
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

Regular Paper

Implementation of Computing Partial Singular
Value Decomposition for Principal Component

Analysis Using ARPACK

Masami Takata1,a) Sho Araki2,b) Kinji Kimura2,c)

Yuki Fujii2,d) Yoshimasa Nakamura2,e)

Received: July 13, 2017, Revised: October 16, 2017,
Accepted: November 18, 2017

Abstract: In this paper, we propose a new implementation for computing partial SVD (singular value decomposition)
for principal component analysis, which is introduced from the viewpoint of the computational order and the caches of
shared-memory multi-core processors. In the new implementation, a target matrix is a sparse matrix, which should be
stored in CRS (compressed row storage) or CCS (compressed column storage) formats. SVD can be transformed into
eigenvalue problem. In the case when only the partial eigenvalues and eigenvectors from the absolute maximum or the
absolute minimum eigenvalue of a target matrix are needed, we use an effective software package, called ARPACK
(ARnoldi PACKage). To get the SVDs using ARPACK, the transformed eigenvalue problems can be generally solved
through the use of two matrix-vector operations at each iteration. If the size of the target matrix is large, the large
number of the elements in the target matrix cause the caches of the shared-memory multi-core processors to overflow.
On the other hand, the proposed implementation can achieve a high cache hit ratio because each row in the target
matrix can be reused. The proposed implementation is evaluated by experimentation. The experimental results show
that the computation time of the proposed implementation is about 75% of that of the conventional implementation.

Keywords: Krylov subspace method, IRA algorithm, IRL algorithm, sparse matrix, matrix-vector multiplication

1. Introduction

In markets, the data of customers are obtained and stored in
a matrix. The data matrix is a sparse matrix. The rows of the
data matrix is customer’s number, and the columns express the
data of purchase and condition. In customers research, the fea-
ture of the data matrix is important. To obtain the feature of the
data matrix, principal component analysis is generally adopted.
In principal component analysis, the normalized data matrix is
generated using the data matrix. The normalized data matrix is
a dense matrix. In customers research, some given data matrices
are usually rectangular, and those size become larger and larger.
Therefore, since the size of the data matrices tends to exceed the
size of cache, computation times become larger.

In SVD (singular value decomposition) of the normalized data
matrix for principal component analysis, we need only larger sin-
gular values and the corresponding singular vectors, which are
called as singular pairs in our research. Thus, a partial SVD, in
which we compute only these singular pairs, is more suitable.
An SVD can be transformed into an eigenvalue problem through

1 Nara Women’s University, Nara 630–8506, Japan
2 Kyoto University, Kyoto 606–8501, Japan
a) takata@ics.nara-wu.ac.jp
b) araki@amp.i.kyoto-u.ac.jp
c) kimura.kinji.7z@kyoto-u.ac.jp
d) fujii@amp.i.kyoto-u.ac.jp
e) ynaka@i.kyoto-u.ac.jp

multiplication of a target matrix by the transpose matrix. In this
case, all the eigenvalues are non-negative numbers.

In the case where only the partial singular pairs correspond-
ing to the several singular values from the maximal or the
minimal one, the singular pairs are computed by the Golub-
Kahan-Lanczos (GKL) algorithm [6], the Jacobi-Davidson al-
gorithm [11], the randomized algorithm [8], and the augmented
implicitly restarted Lanczos bidiagonalization (AIRLB) algo-
rithm [2], [3]. The GKL algorithm is a classical algorithm. The
Jacobi-Davidson algorithm is suitable for the maximal singular
value and its singular vectors. The randomized algorithm is suit-
able for a partial SVD whose singular values are not clustered.
The AIRLB algorithm is appropriate for use as a computation
library since it has low dependency on input matrices and can
output solutions numerically stably.

In the case where only the partial eigenpairs, which are com-
bined with an eigenvalue and the corresponding eigenvector, from
the absolute maximum or the absolute minimum eigenvalue of
the target matrix are needed, these eigenpairs are computed by
the IRA (implicitly restarted Arnoldi) algorithm [12] and the IRL
(implicitly restarted Lanczos) algorithm [13] using the ARPACK
(ARnoldi PACKage) [9] software, which is a solver for large-
scale matrices. The IRA and IRL algorithms, which are two of the
Krylov subspace methods, are effective for solving partial eigen-
value problems. The idea of the IRA and IRL algorithms is to
reduce the computational cost by limiting the number of bases in

c© 2018 Information Processing Society of Japan 37

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

Krylov subspace.
The ARPACK software is one of the effective software pack-

ages. Since a lot of researchers and developers have used the
ARPACK software over the years, this software has improved re-
liability through bugs have been removed. On the other hand, the
above algorithms for computing the partial singular pairs are still
a work in progress. Hence, to establish an high reliable algorithm
to compute the partial singular pairs or eigenpairs, adoption of
the ARPACK software is suitable.

