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Abstract: While there have been many studies on measuring the size of learners’ vocabulary or the vocabulary they
should learn, there have been few studies on what kind of words learners think that they know. Therefore, we investi-
gated theoretically and practically important models for predicting second language learners’ vocabulary and propose
another model for this vocabulary prediction task. With the current models, the same word difficulty measure is shared
by all learners. This is unrealistic because some learners have special interests. A learner interested in music may
know special music-related terms regardless of their difficulty. To solve this problem, our model can define a learner-
specific word difficulty measure. Our model is also an extension of these current models in the sense that these models
are special cases of our model. In a qualitative evaluation, we defined a measure for how learner-specific a word is.
Interestingly, the word with the highest learner-specificity was “twitter.” Although “twitter” is a difficult English word,
some low-ability learners presumably knew this word through the famous micro-blogging service. Our qualitative eval-
uation successfully extracted such interesting and suggestive examples. Our model achieved an accuracy competitive

with the current models.
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1. Introduction

When learning second languages, vocabulary knowledge is as
important as, or sometimes more important, than grammar. The
importance of vocabulary knowledge has been a main focus in
the last decade in the field of second language acquisition (SLA).

Studies regarding vocabulary knowledge of second language
learners have been mainly focusing on two major tasks: devising
methods for measuring the size of the second language vocab-
ulary of learners for testing purposes [20], [24], [29] and deter-
mining the words that the learners should learn [25]. However,
there have been few studies on what kind of words learners think
that they know. Under testing environments in which learners are
not motivated to exaggerate their vocabulary size, the words that
learners think they know are highly likely to be actually known
by the learners as discussed in Section 9. Since learners usu-
ally do not feel necessary to learn the words that they think they
know again, predicting such words is beneficial for supporting
the learners educationally. This is the basic research question for
our research.

To study what words second language learners think they
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know, we focused on the vocabulary prediction task. In this task,
we aim to build a model that predicts, given a word and a learner,
whether or not the learner responds that he/she knows the word.
As far as we know, Ehara et al. [8] is the only study that dealt di-
rectly with the vocabulary prediction task. They applied this task
to a reading support user interface for second language learners
that automatically identifies the words unfamiliar to the learner
on a Web page.

The vocabulary prediction task is important for both theory
and application. From the theoretical point of view, this task is
interesting in that it mines the words second language learners
responds to during vocabulary tests and creates a model on what
kinds of words learners actually think that they know. From the
model, we can interpret the patterns or tendency of the learners’
process of memorizing second language words. Studying the vo-
cabulary prediction task may also lead to determining if learners
learn words that SLA experts recommend.

From the application point of view, this task can be used in
user-adaptation for reading and writing applications to support
second language learners. The model by Ehara et al. [8] is of this
type. They successfully showed the effectiveness of their system.
With the increase in Web-based language learning environments,
possible data sources for learners’ vocabulary knowledge are also
increasing. Studying the vocabulary prediction task can shed light
on these data sources, and they can be used to further understand
the vocabulary knowledge of second language learners.

By using machine learning terminology, the vocabulary predic-
tion task can be categorized as a binary classification task: given a
word and a learner, it predicts whether or not the learner think that
he/she knows the word. Therefore, a number of machine learning
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methods, such as a support vector machine (SVM) for the binary

classification task, can be used as predictors. However, to answer

our research question, we want predictors to be able to do more

than just predict. Rather, we want predictors that are practical and

useful for analysis. Specifically, we list the following properties

we want predictors to have.

interpretable weight vector Most predictors use weight vec-
tors trained with data. Weight vectors of some models can
be interpreted as quantitative measures of the word difficulty
and the learner ability. Interpretable weight vectors are es-
sential for analysis to find the patterns or tendency of learn-
ers’ process of memorization, and to further understand the
basic research question: what kind of words do second lan-
guage learners think that they know?

out-of-sample Settings in the vocabulary prediction task can
be divided into two for handling new words: in-matrix and
out-of-sample. The in-matrix setting does NOT support new
words, i.e., there is at least one training dataset for all the
words appearing in the test data. This can be seen as filling
in the blanks of a learner-word matrix. In contrast, the out-
of-sample setting support new words, i.e., some or all words
in the test data are missing in the training data. To create the
training data, we need to ask learners whether or not they
think they know the words. Thus, creation of the training
data is very financially costly and burdensome for learners.
In a realistic setting, we can ask learners about only a small
subset of words, and the predictors usually have to predict
all the rest. The out-of-sample setting is more difficult but
more realistic than the in-matrix setting.

learner-specific word difficulty This is the core beneficial
property of the proposed model. Some interpretable weight
vectors can determine word difficulty. However, the per-
ceived difficulty of a word differs from learner to learner.
For example, a learner interested in music may know music-
related words that even high-level learners may not be famil-
iar with. For another example, suppose that normally diffi-
cult words are used in the names of well known commercial
products and services. In this case, again, low-ability learn-
ers may know these words through the product names. Thus,
it is preferable for a model to be able to detect this kind of
learner specialty.

Table 1 summarizes the models explained in this paper. We
can see that only the proposed model supports all the properties.
Although ordinary binary classifiers, such as SVMs, can be used
for the vocabulary prediction task, their weight vectors cannot be
used to determine word difficulty and learner ability that we want

Table 1 Properties of models. The proposed model supports all preferred
properties. Ordinary binary classifiers only can classify: their
weight vectors are not interpretable as word difficulty and learner
ability as those of the other models listed here.

weight out-of- learner-
vector is sample specific
interpretable word
difficulty
Rasch v - -
Ehara et al. [8] N v -
Proposed v v v
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for analysis. Thus, we ruled out typical binary classifiers.

