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Extraction of Evolution History from Software Source
Code Using Linear Counting
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Abstract: A lot of software products might have evolved from an original version. Such kind of evolution history is
considered as an important role in software re-engineering activity. However, history would always be lost and there
might be only source code in the worst case. In this research, we proposed to extract an Evolution Tree to simulate the
evolution history from the source code of product variants. We defined the product similarity using Jaccard Index, and
we believed a pair of derived products shared the highest similarity, which turned to be an edge in the Evolution Tree.
Instead of calculating the actual similarity from thousands of source files, Linear Counting became a choice to reach
an efficient result. With empirical studies, we discussed the influence of parameters on the experiment result which
was compared with the actual evolution history.

1. Introduction
During our daily software development, most of us are always

looking for functionally similar code, and copy or edit it to build
ours. It happens so frequently that people name it clone-and-own
approach[1] whereby a new variant of a software product is usu-
ally built by coping and adapting existing variants. As a result,
a lot of software products may have evolved from one original
release.

With the analysis of evolution history, it is much more conve-
nient for developers to deal with software re-engineering tasks,
such as identifying bug-introducing changes[2], automatic fixing
bugs[3], and discovering code clones[4]. Developers always wish
to understand and examine evolution history for a wide variety of
purposes. Of the 217 developers surveyed in Codoban’s work[5],
85% found software history important to their development ac-
tivities and 61% need to refer to history at least several times a
day.

While evolution history supports developers for numerous
tasks, in terms of many legacy systems, history is not available
and developers are left to rely solely on their knowledge of the
system to uncover the hidden history of modifications[6]. Fur-
thermore, there may be only source code in the worst case, be-
cause management and maintenance are often scarcely taken care
of in the initial phase[7].

In this research, we followed the intuition that two derived
products were the most similar pair in the whole products. Sim-
ilar software products must have similar source code and we de-
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fined product similarity based on it using Jaccard Index. Instead
of calculating the actual similarity from thousands of source files,
we chose the Linear Counting algorithm to estimate an approxi-
mate result. Depending on the similarities, we extracted an Evo-
lution Tree to simulate the evolution history. After that, we ap-
plied our approaches to different 9 datasets to find out the op-
timization of various factors. Finally, we worked out the best
configuration of them.

This research was also an extension of a previous study by
Kanda et al.[8]. It focused on calculating the similarity by count-
ing the number of similar source files between different product
variants, which took plenty of time. Our approach depended on
estimating instead. We regarded all the source files of one product
variant as an entirety, which reached much more efficient. The re-
sult of the best configuration showed that 64.3% to 100% (86.5%
on average) of edges in the extracted trees were consistent with
the actual evolution history, at the speed of 7.15 MB/s to 25.78
MB/s (15.92 MB/s on average).

Our contributions were summarized as follows:
• We proposed an efficient approach to extract an ideal Evolu-

tion Tree from product variants
• We performed plenty of experiments to find out the influence

of various factors
• After empirical studies, we worked out the best configura-

tion that reached the best results
• Compared to the previous study, our approach was quite

faster and showed better accuracy
This paper is organized as follows. Section 2 describes the

related work and the previous study. Section 3 introduces our
research approaches. The empirical study on a dataset will be
shown in Section 4. Section 5 describes the discussion on ex-
periment results. Conclusion and future work will be stated in
Section 6.
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2. Related Work
2.1 Code-history Analysis

In terms of software history analysis, multiple techniques had
been proposed to model and analyze the evolution of source code
at the line-of-code level of granularity. Reiss[9] proposed a group
of line mapping techniques, some of which considered adjacent
lines. Asaduzzaman et al.[10] proposed a language-independent
line-mapping technique that detects lines which evolve into mul-
tiple others. Canfora[11] and Servant[12] further analyzed the
results to disambiguate each line in the prior revision to each line
in the subsequent revision.

However, the existing techniques presented potential limita-
tions, in terms of modeling too many false positives (low preci-
sion) or too many false negatives (low recall), when compared
with true code history. Moreover, such errors typically were
compounded for analyses performed on multiple revisions, which
could lead to substantially inaccurate results[13].