Since ARPACK adopts reverse communication interface [9],
users simply compute matrix-vector operations. In general, a
partial eigenvalue problem can be solved by using matrix-vector
multiplication, of which the number should be set at about 10
times the number of required eigenvalues in ARPACK. In the
case where ARPACK is used for SVD, two matrix-vector oper-
ations are generally needed at each iteration. In an example file
(dsvd.f) [9] for partial SVD in ARPACK, the computational order
and the caches of shared-memory multi-core processors are not
considered. We therefore propose a new implementation using
ARPACK. The new implementation is more effective in terms
of parallel computation on shared-memory multi-core processors
with large caches. By using OpenMP directives, the implementa-
tion can result in much higher performance in parallel computing.

In the proposed implementation, it is required that target ma-
trices are sparse matrices, which are stored in CRS (compressed
row storage) or CCS (compressed column storage) formats [5].
On the other hand, actually the normalized data matrix in prin-
cipal component analysis is a dense matrix. Thus, the proposed
implementation should not be employed directly. To employ the
IRL algorithm in ARPACK software, the SVD of a target matrix
is transformed into an eigenvalue problem through multiplication
of the target matrix by the transpose matrix. Therefore, once the
normalized data matrix, which is a dense matrix, is expanded us-
ing the given data matrix, which is a sparse matrix in customers
research, then the proposed implementation can be adopted. In
general, the computational order in a sparse matrix is smaller than
that in a dense matrix. Consequently, the proposed implementa-
tion using ARPACK is suitable to perform principal component
analysis for customers research.

In Section 2, we introduce the Krylov subspace method. In
Section 3, we introduce the IRA and the IRL algorithms. In Sec-
tion 4, we propose an implementation of SVD using ARPACK
software. In Section 5, we evaluate the performances of the
proposed implementation on the multi-core processor with large
caches and discuss the results.

2. Krylov Subspace Method

2.1 Arnoldi Algorithm
The Arnoldi algorithm [1] transforms the target matrix A to the

approximate matrix Hk ∈ Rk×k of A, whose size is rather smaller
than A, by using the Krylov subspace method.

The Krylov subspace is a linear subspace based on the power
method and is composed of A,q1, and k. q1 is an initial vector
and k (k < n) is an iteration number:

K(A,q1, k) = span{q1, Aq1, . . . , A
k−1q1}. (1)

Algorithm 1 Arnoldi algorithm
1: Set initial vector q1;

2: v1 := q1/|q1 |;
3: for j := 1 to k do

4: r j := Av j;

5: for i := 1 to j do

6: hi j := v�i r j;

7: r j := r j − hi jvi;

8: end for

9: h j+1, j := |r j |; v j+1 := r j/h j+1, j;

10: end for

The iteration number k depends on the algorithms. In the Arnoldi
algorithm explained in this section and the Lanczos algorithm
introduced in Section 2.2, the iteration number k is determined
when the eigenvalues of matrix Hk is well approximated to that
of A. On the other hand, in the implicitly restarted Arnoldi al-
gorithm in Section 3, k is determined by users as the limit of the
number of bases in the Krylov subspace.

Let A ∈ Rn×n be non-symmetric. We set an initial vector
q1 ∈ Rn (q1 � 0), and generate new base vectors qk ∈ Rn

from the vectors which we have already computed. The qk is
a base vector of the Krylov subspaceK(A,q1, k). Actually, in the
Arnoldi algorithm, for each iteration, a new base qk is obtained
using qk = Ak−1q1 and orthogonalization. The new base vector is
orthogonalized against existing base vectors q1, . . . , qk−1, and the
new base vector qk is normalized to vk ∈ Rn. Then, an orthonor-
mal basis results:

K(A,q1, k) = K(A, v1, k) = span{v1, v2, . . . , vk}, (2)

where v j (j = 1, . . . , k) are orthonormal vectors obtained by the
Arnoldi algorithm.

Algorithm 1 shows the pseudocode of the Arnoldi algorithm.
Lines 5 to 8 of Algorithm 1 denote the orthogonalization part.
The orthogonalization part of Algorithm 1 is written by the mod-
ified Gram-Schmidt algorithm [7].

After the k-th iteration for k = 2, 3, . . . in Algorithm 1, the
following equation holds:

AVk = VkHk + rke�k , (3)

where Vk := [v1|v2| · · · |vk] ∈ Rn×k, ek ∈ Rk is the k-th column
vector of the k × k identity matrix, and

Hk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0 h32
. . .

...
...

. . .
. . .

...

0 · · · 0 hk,k−1 hkk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Moreover, rk ∈ Rn is a residual vector rk := hk+1,kvk+1. Hk ∈ Rk×k

is an upper Hessenberg matrix, and it is an approximate matrix of
A. The components of Hk are represented by using the equation
hi j = v�i Av j, which is expressed in lines 5 to 8 of Algorithm 1.