The structure of this paper is as follows. We first focus on ex-
tending the basic interpretable model: the Rasch model [2], [27].
Although the Rasch model lacks many of the preferred proper-
ties, it provides a rough idea for the vocabulary prediction task.
To explain why the Rasch model lacks many of these properties,
we then introduce the general form of the likelihood of the Rasch
model. This generalization provides a way of supporting the pre-
ferred properties. Through this generalization, we can derive the
Rasch model, the model proposed by Ehara et al. [8], and the pro-
posed model.

The contributions of this paper are as follows:

e We introduce the general form of likelihood of the Rasch
model that can explain the reason this model lacks the de-
sired properties.

e We propose a model that supports all desired properties us-
ing this general form.

e In an evaluation, our model successfully detected the spe-
cialties of second language learners, which the current mod-
els cannot detect.

2. Problem Setting

Let U be a set of learners, and V be a set of vocabulary. We
denote the number of learners as |U| and the number of words as
|V]. A datum can be expressed using the triplet (y, u, v). Here, y €
{0, 1} is the label denoting whether or not learner u responds that
he/she knows word v, (1, 4, v) means that learner u responds that
he/she knows word v, and (0, u, v) means that he/she does not re-
sponds positively to word v. Using these notations, the vocabulary
prediction task is defined to predict the label y given (u,v). We
denote a dataset of N data as D = {(yy, uy,v1), ..., (Yn, Uy, n)}-

For simplicity, we assume that for one learner u € U and word
v € V pair, there exists only one label y. This restriction enables
us to depict the data set in a matrix form, as shown in Fig. 1. The
rows of the matrix correspond to learners and the columns of the
matrix correspond to words. Under this assumption, for one row
(learner) and one column (word), there is only one cell; thus, only
one label y. With this restriction, N is the number of cells in the
matrix.

The dataset we used in the evaluation agrees with this restric-
tion; however, we cannot always assume this restriction in a real-
istic setting. This is the reason we did not directly jump to matrix-
based prediction methods such as low-rank approximation using
singular value decomposition. For example, in a realistic dataset,
such as word-click logs in a reading support system, contradiction
and repetition are common. For contradiction, if both (1, u, v) and
(0, u,v) appear in the dataset, it may mean these two datasets are
unreliable. Repetition of multiple (1, %, v) may mean that learner

words words

A

|
predicts here
(b) out-of-sample

learners
learners

!
predicts blanks
(a) in-matrix

Fig.1 Two problem settings; (a) in-matrix, (b) out-of-sample.
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u is more familiar with word v than just one (1, u, v). All the mod-
els that we explain in the later sections of this paper can handle
these cases.

Figure 1 explains the in-matrix and out-of-sample settings. The
hashed areas denote the training data, and the blank areas denote
the test data. In the in-matrix setting, the test data are randomly
placed in the matrix.

3. Rasch Model

Although the vocabulary prediction task is quite novel, there
have been a substantial amount of work in SLA about which
words a learner should learn first. Many studies recommend
learners to learn words according to word frequency in general
corpora because word frequency can be used as a rough measure
of word difficulty. Of course, the learner does not necessarily
learn the words in this recommended order. As stated in the in-
troduction, it is one of our research questions to check if learners
actually learn in this order.

Still, we can come up with the idea that the difficulty of words
determines the learners’ knowledge of second language words.
This idea leads to a very simple model of vocabulary prediction
shown in Fig. 2. With this model, we predict a learner’s vocabu-
lary with the following steps:

(1) We rank words according to a measure of word difficulty.

(2) We decide the threshold for a learner.

(3) Words with greater difficulty than the threshold are predicted
to be unfamiliar to the learner, and vice versa.

Although this model seems too simple, it is the core idea of the
Rasch model, which has been widely used in language testing.

Given learner u and word v, the Rasch model models the prob-
ability of learner u knowing word v as follows:

Py =1luv) =o0(a,—dy), 6]

where o (1) = (1 + exp (—1))”" denotes the logistic sigmoid func-
tion. There are two kinds of parameters to be trained:

d, the difficulty of word v,

a, the ability of learner u.

In the Rasch model, the subtraction of two parameters a, —d, in
Eq. (1) denotes exactly the same mechanism as the simple vocab-
ulary prediction in Fig. 2. Here, d, maps each word v into a point
on the axis, and a, works as a threshold. When P(y = 1ju,v) >

difficulty difficulty difficulty
4 A not
. . : ﬁkmw
tremble tremble fremble_|
worship worship learnert worship_[— learnerl
: I ) knows
dog | dog dog
cat cat cat
the the the -
(a) (b) (c)

Fig. 2 Simple vocabulary prediction model. (a) First, assume there is a dif-
ficulty measure that maps each word to a point on the axis of the
measure. (b) Second, each learner’s ability is also mapped to a point
on the same axis. (c) Third, the words with the greater difficulty
compared to the point designating the learner’s ability is predicted to
be unfamiliar to the learner, and vice versa.
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0.5, we can assume learner u responds that he/she knows word v.
Due to the logistic sigmoid function, P(y = 1|u,v) > 0.5 holds
true if and only if a, — d, > O, that is, a, > d,. Therefore,
the Rasch model determines that learner u responds that he/she
knows all words whose word difficulty d, is lower than the learn-
ers’ ability a,. Note that not only the ability of learner a, but also
the difficulty of word d, is estimated from the data in the Rasch
model.