Furthermore, whether these techniques could capture those
complex changes, such as movements of code between files, was
unknown since they were based on textual differencing. Also,
when the size of code increased, the time and space complexity
would become exponentially growing.

2.2 Software Categorization
Instead of focusing on software history, some tools tended to

automatically categorize software based on their functionality.
Javier[14] proposed a novel approach by using semantic infor-
mation recovered from bytecode and an unsupervised algorithm
to assign categories to software systems. Catal[15] investigate
the use of an ensemble of classifiers approach to solve the auto-
matic software categorization problem when the source code is
not available.

While these tools were able to detect similar or related applica-
tions from large repositories, our approach focused on those simi-
lar product variants derived from the same release, and they might
be categorized into the same category by these tools. That was to
say, the results of these tools could tell us that some product vari-
ants might be categorized into the same group while some other
variants might be categorized into another one, which would help
us to work out the evolution history.

However, product variants that derived from the same original
product could be categorized into different groups as well, if de-
velopers changed them for different purposes. Besides, a product
variant could even be categorized into a different group from what
group the original product was categorized into, for their function
could be totally different.

2.3 Previous Study
We already stated that this research was also an extension of

the previous study by Kanda et al.[8], which also extracted an
Evolution Tree based on similarities of product variants. The pre-
vious algorithm counted the number of similar files and cared
about how much the files were changed as well. It treated both
the file pair with no changes and the file pair with small changes
as similar files.

Although the accuracy of the previous study was not too bad,
because it calculated file-to-file similarities for all pairs of source
files of all product variants, it took plenty of time. In the worst
case, the time that it took to generate the result from a 1.03GB
dataset of product variants could be about 38 hours. Thus we
were looking forward to a different way to reach a more efficient
result without reducing the accuracy.

By the way, the previous study proposed a method to calculate
evolution direction. We would discuss it in detail in Section 5.3.

3. Study Approaches
3.1 Initialization

Firstly we applied initialization to input product variants. We
stated that the source files were regarded as processing objects
we would like to deal with. Since each line of code was some-
thing like text or sentences in the language, we selected n-gram
modeling to do our initialization.
3.1.1 N-gram Modeling

We determined to apply n-gram modeling to each line of code.
For example, if the line of code was “int i = 0;” the result gener-
ated by trigram modeling (when n=3) should be like {int, nt , t i,
i , i =, . . . }. To find out what n we should use, we also did empir-
ical experiments to seek the influence of the number of n on our
experiment results.

However, in our cases, the lines of code were not real text
or sentences in writings, so there was an issue that whether we
should apply n-gram modeling or just regard the whole line as
processing objects. Thus we decided to do both of them to find
out the difference. In terms of the analysis on n-gram modeling,
there would be a detailed description in Section 4.3.
3.1.2 Redundancy

It was easy to understand that there could be duplicate elements
after n-gram modeling, so the next questions became whether we
should remove it and if so, how we could remove it. Finally, we
determined to mark the number of occurrences that an element
had occurred during n-gram modeling. For example, in terms of
the line of code: “int i = 0;” the result generated by unigram mod-
eling (when n=1) should be like {i, n, t, , i, , . . . }. Then we held
the number of times that each element occurred, and the result
could become something like {i 1, n 1, t 1, 1, i 2, 2, = 1, 3,
0 1, ; 1}.

By marking the number of occurrences that an element had
occurred, we removed most of the redundancy and saved the in-
formation of it that might have an influence on our results as well.
After this, we also did extra experiments to compare the results
that we removed redundancy (the distinguish mode) to the results
that we did not remove redundancy (the ignore mode). The com-
parison would also be described in Section 4.3.

3.2 Product Similarity
Since we followed the intuition that two derived products were

the most similar pair in the whole product variants, the question
was how to describe the word “Similar”. We chose the Jaccard
Index as our final choice.