We introduce the stopping criterion of the Arnoldi algorithm as
follows. Let λ(k)

j ∈ R and y(k)
j ∈ Rn be the eigenvalues of Hk and

the unit eigenvectors corresponding to λ(k)
j , respectively. Then,

c© 2018 Information Processing Society of Japan 38

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

Algorithm 2 Lanczos algorithm
1: Set initial vector q1;

2: v1 := q1/|q1 |; β0 := 0; q0 := 0;

3: for j := 1 to k do

4: r j := Av j;

5: α j := v�j r j;

6: r j := r j − α jv j − β j−1v j−1;

7: β j := |r j |; v j+1 := r j/β j;

8: end for

the following equation is satisfied:

Hky(k)
j = λ

(k)
j y(k)

j . (5)

When we set x(k)
j := Vky(k)

j ∈ Rn, the following equation is for-
mulated from Eq. (3):

Ax(k)
j − λ(k)

j x(k)
j = AVky(k)

j − λ(k)
j Vky(k)

j (6)

= AVky(k)
j − Vkλ

(k)
j y(k)

j (7)

= AVky(k)
j − VkHky(k)

j (8)

= (AVk − VkHk)y(k)
j (9)

= rke�k y(k)
j (10)

= (e�k y(k)
j)rk. (11)

If we set E := −(e�k y(k)
j)rkx(k)

j

� ∈ Rn×n, Eq. (11) is transformed
into

(A + E)x(k)
j = λ

(k)
j x(k)

j . (12)

Equation (12) is regarded as an eigenvalue problem which has
the added perturbation E to A. Thus, if the norm |E|2 is small, λ(k)

j

approximates an eigenvalue of A.

2.2 Lanczos Algorithm
As well as the Arnoldi algorithm, the Lanczos algorithm [10]

generates orthonormal bases v1, v2, . . . , vk according to the in-
creasing iteration number k.

Algorithm 2 shows the pseudocode of the Lanczos algorithm.
In contrast to the A in the Arnoldi algorithm, here A ∈ Rn×n is
assumed to be symmetric. Hence,

hi j = v�i Av j = v�i A�v j

= (Avi)
�v j =

(
v�j (Avi)

)�
= h ji (13)

is satisfied. Then, for the approximate matrix Tk ∈ Rk×k at the
end of the k-th iteration in the Lanczos algorithm, the following
equation holds:

AVk = VkTk + rke�k , (14)

where Vk := [v1|v2| · · · |vk] ∈ Rn×k, ek ∈ Rk is the k-th column
vector of the k × k identity matrix, and

Tk :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1 0 · · · 0

β1 α2 β2
. . .

...

0 β2 α3
. . . 0

...
. . .

. . .
. . . βk−1

0 · · · 0 βk−1 αk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Tk is a symmetric tridiagonal matrix whose eigenvalues approxi-
mate those of A.

However, in the Lanczos algorithm, the orthogonality of vec-
tors becomes worse as the iteration number increases because the
algorithm is more susceptible to rounding errors than the Arnoldi
algorithm. Thus, lines 5 to 8 of Algorithm 1 are usually used
even if A is symmetric. Moreover, the stopping criterion of the
Lanczos algorithm is the same as that of the Arnoldi algorithm.

3. Implicitly Restarted Arnoldi Algorithm and
Implicitly Restarted Lanczos Algorithm

In this section, following [12], [13], we introduce the IRA and
IRL algorithms. The number of desired eigenpairs is set to be
�. In the Arnoldi and Lanczos algorithms, for each iteration, a
new base vector is added with the expansion of the Krylov sub-
space until we obtain an approximate matrix. The cost of the re-
orthogonalization keeps on increasing, so these algorithms need
a lot of memory and computational time. The IRA and IRL al-
gorithms reduce these re-orthogonalization costs by limiting the
number of bases in Krylov subspace to m (� < m � n). The IRA
and IRL algorithms are implemented in ARPACK [9].

3.1 Implicitly Shifted QR Steps
In the IRA and IRL algorithms, the implicit QR steps are used.

The implicit QR steps are derived from the explicit QR steps.
The QR steps are the algorithm to renew H̃(i)

m ∈ Rm×m based on
the following recurrence formula:

H̃(i)
m = Q̃iR̃i (16)

H̃(i+1)
m = R̃iQ̃i. (17)

Starting from the initial matrix H(1)
m ∈ Rm×m, H̃(i)

m is the matrix at
the end of the ith iteration. The following equation is obtained:

H̃(i)
m = Q̃�i−1 · · · Q̃�2 Q̃�1 H(1)

m Q̃1Q̃2 · · · Q̃i−1 (18)

= Q̃�H̃(1)
m Q̃ (Q̃ := Q̃1Q̃2 · · · Q̃i−1). (19)

On the other hand, in the implicitly shifted QR steps, the shift
values μi ∈ R are introduced:

˜̃H(i)
m − μiI = ˜̃Qi

˜̃Ri (20)

˜̃H(i+1)
m = ˜̃Ri

˜̃Qi + μiI. (21)

Starting from the initial matrix H(1)
m , at the end of the ith iteration

we obtain ˜̃H(i)
m ∈ Rm×m. Then, the following equation is satisfied:

˜̃H(i)
m =

˜̃Q�i−1 · · · ˜̃Q�2
˜̃Q�1 H(1)

m
˜̃Q1

˜̃Q2 · · · ˜̃Qi−1 (22)

= ˜̃Q�H(1)
m

˜̃Q (˜̃Q := ˜̃Q1
˜̃Q2 · · · ˜̃Qi−1) (23)

The implicitly shifted QR steps are as follows. The starting
matrix ˜̃H(1)

m is the upper Hessenberg matrix and, if μi is the
eigenvalue of ˜̃H(1)

m , ˜̃R1 ∈ Rm×m is an upper triangle matrix with
{ ˜̃R1}m,m = 0:

˜̃H(1)
m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · ∗
∗ ∗ · · · · · · ∗
0 ∗ . . .