The priors for the parameters are usually set as follows:

P(auma) = N(O’U;I)
P(d,lna) = N(0.7;")

(Yu € U), 2
YveV), (€©))

where N denotes the probability distribution function of the nor-
mal distribution. Frequently, the hyper parameters 7, and 1, are
set as 1, = n4. If n, = 1,4, the parameters, d, and a, of the Rasch
model can be obtained using a standard log-linear model solver.

One of the notable problems with the Rasch model is that it
does not take into account the out-of-sample setting. That is, it
cannot predict words that do not appear in the training set. For
example, if there is a new word in a document in a reading sup-
port system, we need to re-create the training set with the new
word for the system to be able to predict that word as well. This
restriction makes the application systems using the vocabulary
prediction task impractical.

4. General form of Likelihood

In the previous section, we stated that the Rasch model does
work under the out-of-sample setting, which frequently occurs in
a realistic setting. This section attempts to locate the fundamen-
tal reason the out-of-sample problem arises by generalizing the
likelihood of the Rasch model.

Let us discuss the difficulty parameter d, of the Rasch model
from another perspective. If we define a function as f(v) = d,,
we can understand that d, is a function that takes word v as its
argument and returns the difficulty of word v. This means that we
do not need to allocate the number of variables |V| to determine
the difficulty of a word as the Rasch model does. Instead, all that
we need is a function that returns word difficulty for given word
v.

We can further extend f to be the form f(u,v): a function that
takes learner u# and word v as its argument and returns the diffi-
culty of word v for learner u. By using f(u, v), we can generalize
the likelihood function of the Rasch model as follows:

Py = lu,v) = o(a, - f(u,v). “4)

The Rasch model is a special version of Eq. (4) where we set
f(u,v) = d,. We can see that the fundamental cause of the out-
of-sample problem in the Rasch model comes from this poorly
designed f. There is a 1-to-1 mapping between parameters and
words in this design of f. Therefore, if some words are missing
in the training set, parameters arise that are not trained.

Note that Eq. (4) generalizes only the likelihood of the Rasch
model. Of course, to fully define a model, we must define priors
as well. Moreover, the priors must be designed carefully; other-
wise, a model can produce poor results regardless of the design
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Table 2 Summary of models explained so far. The Rasch model is a special case of the shared difficulty
model, and the shared difficulty model is a special case of the proposed model.

Name Design of f Priors

Notes

Rasch fu,v) =d,

Paylna) = N (0.7,

Shared difficulty

model [8] fu,v) = wTp(v)

)
P(dfna) = N (0,7;")
P(aulna) = N (0.7;")
P (i) = N (0,;'1)

Reduced to Rasch model if
¢(v) is |V|-dimensional and

o) =1.

Proposed Su,v) = w;$(v)

P(alna) = N (0.7;")
P(wo) = N (0.7,'1)

Reduced to the shared diffi-
culty model if we set w, =

of f.

_ wo (YueU).
P (wy|wy) = N(WO,/l 11)
difficulty difficulty difficulty
. . - A A A
One may think of extending the learner ability parameter a, . . .
to be a function as well. Of course, we can do this extension worship remble worship |
. . . . . _[leamer1 _—leamer1 _[—learner2
in theory. However, unlike word difficulty parameters, little in- fremble worship fremble
formation is practically available for learners. Therefore, it is dm‘; daé dﬂé
preferable for a model to require as little information from learn- cat cat cat
ers as possible. Since the complex design of f may require much : : :
. . e . the the the
information, we kept the learner ability parameter a, simple.
Shared difficulty learner 1-specific learner2-specific
difficulty difficulty
@) )

4.1 Shared Difficulty Model

By redesigning f in the general form of likelihood, we can
cope with the out-of-sample setting. One way to design f to be
able to do this is to set it as f(u,v) = wT ¢(v). Here, ¢ : V — RK
is a feature function. Given word v, it returns a feature vector
for it. Let K be the dimension of the feature space. Typically,
frequencies from large corpora can be used as features.

Even if there is a new word in the test data and there are words
in the training data that share the same features with the new
word, the word difficulty of the new word can be obtained by
calculating w' ¢p(v). The full form of the likelihood becomes the
following.

P(y=1lu0;w) = o (a, —w ¢ (v). (5)

Priors for the likelihood (5) are set as follows. We call this
model the shared difficulty model.

P(aulna) = N (0.17")
P(win,) = N(0,m,'1), (7)

where [ denotes the KX K-sized identity matrix. If we set n,, = 74,

Yu e U), (6)

this model reduces to a simple 12-norm-regularized logistic re-
gression as Ehara et al. [8] used. However, they did not mention
the out-of-sample setting or the general likelihood.

5. Proposed Model

One problem in both the Rasch and shared difficulty models
is that all learners share a single word difficulty measure. This
means that the same ranking of a word is shared by all the learn-
ers, e.g., the word “tremble” is more difficult than worship ac-
cording to all the learners. Thus, the Rasch and shared difficulty
models cannot take into account a leaner’s specialty.

In reality, it is common that even low-ability learners know dif-
ficult words with the help of their interests in a specific topic. For

© 2018 Information Processing Society of Japan

Fig. 3 Learner-specific word difficulty.

example, learners who are interested in music are likely to have
a large vocabulary of music-related words in second languages
regardless of the difficulty of the words. Modeling this kind of
learner specialty is essential in designing user-adaptive supports
for second language learners.