The Jaccard Index, also known as Intersection over Union and
the Jaccard similarity coefficient measured similarity between fi-
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nite sample sets and was defined as the size of the intersection
divided by the size of the union of the sample sets as below.

J(A, B) =
|A ∩ B|
|A ∪ B|

(1)

Here A and B meant different sample sets. Based on the Jac-
card Index, we would like to count the cardinality number of the
intersection from two different product variants as the size of the
intersection, and the cardinality number of the union from those
two as the size of the union.

However, after initialization, the processing objects became
multisets of String. To generate an intersection or a union from
two multi-sets of String was extremely difficult especially when
the sizes of the multisets were not too small. Thus instead of
calculating the actual cardinality number of the intersection and
the union, we chose the Linear Counting algorithm to estimate an
approximate result.

3.3 Linear Counting Algorithm
Various algorithms had been proposed to estimate the cardinal-

ity of multisets. The Linear Counting algorithm, as one of those
popular estimating algorithms, was particularly good at a small
number of cardinalities. In terms of why we selected the Linear
Counting algorithm and the difference between it and the others,
there was a detailed description in Section 5.1.

The Linear Counting algorithm was presented by Whang[16]
and was based on hashing. Consider these was a hash function H,
whose hashing result space has m values (minimum value 0 and
maximum value m-1). Besides, the hash results were uniformly
distributed. Use a bitmap B of length m where each bit was a
bucket. Values of all the bits were initialized to 0. Consider a
multiset S whose cardinality number was n. Apply H to all the el-
ements of S to the bitmap B, and the algorithm could be described
in Figure 1[16].

Fig. 1 The description of the Linear Counting algorithm

During hashing, if an element was hashed to k bits and the kth
bit was 0, set it to 1. When all the elements of S were hashed, if
there were Un bits that were 0 in B, here came an estimation of
cardinality n as shown in Figure 1.

The estimation was maximum likelihood estimation (MLE).
Since Whang had given a complete mathematical proof when he
presented it, we would not give it again, but we wished to share
an example from his presenting in Figure 2[16].

As shown in Figure 2, the column C, which we could treat as a
multiset C, was hashed into a bitmap. Before hashing (scan), all

Fig. 2 An example of the Linear Counting algorithm

the bits in the bitmap were 0 and after that, some elements turned
into 1. When all the elements of C were hashed, we calculated
the number of bits that were 0 in the bitmap and in this example,
it was 2. At the same time, the size of the bitmap was 8. Thus
we could calculate Vn like Vn = 2/8 = 1/4 and we could get an
estimation of n like -8 * ln(1/4) = 11.0903. Besides, the actual
cardinality number of multiset (column) C was 11.

In addition, after hashing the multisets of String became
bitmaps. To calculate the intersection and union from those
bitmaps was much easier and faster than to calculate them from
multisets of String. In fact, it was just for computers to consider
the basic logical operators. However, there could be danger when
we applied the algorithm not to estimate the cardinality of one
multiset but to estimate the cardinality of the intersection and
union of multisets. To explain this in detail, there would be a
discussion in Section 5.5.

Besides, although it looked like a good estimation, it was also
easy to see that there could be duplicates and collision in the
hashing process. To find out the influence of different factors on
experiment results, Whang developed plenty of experiments and
we also performed ours. After these empirical studies, we found
two most important factors that mattered. They were the hashing
function we applied to the multisets, and the size of the bitmap
we set up. Both of them would be described in detail in Section
5.2.

3.4 Evolution Tree
After estimating, we had all the similarities between different

product variants. Since our key idea was that two derived prod-
ucts should be the most similar pair in the whole products, there
should be an edge between those pairs in the Evolution Tree. Be-
sides, if we regarded the similarity as the weight for each possi-
ble edge because the similarity itself was undirected, to extract
an Evolution Tree became to extract a minimum spanning tree of
graph theory. Both of them meant that we founded a subset of
edges that formed a tree that included every vertex (each prod-
uct variant), where the total weight of all the edges in the tree
was minimized (maximized actually in our cases while they were
telling the same). Considering this, we decided to follow Prim’s
algorithm to extract the Evolution Tree.

