
IPSJ SIG Technical Report

SoL Mantra: Using Library Coexistence Coefficient to
Visualize Update Opportunities.

Boris Todorov1,a) Raula G. Kula2,b) Takashi Ishio2,c) Katsuro Inoue1,d)

Abstract: In software development, software reuse has become a pivotal factor in creating and providing high-quality
software at a reduced cost. The reuse of a code creates dependencies, which as they increase over time they become
difficult to manage and could lead to compatibility issues or bugs if not kept up to date. With newer version releases,
come various quality improvements, new features and issue fixes, but deciding whether or not to adopt those is a
difficult task for new developers and for large software with a lot of dependencies.
To address these difficulties, we propose the SoL Mantra tool that visualizes update opportunities by applying coex-
istence coefficient between libraries in a software ecosystem based on which we display the information about the
complexity of each update opportunity. The orbital layout provides the means to visualize the update opportunities and
demonstrate its merits by showcasing examples from the JavaScript ecosystem. Through these examples, we further
elaborate how maintainers can benefit from SoL Mantra’s visual cues.

Keywords: Visualization, Library, Update

1. Introduction
For the past decade, the predominant practice within soft-

ware engineering has been the usage of third-party software, also
known as software libraries[1]. The core lies in the concept of
software reuse, which reduces the man-hours cost when develop-
ing new software, inherited safety and stability from a code that
is used by a vast majority of developers. But as most good things
it has its drawbacks, as time passes, the libraries grow older and
new versions are released, providing various benefits which in-
clude but are not limited to, new features, bug fixes, optimization.

The new versions also carry their own risks for the software
developers that use them in their projects. Updating to a newer
version could bring the before mentioned benefits, but can also
cause devastating problems to the software[2],[3]. These include
but are not limited to, potential compatibility issues with other
libraries adopted by the software, requirements to restructure dif-
ferent sections of the code, due to method name alterations.

To use these libraries, the developers must add references
within their code to the library itself, which creates a dependency
to the said library[4]. Researchers have observed and document
empirically how software developers interact and deal with li-
brary updating. Some even conclude based on a large sample
of Java clients that use Maven libraries, that high number of sys-
tems keep their dependencies outdated [5]. Others provide in-
depth analysis on the impact of newer version releases and what

1 Osaka University, Osaka, Japan
2 Nara Institute of Science and Technology, Nara, Japan
a) boris-t@ist.osaka-u.ac.jp
b) raula-k@is.naist.jp
c) ishio@is.naist.jp
d) inoue@ist.osaka-u.ac.jp

changes within them drive developers to adopt newer versions
[6], [7].

Software developers, have to carefully evaluate the potential
risks while making decisions ”if” and ”when” to update their
software’s library dependencies. There exist studies that have
been conducted to express the concerns regarding incompatibil-
ity when updating [8], [9]. On the other hand, not updating a
library could also lead to problems, such as the heartbleed bug*1.
To keep those bugs from occurring the libraries must evolve over
time, making additions to their functionalities and addressing var-
ious issues that the previous version might have. This evolution
is represented by the releases and their corresponding versions
supported by documentation.

This paper’s goal is to create a tool that assists the software de-
velopers in recognizing potential risks[10],[11] while considering
a library in their software for an update. To this end we adopted
a relatively new binary concept called coexistence coefficient[12]
and integrated together with the intricate orbital layout to create
a interactive visual aid - the Software Library Mantra tool (SoL
Mantra). The tool provides information whether or not a system
dependency is outdated, by using simple and intuitive visual ele-
ments. Furthermore, to illustrate the potential risk from updating
a library, we evaluate the popular library usage in the ecosystem
and offer suggestions, which libraries should be updated together
if either of them is considered for updating. The main technical
challenges in achieving results lie in finding a balance between
visualization technique and providing enough information with-
out it being unreadable.

To evaluate the tools effectiveness we conducted an experi-
ment consisting of 23 JavaScript based software systems acquired

*1 http://heartbleed.com/

1ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

IPSJ SIG Technical Report

from its respective software ecosystem - Node Package Manager
(npm)*2. We will be presenting two of these projects to showcase
our results*3. Finally we evaluate the tools general comprehen-
sion and understanding through an on-line survey.

2. Research Background
In this section we introduce the previous research conducted

regarding library updates and dependency updating.