Figure 3 illustrates the difference between the shared word dif-
ficulty and the learner-specific word difficulty. On the left side of
the difficulty axis, words are plotted according to the difficulty.
On the right side of the axis, learner thresholds are plotted ac-
cording to the learners’ ability parameters a,. The predictor de-
termines that a learner does not know all the words above his/her
threshold. In Fig.3(a), all three learners share the same word
difficulty. Therefore, the model cannot represent a learner who
responds positively to the word “worship” but does not responds
positively to the word “tremble.” This problem can be solved by
introducing a difficulty axis for every learner as Fig. 3 (b) does.
In (b), “learner 1 is modeled as knowing the word “worship” but
not the word “tremble,” while “learner 2 is modeled as know-
ing the word “tremble” but not the word “worship.” This kind of
flexible modeling is impossible in the Rasch and shared difficulty
models.

With the general model explained above, we can easily explain
the fundamental cause of this problem: in the current models,
f(u,v) depends only on v, and does not depend on u. Therefore,
tackling this problem is simple: let f(u, v) depend on u as well. In
the proposed model, we define f(u,v) = w, ¢ (v). The full form
of the likelihood is shown as follows.

Py = 1lu,v;w,) = o-(a,, - wI¢(v)). 1))

This likelihood has far more parameters to be trained than the
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current models. Since the dimension size of the feature space is
K, w, is a K-dimension vector. Since we have |U| learners, we
have K|U| parameters to tune in total. Priors must be carefully
designed to tune this large number of parameters. We designed
the priors as follows:

P(adng) = N(0,7,")  (ue U, ©)
P(wo) = N (0.,'1), (10)
P (W wo) = N (wo, 17'1). (11)

Equation (11) is an important prior that does not appear in the
current models. This prior makes w, close to wy and makes w,
dependent on each other. The larger the A, the stronger this effect.

Note that both the shared difficulty model discussed by Ehara
etal. [8] and the Rasch model are actually special cases of the pro-
posed model; we extended the Rasch and shared difficulty models
into the proposed model. The constraints to reduce the proposed
model into these models are summarized in Table 2.

6. Estimation of Model Parameters

This section describes methods for estimating the model pa-
rameters. We use a maximum-a-posteriori (MAP) estimation for
all three models: Rasch, shared difficulty, and proposed. As
we explained, the shared difficulty and Rasch models are spe-
cial cases of the proposed model. Therefore, we first explain the
optimization of the proposed model.

The negative log of the negative log posterior of the proposed
model takes the following form:

N

A
[(W.a,wo) = 3 nll (grui0) + 5 3 Iwa=wall? (12)
i=1 uel
+ '77‘” Iwol? + 22 3" a2 (13)

uelU

We define the negative log likelihood function of the proposed
model as nll (y, u, v) & log (1 + exp (—y (a, — w, ¢ (v)))). We de-
fine W and a as follows for concise notation: W = {w,|Vu € U},
a = {a,|Yu € U}. This function [ (W, a, w) is convex [17] over all
the variables W, a, wg. Thus, the MAP model parameters W, a,
and Wy can be estimated by minimizing / (W, a, wy) w.r.t. W, a,
and wy.
Based on Kajino et al.[17], we minimize [(W,a, wy) itera-
tively as follows:
minimizing w.r.t. W,a We fix w; and minimize [(W,a, wy)
w.r.t. W and a. Kajino et al. [17] used the Newton method for
this optimization. Using the Newton method requires O(K?)
memory, where K is the dimension of w, and wy. This is

problematic when K increases. To tackle this problem, we
used L-BFGS [21], which requires only O(K) memory, for
this optimization instead. Specifically, we used the library
liblbfgs [26].

minimizing w.r.t. wyp We fix W and a to minimize / w.r.t. wy.
This minimization can be achieved analytically as follows:

A
= Nw, . 14
"o %+|U|A§W (1

We repeated these two minimizations iteratively until conver-
gence.

Both the Rasch and shared difficulty models are special cases
of the proposed model when w, = wy (Yu € U). This means that
the second minimization is unnecessary for the Rasch and shared
difficulty models. Thus, the parameters, i.e., the weight vector, of
the Rasch and shared difficulty models can be obtained by simply
performing the first minimization.

7. Evaluation

7.1 Dataset

‘We used the same dataset as Ehara et al. [8] used. The dataset
was created in Japan in January 2009. Sixteen English as a second
language learners participated in the creation of this dataset. Most
were graduate students of the University of Tokyo, and Japanese
was the native language of most of them.

This dataset was designed to be quite exhaustive. Every learner
was handed a randomly sorted questionnaire comprising 12,000
words and asked to answer how well he/she knew the words in
the questionnaire based on a five-point scale. We regarded level
5 as only y = 1; the learner responds positively the word. Other-
wise we regarded y = 0; the learner does not know the word. Out
of the 12,000 words, 1 word was a pseudo-word, i.e., it looks like
an English word but actually is not.

Fifteen learners were paid, and 1 learner was not. Since we
found that the unpaid learner’s data were too noisy, we used only
the data of the 15 paid learners. We had |V| = 11,999 words X
|U| = 15 learners; 179,985 data points in total.

The negative log of the 1-gram probabilities of each word in
each corpus is used as features for training. The collected cor-
pora for feature sources are compiled in Table 3. Ehara et al. [8]
used one large corpus, Google-1gram. However, from the per-
spective of SLA, it is typically not justified because it is not a
general corpus; thus, its frequencies could be biased. To avoid
being biased, we collected many general corpora and used them
as features.

When training, hyper parameters were chosen by grid search

Table 3 Feature sources.

Corpus name Type of English Size (in token) | Description

British National Corpus | British 100 mil. | General corpus
(BNC) [30]

The Corpus of Contem- | American 450mil. | General corpus
porary American English

(COCA) [5]

Open American National | American 14mil. | General corpus
Corpus (OANC) [16]

Brown corpus [14] American I mil. | General corpus
Google 1-gram [3] Mixed 1,024,948 mil. Huge, but not general

© 2018 Information Processing Society of Japan
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Table 4 Top 30 words with the largest variances Var(v) in descending order. Large Var(v) suggests large
learner-specificity. Japanese is the native language (L1) of this dataset.