Prim’s algorithm was a greedy algorithm that finds a minimum
spanning tree for a weighted undirected graph. The algorithm
operates by building this tree one vertex at a time, from an ar-
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bitrary starting vertex, at each step adding the cheapest possible
connection from the tree to another vertex.

In our cases, the starting vertex (product variant) was already
known from existed evolution history. Actually to find out which
product variant was the original version was too difficult espe-
cially when we had the only source code of those variants. In
addition, the similarities were undirected, so we were not able to
figure out the starter. Finally, we determined to treat the original
version known from the existing evolution history as the starter
vertex.

Following Prim’s algorithm, our extraction could be described
as performing these 4 steps.
( 1 ) Input: a vertex set V included all the vertexes where each

vertex meant a product variant; an edge set E included all
the edges where each edge meant a possible derived pair of
product variants and the similarity between any pair turned
to be the weight of each edge;

( 2 ) Initialization: Vnex = {x}, where x means the starter vertex
in the tree which was the original version from existing evo-
lution history; Enew = {};

( 3 ) Repeat the following steps until all the elements in V were
included in Vnew:
( a ) Find an edge (u, v) from E whose weight was maxi-

mum, which meant product variant u and product vari-
ant v shared the highest similarity, where u was from
Vnew and v was from V with not being included in
Vnew;

( b ) Add v to Vnew and add (u, v) to Enew;
( 4 ) Output: use Vnew and Enew to describe the generated span-

ning tree.
In addition, although the similarities were undirected, in terms

of an actual evolution history, there should still be directions, so
we talked about this in Section 5.3.

3.5 Large-scale Oriented Optimization
Since it was very difficult for the previous study to deal with

large-scale datasets, our approach would like to solve it. During
our empirical experiments, we found that n-gram modeling re-
quires most of the memories and time to generate the initial multi-
sets. Thus we tried to save these multisets after n-gram modeling
by putting them into the cache.

However, if the size of a dataset was not too big, we might be
able to store these multisets. Once the size of a dataset became
much larger, the out of memory errors kept coming. Besides, the
bigger n we selected to do n-gram modeling, the more memory
we needed to store these multisets. Thus we decided to change
into another solution.

As we explained before, we applied a hashing function to each
element of initial multisets after n-gram modeling. Any multiset
would turn to be a bitmap after hashing. To store a bitmap was
rather easier and faster than to store multisets of string. Besides,
for one product variant, there was only one bitmap corresponding
to it after all the elements of multisets were hashed. After that,
once we saved the bitmaps, for any product variant, there should
be only once n-gram modeling and hashing.

On the other hand, after we saved all the bitmaps, the remain-

ing work was to calculate the intersection and union of those
bitmaps. It would become much more convenient if we saved
the bitmaps already.

Thus we determined to save every bitmap after all the elements
of multisets were hashed. The optimization could avoid repeated
calculating and reached an efficient result when we dealt with
large-scale datasets.

4. Empirical Study
As we stated before, we applied our approaches to nine differ-

ent datasets, which were shown in Figure 3.

Fig. 3 From dataset1 to dataset9

All the datasets already had existing evolution history, and we
would compare our results to it. To list all of them was meaning-
less, we selected dataset6 to further explain the approaches and
to show what or how we thought during the study.

4.1 Dataset6
Dataset6 had 16 different product variants and its size was

229.8 MB and the programming language was C. It had two
starter vertexes in the existing evolution history as shown in Fig-
ure 4.

Fig. 4 The actual evolution history of dataset6

In Figure 4, it was easy to find that both NetBSD-0.8 and
4.4BSD-lite were starter vertexes. Since we extracted the Evo-
lution Tree by Prim’s algorithm, we could only begin with one
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starter vertex. Furthermore, once we selected one of these two
vertexes as a starter vertex, the edge that included the other ver-
tex most likely turned to be wrong. Thus we decided to mark that
edge as a special one.