2.1 Research Body
Software visualization has grown in the past years and

branched out steadily into its own separate research field and has
been recognized by international conferences. This is due to the
ever-growing research body directed at creating various tools to
assist software developers. There isn’t yet a visualization that is
able to incorporate all the needs of the modern day software de-
velopment process. Because of the gravity of the data required
to be visualized each visualization can only address a certain
amount of points. The majority of tools created are targeted at
helping developers to maintain their projects, easily understand-
ing large scale projects or even assisting newly recruited develop-
ers to adapt with a project, learn and understand the logic behind
the code.

Code Bubbles [13] is a tool that organizes the source code into
interrelated edible fragments (bubbles) integrated onto the user
interface. Another tool visualizes the source code as a Code City
[14]. Using a 3D city-like structure it shows the relative complex-
ity of modules within the code. Finally Telea et al. presented a
tool called Code Flows [15] which highlights software structural
evolution.

Naturally, there is research conducted with the focus on li-
braries, not at the code as whole. Library migrations and updated
have been addressed in [16] and [17]. Their results showcase the
challenges present in updating libraries. Furthermore, Mileva et
al. [18] visualized popularity trends of a single open source li-
brary.

This paper follows-up the visualization work conducted at our
laboratory. Yano et al. created VerxCombo [19], which is a tool
that assists developers in making library maintenance decisions.
The tool was able to show the usage between different versions
of libraries amongst developers in the ecosystem, but was limited
to only showing maximum 3 at a time.

A tool from Kula et ak. [20] uses a circular visualization
method and includes systems and their dependent libraries while
incorporating historical data. The flaw of that tool is that it
wanted to show too much and was formidable for inexperienced
users. Based on these previous works we created our visualiza-
tion tool, which uses an intuitive visualization and strives for bal-
anced between relevant information and visibility, while adopting
a new popularity measurement unit.

2.2 Definitions
For the purpose of this paper we define the following termi-

nologies as follows:

*2 https://www.npmjs.com/
*3 full result page at: https://goo.gl/AxkUsR

(1) Software - program, whose dependencies to other libraries
are our concern for visualization.

(2) Software Library - the programs used by the software or
other libraries, forming library dependency directed graph.

(3) Visualization - the representation of an object and set of in-
formation on a chart, plot or other image

3. Coexistence Coefficient
Coexistence coefficient is defined by Kula et al. [12] as - ”Co-

existence pairing examine and explores occurrences of specific
combinations between software components”. In this paper it is
depicted as a binary relation between a pair of libraries (2) within
a specific software and its ecosystem, where those two libraries
are used by at least one common library or common software.

(a) Coexistence Logic (b) Mapping the Coexistence

Fig. 1: Library Coexistence Mapping

3.1 Coexistence Logic
To further elaborate the logic behind the coexistence coefficient

we present an example of coexistence between libraries. Based
on the previous sections definition we know that coexistence is
between a pair of libraries, therefore, we direct the attention to
Fig. 1a where the pair is represented by Library A and Library
B. Similarly, Q, D, J, F, E, Z are also libraries within the same
language ecosystem. These five libraries collectively use the pair
in focus, depicted by the directed edges. In this example, Li-
brary A is used by Q, D, J, F, E and Library B is used by J,
F, E, Z. We denote this usage as: UsersA = {Q,D, J, F, E} and
UsersB = {J, F, E,Z}.

Fig. 1a depicts the second part of the coexistence coefficient
definition, which is the common combination occurrences. In
detail, both Library A and Library B have common users -
Library J, F and E. These three users reference the library pair
in their software code. We denote these common users with
the following notation: UsersA ∩ UsersB = {J, F, E}. We
also define coexistence coefficient (cc) of A for B as follows:

CCA(B) =
|UsersA ∩ UsersB|

|UsersA|
(1)

meaning, Library A’s cc for Library B’s is the ratio of A’s users
which are simultaneously B’s users.

Next, we demonstrate the equation with a sample data set. We
select two libraries from the npm ecosystem - babel-core and
mocha. The respective total users are - babel-core - 6,884 and
mocha - 3,165*4. The two libraries share a coexistence relation,

*4 as of July 2017, dataset collection period

2ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

IPSJ SIG Technical Report

because they share 3,158 common users. Applying these sample
numbers to equation 1 we have the following model:

CCA(B) =
6884 ∩ 3165

6884

=
3158
6884

= 0.4587
(2)

The result from equation 2 shows that the cc between babel-
core and mocha is 0.4587 (45.87%), meaning that almost half
of babel-core’s users are also mocha’s users. On the other hand,
mocha’s cc for babel-core is 0.9978 (99.78%), concluding almost
all of mocha’s users are also babel-core’s users.