...
...

. . .
. . .

...

0 · · · 0 ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

c© 2018 Information Processing Society of Japan 39

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

˜̃R1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · ∗
0 ∗ · · · · · · ∗
...
. . .

. . .
...

...
. . . ∗ ∗

0 · · · · · · 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (25)

Thus, ˜̃R1
˜̃Q1 becomes an upper Hessenberg matrix with

{ ˜̃R1
˜̃Q1}m,m−1 = 0 and { ˜̃R1

˜̃Q1}m,m = 0:

˜̃R1
˜̃Q1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · · · · ∗
∗ ∗ · · · · · · · · · ∗
0 ∗ . . .

...
...
. . .

. . .
. . .

...
...

. . . ∗ ∗ ∗
0 · · · · · · 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (26)

Then, we obtain

˜̃H(2)
m =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗ · · · · · · · · · ∗
∗ ∗ · · · · · · · · · ∗
0 ∗ . . .

...
...
. . .

. . .
. . .

...
...

. . . ∗ ∗ ∗
0 · · · · · · 0 0 μ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Repeating this process m times, the diagonal components of ˜̃H(m)
m

are composed of the eigenvalues of H(1)
m .

3.2 Implicit Restarting
We compute m steps of Arnoldi iteration and then restart the

iteration with a new initial vector v+�+1 ∈ Rn chosen by perform-
ing the implicitly shifted QR algorithm from the Arnoldi vectors
v1, . . . , vm. In this section, we introduce the method to compute
an ideal vector v+�+1.

After the m steps of Arnoldi iteration, we obtain the following
relation:

AVm = VmHm + hm+1,mvm+1e�m. (28)

Then, we compute all the eigenvalues λ1, . . . , λm of Hm, and di-
vide them into λ1, . . . , λ�, which approximate the desired eigen-
values of A, and λ�+1, λ�+2, . . . , λm. Next, we apply the m − �
implicitly shifted QR steps to Hm with λ�+1, λ�+2, . . . , λm as the
shift values to obtain H+m. By using λ�+1, λ�+2, . . . , λm as the shift
values,

μm−� = λ�+1, μm−�−1 = λ�+2, . . . , μ1 = λm, (29)

and we are able to extract the unnecessary components of vectors
in the direction of the corresponding eigenvectors.

The relationship between Hm and H+m is as follows;

Q+ := Q1Q2 · · ·Qm−�, (30)

V+m := VmQ+, (31)

H+m := (Q+)�HmQ+, (32)

Algorithm 3 IRA algorithm
1: Set m: an upper limit and set �: the number of the desired eigenpairs;

2: Input: Arnoldi decomposition AVm = VmHm + hm+1,mvm+1e�m;

3: for i := 1, 2, · · · do

4: Compute all the eigenvalues of Hm: λ1, . . . , λm;

5: Divide eigenvalues: λ1, . . . , λ� and λ�+1, . . . , λm;

6: Implicitly shifted QR steps for Hm m − � times (λ�+1, λ�+2, · · · , λm are

shift values);

7: Q+ = Q1Q2 · · ·Qm−�;
8: V+m = VmQ+; H+m = (Q+)�HmQ+;

9: v+�+1 := vm+1; h+�+1,� = hm+1,mQ+(m, �);

10: V+� := V+m(:, 1 : �); H+� := H+m(1 : �, 1 : �);

11: m−� step Arnoldi algorithm starting with AV+� = V+� H+� +h+�+1,�v
+
�+1e�� ;

12: end for

H+m =

⎡⎢⎢⎣

∗ · · · · · · ∗
∗ ...

0
. . .

...
. . .

. . .
. . .

∗ ∗
0 μm−�

. . .
. . .

...
...

. . .
. . . μ2 ∗

0 · · · · · · 0 0 μ1

⎤⎥⎥⎦

.

(33)

Then, from Eq. (28), we get

AVmQ+ = VmHmQ+ + hm+1,mvm+1e�mQ+ (34)

= VmQ+(Q+)�HmQ+ + hm+1,mvm+1e�mQ+ (35)

= VmQ+H+m + hm+1,mvm+1e�mQ+. (36)

Therefore, we obtain the following equation;

AV+m = VmQ+H+m + hm+1,mvm+1e�mQ+. (37)

From Eqs. (31), (32), and (37), the following relationship from
the 1st to the �th columns of Eq. (37) is formulated:

AV+m(:, 1 : �) = V+mH+m(:, 1 : �)

+ hm+1,mvm+1e�mQ+(:, 1 : �) (38)

= V+m(:, 1 : �)H+m(1 : �, 1 : �)

+ h+�+1,�v
+
�+1e�� (39)

where v+�+1 := vm+1 and h+�+1,� = hm+1,mQ+(m, �). Thus, we are
able to restart the Arnoldi decomposition with the initial vector
v+�+1 and Eq. (39).