4.2 Results
Since to list all of the results was too difficult, we just picked

part of them in some conditions. In Figure 5, the first column
described which product variant was selected as the starter ver-
tex, which was from the actual evolution history in Figure 4. The
second column presented the number of n of n-gram modeling.
If it was no, it meant we did not apply n-gram modeling and
we treated each line as a processing object during initialization,
which was the best configuration and would be introduced in de-
tail in Section 5.4. We also stated that since the similarity was
shared by a pair of product variants and undirected, we could not
give the direction for each edge. Thus we regarded all the reverse
edges as proper edges, and we just recorded the number of them.
For special edges, which was introduced in Section 4.1, we would
not make it count when we calculated the accuracy.

Figure 5 also focused on the speed of the whole experiments.
It described the speed which was like xx MB/s, and the speed was
calculated by diving the time into the size of the whole dataset.
We recorded the time of n-gram modeling together with hashing,
because actually the hashing processing took very little time and
it was very difficult to record it in seconds.

In terms of the time between different starter vertexes, they
were the same number in Figure 5. Besides, to extract the Evo-
lution Tree from product similarities that had been estimated did
not take much time, which might be less than 1 seconds. Thus we
did not record the time, either.

4.3 Analysis on N-gram Modeling
It was easy to find that in Figure 5, not to apply the n-gram

modeling turned to be the best choice, because it reached both
highest accuracy and the highest speed.

In terms of speed, the hashing itself took very little time and
the hashing algorithm we selected was MurmurHash3 whose
best benefit was exactly the speed. MurmurHash3 was non-
cryptographic, so it could be much faster than traditional hash
algorithms. Thus the time in total was almost the time that n-
gram modeling took.

Well, how about the accuracy? Before we performed formal
experiments, we made lots of tests to find out the influence of
some parameters on experiment results. Finally, we found that the
number of n did not affect the error between the number of car-
dinalities estimated and the actual number. In fact, it only deter-
mined how many distinct elements there were in the initial mul-
tisets after n-gram modeling. That meant, a bigger n of n-gram
modeling made a product variant “Bigger” or more complex.

Obviously, the more distinct elements in the initial multisets,
the more cardinality estimated by the Linear Counting algorithm.
Besides, if any product became Bigger or more complex, as a re-
sult, the Jaccard Index, which was the Intersection over Union,
must become smaller. Plenty of experiment results showed it, but
there was still lack of a mathematical proof. More or less, the

product similarities and the number of n were negatively corre-
lated.

However, the truth was that to distinguish different product
variants was not corresponding to the number of n of n-gram
modeling. In other words, even though the similarity itself be-
came on a lower level when n became larger, in terms of one
product variant, the most similar pair that included this product
variant would not significantly change. It might be sure that the
lower similarity we estimated, the more exactly we could figure
out whether these two product variants were similar or not. Nev-
ertheless, in terms of extracting an Evolution Tree from all the
product variants, it was not so sure that we needed to know how
exactly any pair of product variants were similar.

As a result, we might extract the same Evolution Tree from dif-
ferent levels of product similarities. In Figure 5, although the n
became larger after n=10, which was also equivalent to that the
product similarities became lower, the accuracy still stayed the
same, which meant we would extract the same Evolution Tree.

Well, how about the situation that we did not apply n-gram
modeling? Other experiment results showed that we got lower
product similarities than n-gram modeling. As we stated before,
the product similarities and the number of n were negatively cor-
related. That meant the results generated from no n-gram mod-
eling (up) was a kind of n-gram modeling where n → ∞. Un-
fortunately, we just thought so, and we did not give a complete
mathematical proof, which we considered as the future work. At
the present time, since we regarded not applying n-gram model-
ing as a kind of n-gram modeling where n→ ∞, it would give a
better result than applying any number of n of n-gram modeling
in theory, while the experiment results showed it as well.

Because not to apply n-gram modeling did give a better result
at a higher speed than to apply n-gram modeling, we made not to
apply n-gram modeling into the best configuration. There would
be a detailed summary of the best configuration in Section 5.4.