3.2 Library Coexistence Mapping
In order to keep things consistent and to avoid redundancy, we

will explain briefly how the coexistence is represented onto an or-
bital setup. The detailed explanation and logic will be explained
thoroughly in the following section.

Fig. 1b depicts a small example of an orbital layout, including
a core element (software), planet element (library) and a moon
(coexisting library). In this example the software name is not of
relevance, but it is a software that uses two libraries. We take the
two libraries from the coexistence logic section explanation. In
this case, Library A becomes babel-core and Library B - mocha.
Both are used by the software and are plotted as a planet element,
directly connected to their parent - the Core (Software). In order
to illustrate the binary relation between both of them we make use
of the moon element. The moon is a direct representation of the
result from equation 2. The moon and planet hold essentially the
same name - mocha but fundamentally hold a different meaning.
As a planet, mocha (B) is a library used by the software, while
as a moon of babel-core (A), it is depicted as a coexisting library
with its parent planet.

4. Tool Concepts
In this section we show and explain how both the orbital layout

and the coexistence coefficient fit together.

4.1 Solar System Metaphor
To achieve our goals for the tool, we had to select the correct

visualization. The solar system visualization metaphor, served as
the correctly corresponding analogy, due to it being similar to a
software system. A software system, contains a core that binds
all the elements together, i.e. the software itself. The elements
it uses in terms of foreign objects (libraries) are ”attracted” by
it and are in its orbits. Accordingly, the similar analogy applies
for the coexistence between the libraries within the software, but
their duality severs to represent different information.

4.2 Visualization Design and Representation
In order to read, comprehend and evaluate the results of our

visualization, we firstly defined the data element in previous sec-
tions. Here we define individually the visual elements followed
by an example.
• Core (Sun) - being a center of a solar system, holds similar

meaning within our visualization. It denotes the software,

which uses libraries within its structure. The color of the sun
element is orange and is unique within the visualization. For
each separate software, which has a SoL Mantra created for
it, the name of the software will be written in the center and
denoted by a sun element.

• Planets - are the direct representation of the libraries used by
the software. Each planed that orbits the sun, denotes a dis-
tinct object and are not repeated as such. In detail, if a library
uses 6 libraries, there will be a total of 6 planet visualization
objects plotted in orbits around the sun.

• Color - serves to denote if a library used by the software is
up-to-date or outdated. Each planet element will be high-
lighted with either a red color, i.e. the library is outdated, or
a green color - up-to-date. Planets can not be both or have
other colors filling their element.

• Rotation - assists the color element. There are two states:
rotating and static.The static planets, also highlighted in
green color, are libraries that are up-to-date, while the rotat-
ing, filled with red, planets are outdated. The goal is to make
the outdated count of libraries easily visible, while making
the up-to-date libraries more passive and ”safe”.

• Moons - represent the coexisting libraries. Moons are cre-
ated after the coexistence coefficient is calculated for the li-
brary pairs in the software. Only planets are able to have
moons. If a planet has no moons (0) it means it has no co-
existing library with it within the software, although it can
be a moon of another library (planet). Moons are duplicates
to the libraries that the software uses with the purpose of
showing which libraries should be considered to be updated
together. In detail, if a planet that has a moon or moons is
denoted with a red color, requires examination of its coexist-
ing elements to evaluate the update complexity and potential
candidates to be updated together.

Table 1: Ranza Dependencies
Library Coexistent Library (cc)
mocha None
supports-color mocha(99.09%)
glob mocha(23.05%), supports-color(1.59%)
char-spinner glob(100%), mocha(100%), supports-color(100%)

bluebird
char-spinner(0.2%), glob(49.49%),
mocha(12.32%), supports-color(0.85%)

babel-core
bluebird(95.45%), char-spinner(0.76%), glob(95.45%),
mocha(45.87%), supports-color(3.17%),

4.3 Illustrative Example
Through an example visualization, we will demonstrate each

representation. To this end, we will use a sample package from
the npm repository - ranza*5, a dependency checker which de-
pends on 6 libraries as shown in Table 1 - mocha, supports-color,
glob, char-spinner, bluebird, babel-core. The table also shows
each libraries coexisting library within the software and the cor-
responding calculated cc percentage.