Var(v) | word

presumed cause of learner-specificity

0.993 | twitter product name

0.886 | waltz topic specific: music, loanword in L1
0.849 | kindle product name

0.833 | rink homophone in L1 with “link”

0.827 | launder loanword in L1

0.825 | bass topic specific: music

0.823 | ultraviolet topic specific: cosmetics

0.818 | chime topic specific: music

0.804 | asphalt loanword in L1

0.802 | harry homophone in L1 with “hurry”

0.793 | wooded -

0.776 | mantle loanword in L1

0.767 | trombone loanword in L1

0.766 | modulate

topic specific: computer programming

0.763 | homeroom loanword in L1

0.760 | harness -

0.760 | bog -

0.755 | hearth

confused with “health”

0.750 | convent -

0.748 | hurdle loanword in L1

0.733 | parson

homophone in L1 with “person”

0.732 | vector loanword in L1

0.731 | haven homophone in L1 with “heaven”

0.719 | gadget loanword in L1

0.714 | lizard -

0.713 | smelt homonym in English: past particle of “smell”
0.709 | shin homophone in L1 with “sin”

0.708 | placebo loanword in L1

0.707 | lagoon -

0.702 | aha -

and 5-fold cross validation within the training set. The set of hy-
per parameters that performed best in this cross validation was
selected. Then, we trained the model with all the training sets
using the selected hyper parameters. We then applied the model
to the test set to obtain the results. For the Rasch and shared dif-
ficulty models, each hyper parameter, 14, 17,, and 7,,, was chosen
by grid search from {0.01,273,272,271,1.0,2',22,2%}. For the
proposed model, each hyper parameter, 7,, 1,,, and A, was chosen
by grid search from {272,271,1.0,2!,22}.

7.2 Evaluation of Learner-specificity

Unlike the current models, the proposed model was designed
to support learner-specific word difficulty. It is interesting to see
which words are the most learner-specific.

For a measure of learner-specificity, we introduce the variance
of learner-specific word difficulty. In the proposed model, the
learner-specific difficulty f(u, v) of word v for learner u is defined
as f(u,v) = w, ¢ (v). Unlike the current models that assign single
word difficulty for all learners, we can naturally define the vari-
ance of word difficulty over learners. Given the set of estimated
weight vectors for all |U| learners, {W, | u € U}, for word v € V,
we define Mean(v) and Var(v) as follows:

def 1 1 -
Mean@) = 5 3 f0) = 75 ) Wi @), (15)

uel uel
def

1
Var (v) = m Z (f(u,v) — Mean(v))?

uelU

= ﬁ Z (WZgS (v) — Mean (v))

uelU

2
. (16)
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Table 4 lists the words with largest variances Var(v) in de-
scending order. Var(v) increases when some low-ability learners
know the words and some high-ability learners do not. In other
words, it increases when low-ability learners know the word for
some reason other than the easiness of the word, and vice versa.
Table 4 is constructed from the weight vectors of the proposed
model. The weight vectors are trained in the in-matrix setting.
Out of 179,985 data points, 177,985 were used for training. Fea-
tures and hyper parameter tuning are explained in Section 7.1.
2,000 data points were used to check the accuracy, which was
83.40%.

For example, it is very interesting and noteworthy that the word
“twitter” comes at the top of the list of Table 4. This is presum-
ably due to the famous micro-blogging service, Twitter. The word
“twitter” itself is a rare word. For example, in the British National
Corpus, the frequency of the word “twitter” is merely 17 while
the word “the” is 6,043,900. The words whose frequency is the
same with the word “twitter” are: “abet,” “beguile,” and “coddle.”
Since these three words are in the dataset as well, the rareness of
words only cannot explain the large variance of the word “twit-

”

ter”” This dataset was created in Japan in January 2009 when
Twitter was not as predominant as it is today. Therefore, some
low-level learners knew the word “twitter” through the name of
the service while some high-level learners did not. Additionally,
Table 4 ranks another similar example at the third: “kindle.” The
first Amazon Kindle was released in the United States in 2007.
Likewise, we annotated presumable reasons Var(v) increased
in the rightmost column of Table 4. Although these reasons are

speculation, it is difficult to find the correct reason learners know
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a word, even for learners themselves, because we usually do not
remember how we learned foreign words. Our speculations are
intuitive and understandable for Japanese-native English as a Sec-
ond Language (ESL) learners.

Product name The words “twitter” and “kindle” correspond to
this case. When a difficult word is used as the name of a
famous product, it is possible that even low-ability learn-
ers would know the word through the name of the product,
which makes the variance larger.

Loanwords in L1 Some words in the second language are bor-
rowed by the learners’ native language, or L1, i.e., loan-
words. However, the spelling of loanwords in L1 can differ
from its original. For example, in the case of the word “man-
tle,” the corresponding loanword in Japanese, the native lan-
guage for most of learners of the dataset used, is spelled as

”

“mantoru.” Therefore, the difficulty has little influence on
whether or not learners know the word in this case. Rather,
whether or not the learner can perceive the loanword in spite
of the spelling difference has more influence. Thus, even
low-ability learners can perceive the meaning of the word
through its corresponding loanword in L1, which makes the
variance larger.

Homophones in L1 If there are two words that are homo-
phones in the learners’ native language, and one of the two
words is easier than the other, a low-ability learner may mis-
take the difficult one for the easy one. For example, a large
variance of the word “rink” is caused by low-ability learners’
mistake for the word “link” because the Japanese language

aalaa

does not distinguish “I” and “r.” For example, Japanese has
no distinction between “par” and “per,” the large variance of
the word “parson” is presumably due to some learners mis-
taking this word for the word “person.”