Algorithm 3 shows the pseudocode of the IRA algorithm.
Moreover, we note that the IRL algorithm is more suitable than

the IRA algorithm, when a target matrix is symmetric.

4. Singular Value Decomposition Using
ARPACK

4.1 Transformation into Eigenvalue Problem
To apply the IRL algorithm in ARPACK, SVD should be trans-

formed into an eigenvalue problem.

c© 2018 Information Processing Society of Japan 40

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

A w× n (w ≥ n) rectangular matrix A(r), in which data is stored
in row-major order, is decomposed into A(r) = U(r)Σ(r)V (r)�.
Here, Σ(r) is a diagonal matrix whose elements are singular values
σ(r)

j ≥ 0 (j : 1 ≤ i ≤ n) ∈ R of A(r), U(r) = (u(r)
1 , u

(r)
2 , · · · , u(r)

w) ∈
R
w×w is a left orthogonal matrix, in which u(r)

j ∈ Rw correspond-

ing to σ(r)
j is aligned, and V (r) = (v(r)

1 , v
(r)
2 , · · · , v(r)

n) ∈ Rn×n

is a right orthogonal matrix, in which v(r)
j ∈ Rn correspond-

ing to σ(r)
j is aligned. Moreover, the pairs of (σ(r)

j , u
(r)
j , v

(r)
j) are

called singular pairs. Each pair satisfies A(r)�u(r)
j = σ

(r)
j v(r)

j and

A(r)v(r)
j = σ

(r)
j u(r)

j .

Among singular pairs (σ(r)
j ,u

(r)
j , v

(r)
j), the following relation

holds:

A(r)�A(r)v(r)
j = A(r)� (σ(r)

j u(r)
j

)

= σ(r)
j

(
A(r)�u(r)

j

)
= σ(r)

j

2
v(r)

j , (40)

u(r)
j =

A(r)v(r)
j

||A(r)v(r)
j ||2
. (41)

Equation (40) shows that the singular value problem of A(r) can
be changed to the eigenvalue problem of A(r)�A(r) algebraically.
Namely, the squares of singular values σ(r)

j

2
of A(r) are equal to

eigenvalues of A(r)�A(r). Therefore, when A(r)�A(r) is the input
matrix in the IRL algorithm, the singular values of A(r) and the
right singular vectors corresponding to the singular values can
also be computed. Moreover, the left singular vectors can be ob-
tained from Eq. (41).

In the case of n > w, data in a rectangular matrix A(c) should
be stored in column-major order. Note that, the data format in
a matrix A(c)� is the same as that in a matrix A(r). When the
values σ(c)

j ∈ R and the vectors u(c)
j ∈ Rw and v(c)

j ∈ Rn that sat-

isfy A(c)�u(c)
j = σ

(c)
j v(c)

j , A(c)v(c)
j = σ

(c)
j u(c)

j (j = 1, . . . , r, r < w)

are found, σ(c)
j are called the singular values of A(c), and u(c)

j and

v(c)
j are called, respectively, the left and the right singular vec-

tors corresponding to σ(c)
j . For a singular pair (σ(c)

j ,u
(c)
j , v

(c)
j), the

following relation holds:

A(c)A(c)�u(c)
j = A(c)

(
σ(c)

j v(c)
j

)

=
(
A(c)v(c)

j

)
σ(c)

j = u(c)
j σ

(c)
j

2
, (42)

v(c)
j =

A(c)�u(c)
j

||A(c)�u(c)
j ||2
. (43)

Equation (42) shows that the singular value problem of A(c) can
be changed to the eigenvalue problem of A(c)A(c)� algebraically.

4.2 Pseudocode
The discussion of the data format in A(r)�A(r) is the same as

that of A(c)A(c)�. Hence, we explain only the case of A(r).
To employ the IRL algorithm, A(r)�A(r)x can be generally com-

puted by using two matrix-vector operations at each iteration.
Thus, once x̃ = A(r)x, r = A(r)�x̃ is computed, where x̃ ∈ Rw and
r ∈ Rn. In this paper, this implementation is called as the conven-
tional implementation. Algorithm 4 shows the pseudocode of the
conventional implementation.

Algorithm 4 Conventional implementation
1: x̃ = Ax;

2: r = A�x̃;

Algorithm 5 Proposed implementation
1: r = 0;

2: #omp parallel for private(t) reduction(+:r)

3: for i = 1 to n do

4: t = 〈a�i , x〉 (ai = A(r)(i, :));

5: r = r + ta�i ;

6: end for

7: #omp end parallel for

Considering the computational order and the caches of shared-
memory multi-core processors, we propose that A(r)�A(r)x is
computed using the following iteration.
(1) t = A(r)(i, :)x
(2) r = r + tA(r)�(i, :)
Here A(r)(i, :) (i : 1 ≤ i ≤ n) ∈ Rn is the i-th row vector of
A(r). The iteration can be performed efficiently because the data
of A(r)(i, :) and A(r)�(:, i) are the same and have been stored in
caches *1. Consequently, A(r)�A(r)x can be computed efficiently
on shared-memory multi-core processors with large cashes. In
this paper, this implementation is called the proposed implemen-
tation. Algorithm 5 shows the pseudocode of the proposed im-
plementation. In the proposed implementation, since the size of
an element in A(r)(i, :) is 8 bytes, the size of caches needs, theo-
retically, to be more than n × 8 bytes.