Fig. 2a illustrates the SoL Mantra of the ranza*6 package with

*5 https://github.com/raphamorim/ranza
*6 data from July 2017

3ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

IPSJ SIG Technical Report

all the before mentioned visual representations present. In the
center stands the software as the sun element. All 6 library de-
pendencies are plotted as individual planets orbiting the core with
their respective binary coloring schema. Only one library is in
green, which means that only char-spinner is the latest version
available. Accordingly, the remaining ones are outdated, and the
planet elements are rotating around their orbits*7.

Next up, we navigate with the cursor to observe the coexistence
between the libraries. Fig. 2b depicts a highlighting event when
the mouse cursor is over a specific planet. In the example shown,
the library in question is babel-core and it coexists with all the
remaining libraries in the ranza package. Individual coexistence
coefficients are located besides the coexisting library and rounded
up to two decimals.

The coexistence coefficient percentage, holds two meanings.
Firstly, it denotes that there is a binary relationship between the
given pair as explained. Secondly, it shows the magnitude of the
coexistence, meaning that how often the pair are used together.
This provided information serves to evaluate the potential risks
that are present while considering babel-core for an update within
the ranza software. For example, babel-core and bluebird have a
cc of 95.45%, meaning that almost all of babel-core’s users are
also bluebird’s users. This usage suggest that these libraries work
well together and should be considered for a simultaneous up-
date. Similarly, mocha has a cc of 45.87%, therefor the majority
of users, have the library pair in their source code. Although not
as strong cc as the previous example, it still should influence a
careful consideration while updating.

5. Evaluation
In order to evaluate the tool, firstly we gathered a sample data

set and created a total of 23 distinct visualizations of the corre-
sponding software packages. Here we also show how our tool
works on real world projects. Based on the collected data we
perform an empirical study of the 23 packages and show case 2
of them as an example and proof of concept. Continuing, after
successfully conducting the real world project experiments, we
generated an on-line survey with the goal of evaluating our tools
comprehension.

5.1 Experiments
First part of our tool evaluation consists of a creating visual-

izations and analyzing the collected software packages from the
npm repository.
5.1.1 Dataset

Since the tool mostly consists of JavaScript, we decided to
apply it to other projects within the ecosystem. The JavaScript
repository hosts over 230,000 packages with new ones being con-
stantly added[21]. To this end we selected one of the most pop-
ular projects for 2016 amongst developers*8. Initially there were
30 projects but because some of them had no library dependen-
cies or less than 2, we had to discard them. This resulted in having
a dataset of 23 packages from the npm ecosystem. Fig. 2 shows
the general data and the names of the projects tested. We show

*7 not visible on a static image
*8 experiments conducted July 2017

(a) Ranza

(b) babel-core

Fig. 2: Ranza SoL Mantra

that through the mean and median of the stars*9 that the projects
are indeed popular. Furthermore, with the average commits, is-
sues, contributors and releases we can say with certainty that the
projects are still active and being worked on. Finally, we can see
that most of them have a relatively high number of other depend-
ing packages, with the exception of pm2 which has only 330.

We implemented a script based tool to gather and collect the
data needed for the visualization. In order to generate our data
and calculate cc, we used packages from the npm repository. We
relied upon packages such as: is-outdated package*10 to detect
if the libraries are outdated or not. We used the output of it to
compare with the package.json file available in the local folder.
If the version matched, we considered them up-to-date and alter-
natively, if they do not, we apply the outdated tag. For the co-
existence coefficient, we used several packages in unison. We
began with generating the users for every package using get-
dependencies package*11. After that we created the pairing sets of
libraries using js-combinatorics package*12. Lastly, we extracted

*9 github ranking metric
*10 https://github.com/rogeriopvl/is-outdated
*11 https://github.com/SharonGrossman/get-dependencies
*12 https://github.com/dankogai/js-combinatorics

4ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

IPSJ SIG Technical Report

Table 2: Collected Data Summary
Data Stars Pull Requests Issues Commits Contributors Releases Branches Dependencies Dependents

Minimum 917 0 0 186 15 11 1 0 330
Maximum 67,706 180 690 8640 1595 396 103 47 24,432

Mean 9914 30 149 1492 158 77 17 9 4272
Median 11,863 21 168 2162 177 89 14 7 2279

Tested Packages: express, request, browserify, grunt, pm2, socket.io, mocha, gulp-uglify, cheerio, passport, hapi, react, karma, pug, mysql, less, mongodb
node.js driver, jshint, morgan, webpack, restify, magick, jsdom

the common users between each set using comparray package*13

and calculated the final cc score.
In this paper we will demonstrate two distinct examples from

our dataset in order to illustrate the use of our visualization and
how a developer would use our tool and the information provided.
The first example is react*14, which is the highest starrted pack-
age amongst the 23 packages in the dataset. For the second ex-
ample, we will use cheerio*15 to showcase how our tool performs
on larger systems.