Topic specific Low-ability learners interested in a topic are
likely to know the words of that topic regardless of the
words’ difficulty.

Homonyms in English “smelt” is a verb that means extract-
ing metals by heat. Yet, it is also the past participle of
the word “smell.” Although the conjugated forms were re-
moved from this dataset, some low-ability learners presum-
ably did not notice it and thought that they were asked if they
knew the word “smelt” as the past participle of the word
“smell.” Some high-ability learners presumably knew that
the word “smelt” has a meaning other than the past partici-
ple of “smell” and were not asked about “smelt” as the past
participle. If they did not know what was the meaning other
than the past participle of “smell,” they answered no in the
dataset.

Note that the variance of the learners’ response y for a word in

the raw data cannot produce an interesting listing as in Table 4

because y is binary, 0 or 1. It trivially lists words of which half

the learners in the dataset know. For example, if there are 15

learners in a data set, it is trivial to determine the words with the

highest variance of y as those that 8 learners knew and 7 learners

did not, or 7 learners knew and 8 learners did not. This means that

many words have the highest y variance. In this dataset, 1,408 of

11,999 words had the highest y variance. Therefore, y variance
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does not produce any interesting results.

In contrast to Table 4, the words with the smallest Var(v) are
trivial. They are words all the learners knew or all the learners
did not know. The 30 words with the smallest variances were:
am, beach, doll, during, eastern, equal, excellent, green, hand-
writing, hungry, important, logic, love, luck, marine, paradise,
shop, technical, writing, pet, unknown, loose, maker, acquittal,
arduous, cot, exchequer, hindsight, innuendo, and purr.

Finally, we investigated the accuracy in the out-of-sample set-
ting. We split the 11,999 words into 2,000 words for the test set
and the rest for the training set. The size of the training data
was 149,985 and the size of the test data was 30,000. The hyper
parameter tuning and the feature set were the same as we stated
in Section 7.1. The Rasch model achieved 66.32%, the shared
difficulty model [8] achieved 77.67%, and the proposed model
achieved 77.81%.

8. Related Work

The proposed model is mathematically very similar to those
proposed by Evgeniou et al. [10] and Kajino et al. [17]. However,
these models are for totally different purposes than ours: Evge-
niou and Pontil [10] aimed at multi-task learning and Kajino et
al.[17] aimed at crowd-sourcing. As the Rasch model is rarely
used for these purposes, they did not mention the relationship
between the Rasch and proposed models, let alone the general-
ization of the likelihood of the Rasch model. Strictly speaking,
these two models differ from our model in that they do not in-
clude the Rasch and shared difficulty models Ehara et al. [8] as
special cases while our proposed model does. Ehara et al. [8] is
later published as a journal version [9].

While they also published some conference papers regarding
vocabulary prediction tasks, their study has different purpose and
methodology from what we proposed in this paper. Unlike our
method where we uses the results of vocabulary tests, Ref.[7]
proposes a graph-based model for designing tests that are used
for vocabulary prediction. In machine-learning terms, in Ref. [7],
they studied a graph-based active learning method and how it re-
lates to a customary method used in the educational community.
In Ref. [6], they proposed a method to evaluate translators’ trans-
lation ability using vocabulary ability whereas we do not deal
with translators in this paper.

We extended the word difficulty to the learner-specific word
difficulty by focusing on the analysis of the vocabulary knowl-
edge of adult second language learners. Aside from second lan-
guages, the study of vocabulary knowledge is also important for
the analysis of child development in terms of native language. In
computational linguistics, Kireyev and Landauer [19] proposed
an extension of word difficulty called “word maturity” by focus-
ing on the analysis of child development in terms of native lan-
guage. Their extension was aimed at “track the degree of knowl-
edge of each word at different stages of language learning” using
latent semantic analysis. Thus, both their purpose and method of
extending the word difficulty differ from ours.

While few have studied the vocabulary prediction task, the pre-
diction of text readability has been of the great focus[12], [15],
[18] in computational linguistics. The relationship between the
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vocabulary knowledge and text readability has been thoroughly
studied by educational experts [25].

A substantial amount of work has been done by mainly SLA
experts in estimating the vocabulary size. Two major test-
ing approaches have been proposed: multiple-choice, [24], and
Yes/No [22]. For Yes/No tests, Eyckmans [11] studied the validity
and the relation to readability prediction.

In the field of psychology, the shared difficulty model [8] is
almost mathematically identical to the linear logistic test model
(LLTM) [13]. Also, the vocabulary that humans memorize is
studied as “mental lexicon”[1], although most of the mental-
lexicon work is not aimed at predicting the vocabulary.

9. Discussion

Testing methodologies for language learners were comprehen-
sively studied and summarized in Refs. [25], [28]. Since scoring
descriptive tests becomes too costly and burdensome for large vo-
cabularies, it is sensible to use non-descriptive tests for vocab-
ulary prediction. There are two types of non-descriptive tests:
multiple-choice tests, where test takers select the correct meaning
of each word from multiple options, and self-report tests, where
test takers report how well he/she knows the word. Both tests
can be context-dependent, where the word is embedded within
a sentence so that the word meaning can be uniquely identified,
or context-independent, where words are not embedded within a
sentence. To ensure that learners’ responses matched what they
actually knew as closely as possible, we adopted the latter type
for the following reasons.

