real-world processes as states and state 
transition functions. This code representation of real-world 
processes on a blockchain loosely defines smart contracts. 
Although present in bitcoin blockchain, Ethereum (eth) is the first 
to implement a blockchain with a Turing-complete smart contract 
programming feature [14]. Being Turing-complete is important 
because it enables writing programs (especially with loop 
directives) in fewer instructions with efficient use of space. The 
concept of smart contract lies at the heart of our proposed design as 
it makes it feasible to enforce required policies and processes by 
expressing them as executable codes on the blockchain. 
In our implementation, we used the open source version of 
Ethereum written in Golang – Geth [17]. The Geth boot node is 
setup as a private network, detached from the live version of 
Ethereum and other nodes can connect to it using similar network 
id and genesis block configuration. We also define a custom 
genesis block configuration with lesser difficulty for easy testing 
and mining of blocks using CPU/GPU on personal computers. 
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Figure 1. Current learning systems design vs proposed design 
of learning blockchain 

2.3 System Access and Privacy Control 
We propose contracts that contain learning data access permissions, 
ownership and a mapping of the two. The state transition functions 
of these contracts can be modified to reflect the conditions that must 
be met before data read or write access is granted. In figure 2, we 
show the structure of the three main smart contracts namely; 
Registrar – Learning Provider Contract (RLPC), Learner – 
Learning Provider Contract (LLPC) and Index Contract (IC) for 
both Providers and Learners. 
2.3.1    Registrar – Learning Provider Contract (RLPC). This 
contract controls how organizations and institutions become 
authorized learning providers on the learning blockchain. As these 
requirements are administratively decided, we propose that typical 
implementations should consider existing structures for 
establishing communication and accessing information in 
institutions and organizations. An example could be the use of 
special identifiers (ID-1, ID-2, and ID-3 in figure 2) and/or tokens 
to verify that a node requesting access to the network is actually a 
known party to the other nodes. This and other conditions can be 

coded into the RLPC. In our implementation, we keep a record of 
IP addresses of authorized institutions that can join the network. 

 
Figure 2. Registrar Learning Provider Contract 

2.3.2    Learner – Learning Provider Contract (LLPC). It represents 
a proof of existence of a learner’s learning data on a learning 
provider’s platform. It contains information about the owning 
learner, address of learning provider’s LRS or database with 
required authentication parameters, queries that can be executed on 
learning provider’s LRS to retrieve learning data, a hash of 
expected learning data for ensuring data has not been tampered with 
and a list of access permissions. LLP Contract empower learners 
with the ability of controlling who can view their learning data by 
maintaining a list of access permissions granted to other learning 
providers. The Permission struct in Figure 3 shows an example of 
some permissions at a very high level. 

 
Figure 3. Learner Learning Provider Contract 

2.3.3    Index Contracts (IC). An Index Contract contains all LLPCs 
established between learners and learning providers and by 
extension, the trail of all learning activities on the blockchain. This 
is necessary to provide a mechanism for fast lookup of entries and 
access permissions on the blockchain. We use a hash-table based 
implementation for the list mapping learners to their LLPCs and 
another one mapping learning providers to LLPCs they have with 
learners and with other learning providers that learners have 
granted access.  
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Figure 4. Provider Index Contract and User Index Contract 

2.4 Platform Architecture and Process Flow 
Figure 5 shows a typical setup of our implementation. We use 
Moodle LMS[18] and BookRoll [7] as the learning platforms. All 
learning records emitted on these platforms through learning 
activities of learners are stored in a central database (MongoDB) 
through OpenLRW [19]. These learning records are either 
formatted in xAPI [1] or Caliper standard [2]. We also provide an 
implementation of a subroutine for retrieving records from the 
MongoDB through the wrappers on OpenLRW and writing them to 
the blockchain. On the blockchain, learning records are uniquely 
grouped using the action verb field and the user’s blockchain 
address. However, before user’s or learner’s learning records can 
be written to the blockchain, they must go through the account 
creation phase. 