5.1.2 Empirical Study on Real World Projects
Here we demonstrate our tool applied to two real projects.

1. Example - react
React is a popular library used for interface creation developed

and maintained by Facebook.
From Fig. 3a we can see the generated SoL Mantra overview

for the react package. As explained in Section 4 the software is
represented by the core element in orange. The 5 dependencies
the software uses are represented through the 5 planets orbiting
the core - fbjs, object-asign, create-react-class, prop-types, loose-
envify. Continuing, 2 of those are colored green, indicating that
they are up to date*16 with the latest version available on the npm
repository*17. Alternately, the remaining three, colored in red,
libraries are outdated and should be considered for an update.

We focus our attention towards the outdated libraries - fbjs,
object-assign, loose-envify which present an update opportunity
and proceed to evaluate the related update complexity through
the visualization elements. Using the cursor we are able to navi-
gate through the tool and focus each planet element individually.
Hovering over it, highlights its moons and shows the coexistence
coefficient that they have with their parent.

Firstly we check loose-envify. The library has 2 coexisting li-
braries within the react package (Fig. 3b) and both have 100%
cc score. This shows us that these libraries are used all of the
time together within the npm ecosystem and therefor have strong
coexistence. With such high cc score we can safely say that
when deciding whether or not to update loose-envify, we must
consider its coexisting libraries for an update, otherwise risking
potential failures, incompatibilities. This case presents a simple
decision because of the high score present, although our visual-
ization doesn’t tell the developers that they have to update. The
decision ultimately depends on the developer and other factors.

*13 https://github.com/JonathanPrince/comparray
*14 https://github.com/facebook/react
*15 https://github.com/cheeriojs/cheerio
*16 as of July 2017
*17 latest main version, not including beta versions

(a) React, SoL Mantra overview with its 5 depen-
dencies: 2 up-to-date and 3 update opportunities

(b) loose-envify update complexity

(c) fbjs update complexity

Fig. 3: React SoL Mantra with 3 complex update opportunities

Next we have fbjs (Fig. 3c which has 3 coexisting libraries -
loose-envify, object-assign, prop-types. We see that fbjs has high
cc score with two of them - 95.7%. Although not 100% like the
previous case, the score remains on the high end. Based on that
we apply the same reasoning as loose-envify and conclude that if
an fbjs update is considered, so must be object-assign, prop-types.
In this example prop-types is already up-to-date and could be ig-
nored while evaluating the complexity. Lastly, we have a 23.16%
cc with loose-envify. This cc score is particularly low but still
means that 1 in 5 fbjs users use both libraries together. Addition-
ally, with loose-envify being an update candidate, and considering
that fbjs coexists with it, shows the entangled complexity that ex-
ists between libraries. Following that, we should re-evaluate the
update complexity of loose-envify.

5ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

IPSJ SIG Technical Report

The last outdated library is object-assign*18. It has only one
coexisting library - prop-types with 40.11% cc. Because prop-
types status we can safely update this package’s version, as long
as, it is the only one considered for an update. Arguably, if we
have to consider the entire system for an update, through the cc
scores we can concretely deduce that all of the outdated libraries
should be updated together.

Fig. 4: Cheerio SoL Mantra - 11 outdated and 4 up-to-date li-
braries.

2. Example - cheerio

For the second example we will demonstrate how a soft-
ware with a lot of libraries is represented. To this end we se-
lected the cheerio package which provides implementation of
core jQuery*19 for servers.

Cheerio compared to the previous example, references more
library packages in its code. Fig. 4 shows the generated SoL
Mantra overview of the package. Cheerio uses 15 libraries in
total, 11 outdated and only 4 up-to-date*20. The up-to-date li-
braries in the package are expect.js, entities, dom-serializer and
css-select. All of them have high moon count, but because the
package is already using the latest version of them, we can safely
continue to evaluate the complexities of the remaining 11. In
cases like cheerio, where the number of used packages and cc
between them is abundant, even the up-to-date libraries and their
cc’s could be evaluated while making update decisions.