Multiple-choice tests are not always optimal for assessing
learners’ vocabularies [25]. First, the results are strongly in-
fluenced by the design of the incorrect options, or distractors:
if the distractors can be distinguished from the correct answer
too easily, the question can be answered correctly without ac-
tually “knowing” the word. Thus, a correct response to a
multiple-choice question does not directly imply that the test-
taker “knows” the word: he/she may have guessed the correct
answer without knowing the word, or answered correctly just by
chance.

Multiple-choice tests also impose a heavy burden on test-
takers: if the number of words in the test is large, test-takers are
motivated to answer either randomly or “I do not know” to most
of the questions. Of course, self-report tests also have this is-
sue, but because the burdens imposed by multiple-choice tests are
heavier than those for self-report tests, learners taking multiple-
choice tests are more likely to answer randomly.

Although self-report tests rarely suffer from these shortcom-
ings, one major shortcoming of self-report tests is that they can-
not accurately identify when test-takers are motivated to obtain
high scores. However, when such motivations are not a concern,
reports suggest that the results for self-report tests are closely
correlated with those for well-designed multiple-choice ques-
tions [4], [23], [28]. This implies that, in these circumstances,
learners are very likely to actually know the words they think
they know.

Neither testing method is perfect, and learners can still make
accidental responses. However, in our typical educational appli-

© 2018 Information Processing Society of Japan

cations, such as reading support, A) learners are not motivated
to exaggerate their vocabulary size because this may reduce the
quality of the support they receive, and B) the system has to deal
with a large vocabulary. Considering both of these points, we
adopted self-report tests because they are more realistic. When
building the dataset in Ref. [8], the learners were paid and so were
unlikely to exaggerate their vocabulary size.

To minimize the gap between the self-report test results and
the learners’ actual vocabulary knowledge, in Ref. [8], test-takers
could choose how confident they were in remembering words
from five options, such as “I have heard the word, but cannot
recall its meaning.” We regard only the most confident case as
indicating that the learner thinks he/she knows the word. Thus,
a positive response implies that the learner is so confident that
he/she does not think the word could have any other meaning.

To be precise, throughout this paper, we avoid saying “learn-
ers know words” and instead use the phrase “learners think they
know words.”

10. Conclusion

We proposed a model for the vocabulary prediction task. Al-
though there have been few studies on it, it is interesting from
both the theoretical and the practical points of views.

We introduced three preferred properties for predictors for this
task: the interpretable weight vector, out-of-sample setting, and
learner-specific word difficulty. Typical machine-learning classi-
fiers, such as SVMs, lack the first property, interpretable weight
vector. Although the Rasch model has this property, it lacks the
latter two properties.

To understand why the Rasch model lacks the latter two prop-
erties, we introduced the general form of the Rasch model. From
this general form, we derived our proposed model, which sup-
ports the latter two properties.

In the qualitative evaluation, we wanted to see which words
are the most learner-specific. Therefore, we introduced the vari-
ance of learner-specific word difficulty and listed the top 30 words
with largest variances. The results exhibited social aspects of
the learners. For example, “twitter” and “kindle” came first and
third, which suggests that some low-ability learners know these
words through service and product names, although they are usu-
ally difficult English words. Note that this analysis is possible be-
cause the proposed model supports the third property, the learner-
specific difficulty. Since the current models do not support this
property, this analysis is impossible with these models. More-
over, the proposed model achieved the accuracy competitive with
the current models under the out-of-sample setting, which is more
realistic than the in-matrix setting.

Future work includes using topic models to determine learn-
ers’ specialties. We also plan to introduce a sparse prior, such
as the Laplace prior, instead of the Gaussian prior on the user-
specific weight vector in Eq. (11) to obtain a more concise model
in which the weights specific to each user only deviate from the
overall weights.

Acknowledgments This work was supported by JSPS KAK-
ENHI Grant Number 12J09575. We appreciate the reviewers’ in-
sightful comments.



Electronic Preprint for Journal of Information Processing Vol.26

References

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Amano, S. and Kondo, T.: Estimation of mental lexicon size with
word familiarity database, Proc. 5th International Conference on Spo-
ken Language Processing (ICSLP) (1998).

Baker, F.B. and Kim, S.-H.: Item Response Theory: Parameter Esti-
mation Techniques, Marcel Dekker, New York, second edition (2004).
Brants, T. and Franz, A.: Web IT 5-gram Version 1 (2006).
LDC2006T13.

Culligan, B.: A comparison of three test formats to assess word dif-
ficulty, Language Testing, Vol.32, No.4, pp.503-520 (online), DOI:
10.1177/0265532215572268 (2015).

Davies, M.: N-grams data from the Corpus of Contemporary Ameri-
can English (COCA) (2011), available from ¢http://www.ngrams.info)
(accessed 2012-06-23).

Ehara, Y., Baba, Y., Utiyama, M. and Sumita, E.: Assessing Transla-
tion Ability through Vocabulary Ability Assessment, IJCAI, pp.3712—
3718 (2016).

Ehara, Y., Miyao, Y., Oiwa, H., Sato, I. and Nakagawa, H.: Formaliz-
ing Word Sampling for Vocabulary Prediction as Graph-based Active
Learning, EMNLP, pp.1374-1384 (2014).

Ehara, Y., Shimizu, N., Ninomiya, T. and Nakagawa, H.: Personalized
reading support for second-language web documents by collective in-
telligence, Proc. 15th International Conference on Intelligent User In-
terfaces (IUI 2010), Hong Kong, China, pp.51-60, ACM (2010).
Ehara, Y., Shimizu, N., Ninomiya, T. and Nakagawa, H.: Personalized
Reading Support for Second-Language Web Documents, ACM Trans.
Intelligent Systems and Technology, Vol.4, No.2, Article 31 (2013).
Evgeniou, T. and Pontil, M.: Regularized multi-task learning, Proc.
10th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD), pp.109-117, ACM (2004).