4.4 Analysis on Starter Vertex
As shown in Figure 5, the best results of beginning with dif-

ferent starter vertexes were almost the same. To expand on it, we
checked the Evolution Trees that were extracted.

We found that there existing special edges. It was because we
extracted the Evolution Tree by Prim’s algorithm, and we could
only begin with one starter vertex. Once we selected one of these
two vertexes as a starter vertex, the edge that included the other
vertex most likely turned to be wrong. Thus we decided to mark
that edge as a special one if it turned to be wrong after extracting
the trees. Moreover, the reverse edges should be treated as proper
edges when calculating the accuracy.

We also found that not all the wrong edges in one Evolution
Tree were equivalent to those in the other one. Furthermore, the
Evolution Trees were not the same between different starter ver-
texes. This could be taken as the evidence to explain why we
could not figure out the direction easily. We would talk about this
more in Section 5.3.
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Fig. 5 Part of the experiment results of dataset6

5. Discussion
5.1 Cardinality Estimation

There existed not only the Linear Counting algorithm but also
some others in the field of cardinality estimation. Cardinality es-
timation, also known as the count-distinct problem, was the prob-
lem of finding the number of distinct elements in a data stream
with repeated elements. It had a wide range of applications and
was of particular importance in database systems[18]. Various al-
gorithms had been proposed in the past. Most of these algorithms
were to solve the memory requirement problem by estimating the
result rather than directly calculating it.

Many experiments had been developed to seek the difference
between these algorithms. Zhang[17] analyzed five kinds of
popular algorithms that were Linear Counting, LogLog Count-
ing, Adaptive Counting, HyperLogLog Counting and Hyper-
LogLog++ Counting. All the algorithms were implemented from
an open source software library called CCARD-lib by Alibaba
Group. He found that Linear Counting should be the best choice
for those input multisets whose cardinality numbers were not too
large.

Another experiment developed by Heule[18] also showed the
evidence that the Linear Counting algorithm had a smaller er-
ror than the other algorithms for the small number of cardinali-
ties. Heule proposed a series of improvements to HyperLogLog
Counting algorithm and he implemented it for a system at Google
to evaluate the result by comparing it to existing algorithms. Al-
though he believed that his improvements made HyperLogLog
Counting a state of the art cardinality estimation algorithm, the
comparison he made still proved that for small cardinalities, the
Linear Counting algorithm was still better than the improved Hy-
perLogLog Counting algorithm.

In our cases, the cardinality number we would like to deal with
was based on the lines of code that existed in the product variants.
Since the product variants that were processed in the previous
study were not so big and the sizes, in fact, were from 194.7MB
to 2.19GB, we chose the Linear Counting algorithm to develop

our experiments.

5.2 Main Factors
There were various factors that affected experiment results dur-

ing empirical studies. To explain all of them was meaningless,
and we determined to introduce the most important ones.
5.2.1 N-gram Modeling

We already analyzed this comprehensively in Section 4.3. As
a conclusion, to apply n-gram modeling would take much more
time and more memory than not to apply it. Besides, the accu-
racy of applying a larger n of n-gram modeling and not applying
n-gram modeling was near the same, while not applying n-gram
modeling could reach the best results. We regarded the whole
line as a processing object for hashing instead. Moreover, the re-
sults generated from no n-gram modeling was a kind of n-gram
modeling where n .
5.2.2 Hashing Algorithm

Because the Linear Counting algorithm was based on hash-
ing, the hashing function we applied to the multisets was quite
important. The algorithm assumed that after all the elements of
multisets were hashed, the hash values should be uniformly dis-
tributed. Besides, we would apply the hashing function to thou-
sands of lines of source code. Thus we had to learn about the
differences between different hashing algorithms.