Continuing with the outdated ones, we are unable to show each
and everyones cc and their scores but we will summarize our find-
ings. The full example could be seen on the tool’s page. Out of
the 11 there are 6 libraries with comparatively high coexistence
count than the others - istanbul, coveralls, parse5, htmlparser2,
benchmark and loadash. In detail istanbul has 5 libraries with
3 of them having a cc score of 92.87%, one with 69.53% and
the least having 1.16%. Coveralls with 7 coexisting libraries is a
similar case as istanbul. Out of the 7, there are 5 that have a cc
score of 96.18% and similarly 69.92% followed by 3.66%. The
remaining ones also follow the same pattern, therefore we will

*18 not shown with a figure
*19 https://jquery.com
*20 as of July 2017

not be listing them as detailed.

5.2 Survey Evaluation
With the examples we successfully demonstrated how through

cc we were able to show how each libraries are used together. To
further our evaluation, we tested through an on-line survey the us-
age comprehension and readability of our tool, while in the hands
of people that have never used it before. The survey was divided
in 4 sections - pre-task questions, general comprehension, coex-
istence coefficient comprehension, post task questions.

1. Pre-task questions
Here we requested general information of the survey users,

such as age, affiliation and prefer or used language in their envi-
ronment. More than half of the users are aged 25-30 and around
30% are 18-24 years old. Most of them are still in the university,
although we managed to receive one sibmission from a profes-
sional working in the field of computer science. Lastly the most
used coding language amongst the participants is split between
Java and Python followed by C and C++.

2. General Comprehension
In this part of our survey we wanted to evaluate how easy it

is for a new users to handle our tool while providing them with
only limited information and general legend on how to read the
tool. Firstly they had to answer which is the software represented,
to which all of them answerd with 100% accuracy. The last two
questions were focused on library usage information. Almost all
gave correct answers regarding number of used libraries and out-
dated ones.

Based on the results from this section we conclude that the ba-
sics visualization concepts of our tool are easy to understand for
people without much software development experience, hence it
should be also easy for experienced developers. In detail, the high
answer accuracy suggests that the general information is easy to
understand and see.

3. Coexistence Coefficient Comprehension
This section is divided into two parts with the first part aiming

to see if people understood the coexistence coefficient and how
to generally read it. The second part’s goal is to assess the up-
date complexity comprehension with our visualization. We gave
our definition for coexistence and asked the participants if they
understood it and most asnwered yes. Following that, we asked
them with multiple choices, which libraires didnt have any coex-
isting ones within the system. The majority (63.2%) answered
this question correctly, with 21.1% giving a partially correct an-
swer. Lastly, we asked them to tell us what is the highest cc count
in this software. Overwheming part of the participants also gave
a correct answer to this question - 78.9%. Here we can conclude
that the general idea for coexistence is easy to understand in a
short time, while exploring the tool, provided the definition is
present.

To understand if the update complexity is easily comprehend-
able we presented the users with 4 cases and asked them on a
scale from Further investigate (1) to Safe to update(5) seperately.

Table 3 shows the distinct cases with the list of coexisting li-
braries. Case 1 and 2 as shown have no coexisting libraries. We
asked the users to asses the update complexity of mocha and

6ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

IPSJ SIG Technical Report

Table 3: Update Complexity Comprehension Cases Information
Case Library Coexisting Libraries
1 mocha None
2 eslint-plugin-chai-friendly None

3 bluebird
eslint-plugin-chai-friendly(0.08%), safe-buffer(1.56%),
chai-as-promised(4.37%), lodash.isplainobject(5.75%),
qs(13.63%), chai(30.28%), eslint(41.33%), mocha(48.9%)

4 eslint eslint-plugin-chai-friendly(0.24%)

eslint-plugin-chai-friendly to observe how the participants would
evaluate the risk based on the coexistence coefficient definition
provided.

Fig. 5: Case 1 result summary

Fig. 6: Case 2 result summary

Mocha has no coexisting library, therefore on the mentioned
scale the absolute correct answer is ”Safe to update(5)”. As seen
on Fig. 5, 10 of our participants answered correctly, followed by
5 giving a slightly lower answer on the scale, which is still con-
sidered accurate. The remaining 4 answers are considered wrong
in this case.