Eyckmans, J.: Measuring receptive vocabulary size: Reliability and
validity of the yes/no vocabulary test for French-speaking learners of
Dutch, PhD Thesis, Radboud University Nijmegen (2004).

Feng, L., Jansche, M., Huenerfauth, M. and Elhadad, N.: A Com-
parison of Features for Automatic Readability Assessment, Proc.
23rd International Conference on Computational Linguistics (Col-
ing 2010): Posters, Beijing, China, Coling 2010 Organizing Com-
mittee, pp.276-284 (2010) (online), available from (http:/www.
aclweb.org/anthology/C10-2032).

Fischer, G.: Logistic latent trait models with linear constraints, Psy-
chometrika, Vol.48, No.1, pp.3-26 (1983).

Francis, W.N. and Kucera, H.: Brown Corpus Manual, third edition,
Brown University, Rhodes island (1979).

Francois, T. and Fairon, C.: An “Al readability” Formula for French
as a Foreign Language, Proc. 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natu-
ral Language Learning (EMNLP-CoNLL), Jeju Island, Korea, pp.466—
477 (2012).

Ide, N. and Suderman, K.: The Open American National Corpus
(OANC) (2007). Corpus, available from ¢http://www.
AmericanNationalCorpus.org/OANC/) (accessed 2012-10-24).
Kajino, H., Tsuboi, Y. and Kashima, H.: A Convex Formulation for
Learning from Crowds, Proc. 26th Conference on Artificial Intelli-
gence (AAAI), Tronto, Ontario, Canada, pp.73-79 (2012).

Kate, R., Luo, X., Patwardhan, S., Franz, M., Florian, R., Mooney,
R., Roukos, S. and Welty, C.: Learning to Predict Readability us-
ing Diverse Linguistic Features, Proc. 23rd International Conference
on Computational Linguistics (Coling 2010), Beijing, China, Coling
2010 Organizing Committee, pp.546-554 (2010) (online), available
from (http://www.aclweb.org/anthology/C10-1062).

Kireyev, K. and Landauer, T.K.: Word Maturity: Computational Mod-
eling of Word Knowledge, Proc. 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Language Technologies
(ACL-HLT), Portland, Oregon, USA, pp.299-308 (2011).

Laufer, B. and Nation, P.: A vocabulary-size test of controlled produc-
tive ability, Language Testing, Vol.16, No.1, pp.33-51 (1999).

Liu, D. and Nocedal, J.: On the limited memory BFGS method for
large scale optimization, Mathematical Programming, Vol.45, No.1,
pp-503-528 (1989).

Meara, P. and Buxton, B.: An alternative to multiple choice vocabu-
lary tests, Language Testing, Vol.4, No.2, pp.142—154 (1987).
Mochida, K. and Harrington, M.: The Yes/No test as a measure
of receptive vocabulary knowledge, Language Testing, Vol.23, No.1,
pp-73-98 (online), DOI: 10.1191/02655322061t3210a (2006).

Nation, I.S.P.: Teaching and Learning Vocabulary, Heinle and Heinle,
Boston, MA (1990).

Nation, I.S.P.: How large a vocabulary is needed for reading and lis-
tening?, Canadian Modern Language Review, Vol.63, No.1, pp.59-82
(2006).

Okazaki, N.: libLBFGS: L-BFGS library written in C (2007), Soft-

© 2018 Information Processing Society of Japan

ware available at (http://www.chokkan.org/software/liblbfgs/) (ac-
cessed 2012-10-24).

[27] Rasch, G.: Probabilistic Models for Some Intelligence and Attainment
Tests, Danish Institute for Educational Research, Copenhagen (1960).

[28] Read, J.: Assessing Vocabulary, Cambridge University Press (2000).

[29]  Schmitt, N., Schmitt, D. and Clapham, C.: Developing and explor-
ing the behaviour of two new versions of the Vocabulary Levels Test,
Language Testing, Vol.18, No.1, pp.55-88 (2001).

[30] The BNC Consortium: The British National Corpus, version 3
(BNC XML Edition) (2007). Distributed by Oxford University Com-
puting Services on behalf of the BNC Consortium, available from
(http://www.natcorp.ox.ac.uk/) (accessed 2012-10-26).

Yo Ehara received his Ph.D. (Informa-
tion Science and Technology) degree from
the University of Tokyo in 2013. He is
currently a researcher in Artificial Intelli-
gence Research Center (AIRC), National
Institute of Advanced Industrial Science
and Technology (AIST). His research
interests are natural language processing
(NLP) and machine learning, especially educational NLP. He is
a member of ANLP, JSAI, IPSJ, and ACL.

Issei Sato received his Ph.D. degree from
the University of Tokyo in 2011. He was
an assistant professor at the University of
Tokyo from 2011 to 2015. He is currently
a lecturer at the University of Tokyo and a
team leader at RIKEN AIP.

Hidekazu Oiwa received his Ph.D. (In-
formation Science and Technology) de-
gree from the University of Tokyo in
2015. He is currently a researcher at Re-
cruit Holdings Co., Ltd. His research in-
terests are machine learning and natural
language processing.

Hiroshi Nakagawa was born in 1953.
He received his Doctor of Engineering
degree from The University of Tokyo in
1980. He joined the Information Process-
ing Society of Japan in 1980. He is cur-
rently a professor at The University of
Tokyo. His research interest is artificial
intelligence and society, and privacy pro-
tection technology. He is a member of IEEE and ACM.