In the case that A(r) can be stored in caches or A(r)(i, :) can not
be stored in caches, the computational times of the conventional
implementation are as well as those of the proposed implementa-
tion.

4.3 Principal Component Analysis
The proposed implementation can be made efficient for use in

the case of sparse matrices , which should be stored in CRS and
CCS formats . However, in principal component analysis, the nor-
malized data matrix is a dense matrix. Thus, the proposed imple-
mentation should not be employed directly. Therefore, equations
in principal component analysis is expanded.

The normalized data matrix B ∈ Rw×n is generated using the
data matrix C ∈ Rw×n.

B = (C − M) S, (44)

M :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
w

(∑w
i=1 Ci,1

)
· · · 1

w

(∑w
i=1 Ci,n

)
1
w

(∑w
i=1 Ci,1

)
· · · 1

w

(∑w
i=1 Ci,n

)
...

...
...

1
w

(∑w
i=1 Ci,1

)
· · · 1

w

(∑w
i=1 Ci,n

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (45)

S :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√∑w
i=1((C−M)i,1)2

0

. . .

0 1√∑w
i=1((C−M)i,n)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (46)

*1 The data in A(r)(i, :) is stored in serial order. Therefore, when n is smaller
than the size of caches, all data in A(r)(i, :) is stored in caches at the same
time. Since A(c)(:, j) is stored in serial order, the case of A(c)(:, j)

�
is

performed in the same way.

c© 2018 Information Processing Society of Japan 41

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

In principal component analysis for customers research, obtain-
ing the feature of the normalized data matrix B is important. Fea-
ture quiantity of the matrix B is obtained by using principal com-
ponent analysis. To perform principal component analysis, the
IRL algorithm is employed. Thus, B�Bx can be computed. B�Bx
is expanded as follows:

B�Bx = S�
(
C� − M�

)
(C − M) Sx

= S�
(
C� − M�

)
(C (Sx) − M (Sx))

= S�
(
C� (C (Sx) − M (Sx))

−M� (C (Sx) − M (Sx))
)

(47)

Since the matrix S is a diagonal matrix, the computational or-
der of Sx is O(n). All column in the matrix M consists of the
same elements. Thus, once a row in the matrix M is multiplied
by Sx, all elements can be computed since all elements in the
vector MSx is the same. Consequently, the computational or-
der of MSx is O(n). By using Eq. (47), once Sx and MSx are
computed, C� (C (Sx) − M (Sx)) can be easily computed using
the proposed implementation. In the matrix M�, all elements
of a row is the same value. Hence, the computational order of
M� (C (Sx) − M (Sx)) is O(n). As the remark, C (Sx) is computed
through the computation of C� (C (Sx) − M (Sx)) can be easily
computed using the proposed implementation. The pseudocode
is shown in Algorithm 6 and 7. Computational order of Eq. (47)
is as same as that of B�Bx. However, the data in the matrix C can
be reused in the proposed implementation. Moreover, since data
matrix C is a sparse matrix, the principal component analylsis can

Algorithm 6 Set up code for principal component analysis

1: M(j) =
1
w

(∑w
i=1 Ci, j

)
;

2: S(j) =
1√∑w

i=1((C−M)i, j)2
;

Algorithm 7 Computation of B�Bx
1: for i = 1 to n do

2: Sx(i) = S(i)x(i);

3: end for

4: MSx = 0;

5: for i = 1 to n do

6: MSx = MSx +M(i)Sx(i);

7: end for

8: r = 0;

9: t2 = 0;

10: #omp parallel for private(t1) reduction(+:r) reduction(+:t2)

11: for i = 1 to n do

12: t1 = 〈c�i , Sx〉 (ci = C(i, :));

13: t1 = t1 − MSx;

14: r = r + t1c�i ;

15: t2 = t2 + t1;

16: end for

17: #omp end parallel for

18: for i = 1 to n do

19: r(i) = r(i) − t2M(i);

20: end for

21: for i = 1 to n do

22: r(i) = r(i)S(i);

23: end for

be computed using the sparse matrix.

4.4 Sparse Matrix
In the case of a w × n (w ≥ n and w < n) rectangular matrix

A(r), these elements should be stored in CRS and CCS formats,
respectively. The CRS and CCS formats are the most general [4].
These formats require no assumptions about sparse matrices and
any unnecessary elements are not contained in these format.

The CRS format stores only non-zero elements of the matrix
rows sequentially. If a non-symmetric sparse matrix A(S) is given,
we write the matrix as three vectors valR, col ind and row ptr.
valR is a vector of floating-point numbers, and stores the value of
the non-zero elements of the given matrix A(S) traversal in row-
wise order. col ind is a vector of integers indicates the column
indices of the elements in valR. row ptr is also a vector of in-
tegers indicates the locations in valR that start a row. The last
entry of row ptr indicates the number of non-zero elements in
the matrix A(S).