Earlz[19] asked a similar question on the website StackEx-
change to wonder which hashing algorithm was best for unique-
ness and speed. Many people contributed to answers and most of
them voted for MurmurHash3 which was also selected by Redis,
Memcached, Cassandra, HBase, and Lucene. Because traditional
hashing algorithms, such as MD5, SHA1 and SHA256 were de-
signed to be secure, which usually meant they were slower than
algorithms that were less unique. It was until 2008 that Mur-
murHash was created by Austin Appleby. MurmurHash was non-
cryptographic, so it could be much faster than traditional hashing
algorithms. Besides, it constructed random decomposition of all
elements from input to keep results uniform, which was just what
we needed.

The current version was MurmurHash3. It existed in a number
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of variants, all of which had been released into the public do-
main. We selected one java port authored by Yonik Seeley[20]
that produced exactly the same hash values as the official final
C++ version.
5.2.3 Bitmap Size

Another important factor was the bitmap size that we set up.
From advanced analysis by Whang[16], we could learn that there
was a direct relationship between bitmap size m and cardinality
number n. The bigger cardinality number we would like to esti-
mate, the larger bitmap size we needed, which was also the same
as the error precision. That was to say, we would better make the
size of the bitmap as big as possible.

However, the error precision here meant we could get more
exact cardinality numbers of intersection and union. Since our
goal was not to calculate the similarity between different product
variants but to extract an Evolution Tree to simulate the evolu-
tion history. It might be sure that the more exact similarity we
calculated, the more exactly we could figure out whether these
two product variants were similar or not. Nevertheless, in terms
of extracting an Evolution Tree from all the product variants, it
was not so sure that we needed to know how similar any pair of
product variants were. In other words, we might extract the same
Evolution Tree from different levels of product similarities.

On the other hand, it was difficult to confirm whether the
bitmap size that we set up was big enough, because the size of
initial multisets was always varying. Moreover, although there
was a relationship between bitmap size and the number of cardi-
nalities, we could not make the size adaptive. To make it adaptive
meant to count the number of cardinality in the initial multisets,
which was exactly what we were requesting.

Finally, we set up a bitmap whose size was 128,000,000 bits.
The error between the cardinality estimated and actual cardinality
was less than 0.001 when the size of the input dataset was 1 GB.

5.3 Direction
We extracted the Evolution Tree based on product similarities

between different pairs of product variants, and the product simi-
larities were undirected because each of them was shared by any
pair of variants. Thus we could not generate any direction based
on the similarities.

Since the previous study[8] figured out the directions, we tried
to learn about how it did. However, the approach it used to cal-
culate the evolution direction was based on a hypothesis that ev-
ery modification was doing an adding. In fact, the modification
between a derived pair of product variants could be various. We
could either add something to the original version or delete some-
thing from it. If we assumed that there was only adding, most of
the directions might be wrong.

However, if we were not aware of the directions, we could
make an approximation to evolution history only if we already
knew the starter vertex (the original version). The analysis in
Section 4.4 showed that the Evolution Tree extracted from differ-
ent starter vertexes could be much different. Although the results
of the accuracy were similar to each other, we could not select
any one of them to declare what was the exact Evolution Tree.

As a conclusion, we could not calculate the directions right

now. We could extract the Evolution Tree only if we know the
starter vertex (the original version). We had to treat the reverse
edges as proper edges when calculating the accuracy.

5.4 Best Configuration
The best configuration was still under the approach described

in Section 3. The biggest difference was that we would not apply
n-gram modeling to any line of code from product variants. The
best configuration was summarized as below:
( 1 ) No n-gram modeling

( a ) The element of initial multisets was each line of code.
( b ) The hashing function was applied to each line of code

to generate bitmaps.
( 2 ) The Linear Counting algorithm

( a ) MurmurHash3: authored by Yonik Seeley[20] on
GitHub.

( b ) The bitmap size: 128,000,000 bits.
( c ) Product similarities: based on the Jaccard Index.

( 3 ) The Evolution Tree
( a ) The minimum spanning tree: Prim’s algorithm.
( b ) Starter vertexes: known from actual history.
( c ) Directions: undirected.

In terms of the results, the speed was from 7.15 MB/s to 25.78
MB/s (15.92 MB/s on average) and there were from 64.3% to
100% (86.5% on average) of edges in the extracted trees were
consistent with the actual evolution history.