Similarly, the second case also included a library with zero de-
pendencies. We can see from Fig. 6 that the answers are similar
with the first case. Based on the results we can conclude that
when there are no coexisting libraries it is easy for new users to
assess the risks when using the SoL Mantra tool.

For the third case we presented them with the library with the
highest cc count in the example visualization - bluebird. The co-
existing libraries and their respective cc score can be seen in Ta-
ble. 3. For this case, the expected answer is ”Further investigate”
in terms of making an update decision. The participants properly
understood the update complexity and 15 of them gave the correct
answer, as seen on Fig. 7. The result could be interpreted in two
ways: either the participants really understood the complexity or
because it had a lot of moons they decided it must be the correct
answer. Both assessments are generally correct, but the important

Fig. 7: Case 3 result summary

Fig. 8: Case 4 result summary

thing is that our users aren’t specialists.
For the last case, we provided a library with only 1 dependency.

We wanted to see how will the participants evaluate such a case.
Fig. 8 highlights the results from the survey. The eslint has a cc
score of 0.24% with its coexisting library. Because of that it isn’t
considered a high complexity update opportunity, if evaluated on
its own. Due to the nature of this case, the expected answer is
not a strong 1 or 5 from our scale. Accordingly, the majority of
the participants also evaluated the case the same way as us. Al-
though the absolute accurate answer is a 3, the adjacent ones are
also acceptable.

To conclude, amongst our survey users, the majority managed
to accurately grasp the concept of coexistence coefficient applied
to our visualization and made accurate update complexity con-
clusions.

4. Post Task Questions
Here we asked the survey users to give us their feedback af-

ter experiencing the SoL Mantra tool and answering the compre-
hension questions. When asked if they found the tool useful or
potentially useful, all but one answered with ”yes”.

Next we wanted to see what the participants thought how the
tool feels when using it. Fig. 9 visualizes the results provided
with a scale from Natural(1) to Counter-intuitive(5). Most of our
participants thought the tool feels adequate when using it, while
some thought its difficult. This shows us that there is still room

7ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

IPSJ SIG Technical Report

Fig. 9: Post Task Question Results

for improvement in order to be easily accessible for everyone.

Fig. 10: Post Task Question Results

The last question we asked was if the participants found the
tool easy to comprehend. From Fig. 10 we can see that although
more than half stated on a scale from Very easy (1) to Extremely
difficult/confusing(5)b that it is easy, the remaining did indeed find
some difficulties with it. As one of the goals for the paper is to
created a tool that is easy to use while providing sufficient infor-
mation for library update complexities, we can derive from these
results that there is room for improvement.

Overall, we consider the survey to be successful and achieved
its goals. All of the participants agreed to our electronic consent
before doing the survey, and provided us with a much needed
feedback.This survey ran from the start of January 2018 until the
first week of February 2018 and only produced 19 results.

6. Conclusion and Threats to Validity
In this paper we present the SoL Mantra tool that we devel-

oped using the orbital layout visualization concept together with
the coexistence coefficient metric. We stated our decision process
while selecting the visualization concept and added the benefits
it provides, while also weighting in the drawbacks. Although a
new metric, the coexistence coefficient provided a great solution
to address a greater scope of library interdependency. Combin-
ing both together felt natural and we manage to provide relevant
information for library update opportunities and their respective
complexities to software developers.

First and foremost a potential risk to our results is the coexis-
tence coefficient metric. Furthering, the results produced by the
coefficient may not be generally applicable to all softwares and all
ecosystems. Our collected data is based on established projects
that have been developed by dedicated teams, hence, we have not
tested the tool’s performance with smaller or personal projects.
Furthermore, the projects we tested, could have specific library

version for internal or other reasons. Another threat is that we
only evaluate the data provided by the npm repository and we
don’t consider if the library reference within the code has been
used or just referenced.

Acknowledgments This work is supported by JSPS KA-
NENHI (Grant Numbers JP25220003). Special note to Kaoru
Ito, who assisted and giving the tool’s name.

References
[1] Ebert, C.: Open Source Software in Industry, in IEEE Software, Vol.

25, No. 3, pp. 52–53, 2008.
[2] Cadariu, M. and Bouwers, E. and Visser, J. and van Deursen, A.:

Tracking known security vulnerabilities in proprietary software sys-
tems, 22nd IEEE SANER, pp. 516–519, March 2015.

[3] Xia, P. and Matsushita, M. and Yoshida, N. and Inoue, K.: Studying
reuse of out-dated third-party code in open source projects, Informa-
tion and Media Technologies, Vol. 9, No. 2, pp. 155–161, 2014.