The CCS format is equivalent to the CRS format except that
the CCS format traverse the non-zero elements of A(S) in column-
wise order. In other words, the CCS format can be interpreted as
the CRS format for A(S)�. The CCS format is composed of the
three vectors valR, col ind and row ptr. valR, vector of floating-
point numbers, stores the value of the non-zero elements of the
given matrix A(S) traversal in column-wise order. row ind, a vec-
tor of integers, indicates the row indices of the elements in valR.
col ptr, a vector of integers, indicates the locations in valR that
start a column. The last entry of col ptr indicates the number of
non-zero elements in the matrix A(S).

As an example, consider the non-symmetric matrix A(S′) de-
fined by

A(S′) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 3 0
0 2 0 −1 0 3
2 7 3 2 6 0
0 3 8 4 0 0
3 5 0 9 5 9
0 0 0 0 2 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (48)

The CRS format for A(S′) is

valR = {1, 3, 2,−1, 3, 2, · · · , 5, 9, 2, 6}, (49)

col ind = {1, 5, 2, 4, 6, 1, · · · , 5, 6, 5, 6}, (50)

row ptr = {1, 3, 6, 11, 14, 19, 20}. (51)

The CCS format for A(S′) is

valC = {1, 2, 3, 2, 7, 3, · · · , 2, 3, 9, 6}, (52)

row ind = {1, 3, 5, 2, 3, 4, · · · , 6, 2, 5, 6}, (53)

row ptr = {1, 4, 8, 10, 14, 18, 20}. (54)

5. Experiment

We have performed experiments to evaluate the performance
of the proposed implementation. The dimension of the sample
sparse matrix , which is stored in CRS format, is 200,000 ×
100,000 and this matrix is composed of the 1,000 non-zero el-
ements in every row. The number of required singular pairs � are

c© 2018 Information Processing Society of Japan 42

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

Table 1 Specifications of the experimental environment.

Environment (CRAY CS400 2820XT), Kyoto University
CPU Intel Xeon E5-2695 v4 @2.1 GHz, 36 cores (18 cores × 2)

L3 cache: 45 MB
RAM 128 GB
Compiler Intel C++/Fortran Compiler 16.0.4
Options -qopenmp -O3 -fg-model precise -ipo -xCORE-AVX2
Software Intel Math Kernel Library 11.3.4

Fig. 1 Computation time of C�Cx (C is a 200,000 × 100,000 real matrix),
comparison the conventional and the proposed.

Fig. 2 Computation time of B�Bx (C is a 200,000 × 100,000 real matrix),
comparison the conventional and the proposed.

50, 100, 200 and 400 from the maximum singular value of C. In
ARPACK, the dimension of the Krylov subspace m is determined
by the users; in the numerical experiments, m is set to m = 2�.

Table 1 lists the specifications of the computer used in the ex-
periments.

The size of an element in the matrix C is 64 bits in the case
of double precision. Therefore, the size of a row in the matrix C

is much smaller than the size of the L3 cache. Consequently, all
data in C(i, :) are stored to the caches at the same time. Hence,
the iteration of the proposed implementation can be performed
efficiently because the data of C(i, :) and C�(:, i) are the same and
have been stored in the caches.

Figure 1 shows the results of the experiments in C�C. The
number of required singular pairs is listed on the horizontal axis,
and the vertical axis indicates the computation time for C�Cx.
The results show that the computation time for C�Cx of the pro-
posed implementation is about 75% of that of the conventional
implementation.

Figure 2 shows the results of the experiments in B�B. B is
generated using Eq. (44) and B�Bx is expanded as Eq. (47). In
Fig. 2, the vertical axis indicates the computation time for B�Bx.
The results show that the computation time for B�Bx of the pro-
posed implementation is about 75% of that of the conventional

implementation.
The size of the matrix C is larger than the size of cache. On

the other hand, the size of C(i, :) is smaller than the size of cache.
By the results of Figs. 1 and 2, all data of C(i, :) are stored to the
cache. Therefore, the proposed implementation is effective.

6. Conclusions

In principal component analysis, only larger singular values
and the corresponding singular vectors are needed. To obtain
such partial singular values and singular vectors of the target ma-
trix, it is effective to use ARPACK, which is known as a solver of
eigenvalue problems for large-scale matrices. Therefore, we have
transformed SVD problems into eigenvalue problems.

In ARPACK, transformed eigenvalue problems are generally
solved by using two matrix-vector operations at each iteration.
In the case of large-scale matrices, not all of the elements in the
eigenvalue problems can be stored in the caches at the same time.
Hence, we have proposed a new implementation, which is in-
troduced from the viewpoint of the computational order and the
caches of shared-memory multi-core processors. In the proposed
implementation, if only one row in a target matrix, which is a
sparse matrix using CRS or CCS formats, can be stored in the
caches, high cache hit ratios can be archived.