 
Figure 5. System Architecture – one Institution 

2.4.1    Blockchain Account Setup. Learners that opt to have their 
learning records on the blockchain will have to go through the 
account setup process. This process handles the generation of 
blockchain address for the learner, creation of an Index Contract – 
User Index Contract and the final phase of registering the generated 
blockchain address and User Index Contract address in the 
Registrar Learning Provider Contract. Figure 6 shows a flowchart 

for this process. The process highlighted in red are blockchain 
dependent transactions that are only completed when the 
transaction is successfully mined. In a typical scenario, this could 
range from 30 seconds to several minutes before mining occurs. It 
is important to note that the only process that requires any action 
on the part of the learner is consenting to having their learning 
records on the blockchain and provision of a passphrase to encrypt 
their private key. The other processes shown in the flowchart are 
background operations and the decision blocks are solvable by 
querying the blockchain. 
 

 
Figure 6. Process flowchart for blockchain account setup 

2.4.2    Writing Learning Records. This entails performing at least 
one transaction on the blockchain. The process begins with 
retrieving the action verb of the learning record and converting it to 
a corresponding hexadecimal number. This is required because we 
want to optimize gas usage on the blockchain; writing strings of 
variable length require more computational resources in solving the 
Proof of Work especially when the string is lengthy. After 
converting the action verb to hexadecimal equivalent, we then 
query the blockchain to know if a smart contract based on this 
action verb exists for this user. If it does, we retrieve the smart 
contract and simply update it with the current learning record’s 
query string and query result hash. If no such smart contract exists 
for this action verb, we create the smart contract and update the 
index contracts of both the provider and the learner. The latter case 
will require four transactions which must be mined on the 
blockchain. Figure 7 shows the flowchart for this procedure. No 
user input is required. 
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Figure 7. Provider Index Contract and User Index Contract 

2.4.3    Accessing Learning Records. In figure 8, we show sequence 
of activities that occur on the blockchain and how they are handled. 
At S0, the blockchain contains only the boot node, RLPC and a 
Secure Box. KU node then attempts to join the network which 
prompts verification with established rules in RLPC. Upon 
successful verification, KU is added as a valid participant and an 
IC is generated. Learner A (L-A) visits KU’s platform and since it 
is his/her first visit to any node on the network, a new account is 
created for L-A at S2. Subsequent learning activities leading to 
generation of learning data are logged on the blockchain as LLPC-
An.  

At Sn+1, edX attempts to read the learning data (LLPC-A1) of L-A, 
this is outrightly rejected as there is no proof of edX being aware 
of the existence of L-A. Later on, L-A decides to visit edX platform 
and provides their blockchain information to edX. Now, edX 
knows of the existence of L-A. This means that further request to 
access L-A’s learning data will be forwarded to L-A for approval. 
If approved, the permission is written on the LLPC and access to 
the learning data is granted.  

3    DISCUSSION 
From this implementation, we observe that while some of the 
transactions on the blockchain require very minimal resources 
(such as the blockchain address issuing transaction), others require 
some amount of time; typically, about 2 minutes (tests currently 
ongoing). For an on-demand connection of learning records, this 
time might be acceptable. But for real-time connection of learning 
records it might pose a challenge. Also, we observe that the more 
the available mining nodes on the network, the faster the 
transactions are processed (test results to be provided). This ideally 
follows the tenets of a decentralized network where the best 
throughput is achieved if everyone mined their own transactions. 
While it might be difficult to achieve a system where all learners 
mine their own learning records, it will be interesting to consider 
alternative approaches to improving on transaction processing time 
by leveraging on client-side-browser-based mining nodes.  

  

Figure 8. Sample process of registering and accessing 
blockchain information. 
 
However, one very important concern is the sustainability of the 
blockchain technology due to the large computing and energy 
resource requirements. We are aware of this limitation and hence, 
we have constrained current implementation to use the institution’s 
central resource. Future work should consider possible 
optimizations to the underlying blockchain technology. 
Another important aspect to be considered is defining and 
enforcing existing user data privacy policies on the learning records 
using smart contracts. While our implementation considers very 
top-level approach of representing these permissions, it will be 
necessary to understand the implications of having ‘action verb-
based’ privacy definitions. Also, we also propose that a further 
research should be done on how learners can write their own smart 
contracts using familiar concepts and enforce them on their 
learning records.  

4    CONCLUSION AND FUTURE WORK 
In this work, we introduced the concept of connecting learning 
records using the blockchain. We provided some core aspects of 
our current implementation which is still been developed. In our 
future work, we will provide more concrete results on resource 
requirement, throughput, and a close comparison to alternative 
systems currently been used. 
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