5.5 Threats to Validity
In this research, we applied the Linear Counting algorithm to

estimate product similarities and we considered n-gram model-
ing to generate the initial multisets, which turned to be not a good
choice at last. Thus we treated each line of code as the element
in initial multisets. However, what exactly should be the element
was still unknown. The results we generated were based on the
idea that the most similar product variants had the most simi-
lar lines of code. It might be true but there was not any com-
plete mathematical proof. For the reason that we only had limited
datasets that existed actual history, we could not answer this ques-
tion demonstratively, which might be a threat to validity.

On the other hand, we defined the product similarity based on
Jaccard Index. Although Jaccard Index was widely used for cal-
culating similarities between sets, the objects that we dealt with
this time were multisets. There might be errors during this pro-
cessing, but whether there existed another better choice was mys-
terious. Since this could be an area of NLP, maybe we could work
out a better solution after we learned about some knowledge of
NLP, which also might be a threat to validity.

Another problem was about the directions. As we described in
Section 5.3, we could not calculate the directions right now. Once
there was a way to solve the problem of directions, there would
be threats.

Furthermore, we should consider the Linear Counting algo-
rithm as well. The Linear Counting algorithm was defined to
estimate the cardinality of multisets. However, we applied it to
estimate the intersection and union of multisets by counting the
number of 0 bits in the bitmap of the intersection and union. To
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estimate the union of bitmaps should be safe because the differ-
ence of elements did not make sense. However, if different ele-
ments might turn into the same bit, to estimate the intersection of
bitmaps would become dangerous, although in terms of different
elements, the possibility of turning into the same bit after apply-
ing hashing should be quite low when the size of bitmap was large
enough. Thus we made another experiments by calculating like
(|A| + |B| − |A ∪ B|)/|A ∪ B| instead. We found that there was no
influence on extracting the Evolution Tree, and we worked out
the same trees as before. Nevertheless, although calculating like
(|A| + |B| − |A ∪ B|)/|A ∪ B| might decrease the influence of the
possibility that different elements would turn into the same bit,
it would still not be safe because we did estimating four times,
which might introduce some other danger. As a result, this would
be a threat to validity.

Finally, the Linear Counting algorithm did not work very well
when the size of datasets became too large. Besides, to use the
Linear Counting algorithm meant that we needed to prepare a uni-
formly distributed hashing algorithm. When the size of dataset
became much larger, the MurmurHash3 could be no longer use-
ful. At that time, we had to change the whole approaches into
other ones.

6. Conclusion and Future Work
In this research, we proposed an efficient approach to extract an

ideal Evolution Tree from product variants. We performed plenty
of experiments to find out the influence of various factors, and
we summarized the best configuration which worked out the best
result. Compared to the previous study, we reached a much faster
speed and higher accuracy. The result of the best configuration
showed that 64.3% to 100% (86.5% on average) of edges in the
extracted trees were consistent with the actual evolution history,
at the speed of 7.15 MB/s to 25.78 MB/s (15.92 MB/s on aver-
age).

During the research, we tried to perform n-gram modeling at
first, which turned to be not a good choice in the end. There
might be other threats like this that affected the experiment re-
sults. However, for the reason that we only had limited condi-
tions, we were not able to give a better result than the best con-
figuration.

For future work, we will apply our approaches to larger
datasets to find out the boundary of the Linear Counting algo-
rithm. We will deal with other kinds of programming language
as well. To learn about the knowledge of NLP is also important,
and we will work out whether there exist other methods to define
product similarities better than the Jaccard Index. Furthermore,
we will consider how to solve the problem of directions indeed as
well.

Acknowledgments We would like to thank all the partici-
pants of our study.

References
[1] Rubin, Julia and Kirshin, Andrei and Botterweck, Goetz and Chechik,

Marsha: Managing forked product variants, Proceedings of the 16th
International Software Product Line Conference-Volume 1, ACM, pp.
156-160 (2012).
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