By using Eq. (47), the normalized data matrix, which is a dense
matrix, can be expanded using the given data matrix, which is a
sparse matrix in customers research, then the proposed imple-
mentation can be adopted. Since the computational order in a
sparse matrix is smaller than that in a dense matrix, the proposed
implementation using ARPACK is suitable.

We performed experiments to evaluate the proposed implemen-
tation. In the experiments, we used a machine with 45 MB L3
caches. Therefore, the size of a row in a target matrix with dimen-
sion size 100,000 is much smaller than the size of the L3 cache.
The experimental results showed that the computation time of the
proposed implementation is about 75% of that of the conventional
implementation.

Acknowledgments This work was supported by JSPS KA-
KENHI Grant Number 17H02858.

References

[1] Arnoldi, W.E.: The principle of minimized iterations in the solution
of the matrix eigenvalue problem, Quart. Appl. Math., Vol.9, pp.17–
29 (1951).

[2] Baglama, J. and Reichel, L.: Augmented implicitly restarted Lanczos
bidiagonalization methods, SIAM Journal on Scientific Computing,
Vol.27, No.1, pp.19–42 (2005).

[3] Calvetti, D. et al.: An implicitly restarted Lanczos method for large
symmetric eigenvalue problems, Electronic Trans. Numerical Analy-
sis, Vol.2, No.1, pp.1–21 (1994).

[4] Dongarra, J.: Templates for the Solution of Linear Systema:
Building Blocks for Iterative Methods (1995), available from
〈http://netlib.org/linalg/html templates/node89.html〉.

[5] Duff, I., Grimes, R. and Lewis, J.: Sparse matrix test problems, ACM
Trans. Math. Soft., Vol.15, pp.1–14 (1989).

[6] Golub, G.H. and Kahan, W.: Calculating the singular values and
pseudo-inverse of a matrix, Journal of the Society for Industrial and
Applied Mathematics, Series B: Numerical Analysis, Vol.2, No.2,
pp.205–224 (1965).

[7] Golub, G.H. and van Loan, C.F.: Matrix Computations, Baltimore,
MD, USA: Johns Hopkins University Press (1996).

[8] Halko, N. et al.: Finding structure with randomness: Probabilistic al-
gorithms for constructing approximate matrix decompositions, SIAM

c© 2018 Information Processing Society of Japan 43

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.11 No.1 37–44 (Mar. 2018)

Reviews, Vol.53, No.2, pp.217–288 (2011).
[9] Lehoucq, R.B., Sorensen, D.C. and Yang, C.: ARPACK User’s Guide:

Solution of Large-Scale Eigenvalue Problems by Implicitly Restarted
Arnoldi Methods (1998), available from 〈http://www.caam.rice.edu/
software/ARPACK〉.

[10] Lanczos, C.: An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators, J. Res. Nat. Bu-
reau Standards, Sec., Vol.B, No.45, pp.255–282 (1950).

[11] Sleijpen, G.L. and Van der Vorst, H.A.: A Jacobi-Davidson iteration
method for linear eigenvalue problems, SIAM Review, Vol.42, No.2,
pp.267–293 (2000).

[12] Sorensen, D.C.: Implicit application of polynomial filters in a k-step
Arnoldi method, SIAM J. Matrix Anal. Appl., Vol.13, pp.357–385
(1992).

[13] Sorensen, D.C., Calvetti, D. and Reichel, L.: An Implicitly Restarted
Lanczos Method for Large Symmetric Eigenvalue Problems, Elect.
Trans. Numer. Anal., Vol.2, pp.1–21 (1994).

Masami Takata is a lecturer of the Re-
search Group of Information and Com-
munication Technology for Life at Nara
Women’s University. She received her
Ph.D. degree from Nara Women’s Univer-
sity in 2004. Her research interests in-
clude numerical algebra and parallel algo-
rithms for distributed memory systems.

Sho Araki received his B.E. and M.I. de-
grees from Kyoto University in 2012 and
2014. His research interests include paral-
lel algorithms for eigenvalue and singular
value decomposition.

Kinji Kimura received his Ph.D. degree
from Kobe University in 2004. He be-
came a PRESTO, COE, and CREST re-
searcher in 2004 and 2005. He became
an assistant professor at Kyoto Univer-
sity in 2006, an assistant professor at
Niigata University in 2007, a lecturer at
Kyoto University in 2008, and has been

a program-specific associate professor at Kyoto University since
2009. He is an IPSJ member.

Yuki Fujii received his B.E. and M.I. de-
grees from Kyoto University in 2013 and
2015. His research interests include the
parallel computation of the partial eigen-
value decomposition for sparse matrices.

Yoshimasa Nakamura has been a pro-
fessor of Graduate School of Informat-
ics, Kyoto University from 2001. His re-
search interests include integrable dynam-
ical systems which originally appear in
classical mechanics. But integrable sys-
tems have a rich mathematical structure.
His recent subject is to design new numer-

ical algorithms such as the mdLVs and I-SVD for singular value
decomposition by using discrete-time integrable systems. He is a
member of JSIAM, SIAM, MSJ and AMS.

c© 2018 Information Processing Society of Japan 44