[4] AGerman, D. M. and Gonzalez-Barahona, J. M. and Robles, G.: A
model to understand the building and running inter-dependencies of
software, 14th WCRE, pp. 140–149, Oct. 2007.

[5] YKula, R. G. and German, D. M. and Ouni, A and Ishio, T. and Inoue,
K.: Do Developers Update Their Library Dependencies?, Empirical
Software Engineering, 2017.

[6] Bavota, G. and Canfora, G. and Di Penta, M. and Oliveto, R. and
Panichella, S.: How the Apache Community Upgrades Dependencies:
an Evolutionary Study, Empirical Software Engineering, Vol. 20, No.
5, pp. 1274–1317, 2015.

[7] Bogart, C. and Kästner, C. and Herbsleb, J.: When it breaks, it breaks:
How ecosystem developers reason about the stability of dependencies,
ASE (Workshop SCGSE), pp. 86–89, Lincoln NE, 2015

[8] Raemaekers, S. and Deursen, A. van and Visser, J.: Semantic version-
ing versus Breaking Changes: A Study of the Maven Repository, 14th
IEEE SCAM, pp. 215–224, 2014.

[9] Kula, R. G. and German, D. M. and Ishio, T. and Inoue, K.: Trusting
a Library: A Study of the Latency to Adopt the Latest maven Release,
22nd IEEE SANER, Vol. 22, pp. 520–524, Montreal, Canada, 2015.

[10] McIntosh, S. and Adams, B. and Nguyen, T. H. and Kamei, Y. and has-
san, A. E.: An empirical study of build maintenance effort 33rd ICSE,
pp. 141–150, DOI: http://doi.acm.org/10.1145/1985793.1985813,
New York, NY, USA, 2011

[11] Foundation, O.: Top 10-2017 Security Risks, OWASP, available:
https://goo.gl/fCs5ob, 2017.

[12] Kula, R. G. and Roover, C. De and German, D. M. and Ishio, T. and In-
oue, K.: Generalized Model for Visualizing Library Popularity, Adop-
tion and Diffusion within a Software Ecosystem, 25th IEEE SANER,
Campobasso, Italy, March 2018 (to Appear).

[13] Bragdon, A. and Reis, S. P. and Zelezni, R. and Karumuri, S. and Che-
ung, W. and Kaplan, J. and Coleman, C. and Adeputra, F. and LaViola
Jr, J. J.: Code bubbles: Rethinking the user interface paradigm of inte-
grated development environments, 32nd ACM/IEEE ICSE, Vol. 1, pp.
455–464, New York, NY, USA, 2010.

[14] Wettel, R. and Lanza, M.: Visually localizing design problems with
disharmony maps, in Proceedings of the 4th ACM Symposium on
Software Visualization, pp. 155–164, New York, NY, USA, 2008.

[15] Telea, A. and Auber, D.: Code flows: Visualizing structural evolu-
tion of source code, Computer Graphics Forum, Vol. 27, No. 3, pp.
831–838, 2008.

[16] Teyton, C. and Falleri, J. R. and Palyart, M. and Blanc, X.: A study
of library migrations in Java, Journal of Software: evolution and Pro-
cess, Vol. 26, No. 11, 2014.

[17] Bauer, V. and Heinemann, L. and Deissenboeck, F.: A structured ap-
proach to assess third-party library usage, 28th IEEE ICSM, pp. 483–
492, Sept. 2012.

[18] Mileva, Y. M. and Dallmeier, V. and Zeller, A.: Mining API popular-
ity, TAIC PART, pp. 173–180, 2010.

[19] Yano, Y. and Kula, R. G. and Ishio, T. and Inoue, K.: VerxCombo: An
interactive data visualization of popular library version combinations,
in 23rd IEEE ICPC, pp. 291–294, Florence, Italy, 2015.

[20] Kula, R. G. and Roover, C. De and German, D. M. and Ishio, T. and
Inoue, K.: Visualizing the Evolution of Systems and Their Library De-
pendencies, in 2nd IEE VISSOFT, pp. 127–136, Victoria, BC, Canada,
2014.

[21] Wittern, E. and Suter, P. and Rajagopalan, S.: A Look at the Dynamics
of the JavaScript Package Ecosystem, 13th MSR, pp. 351–361, Austin,
TX, USA, 2016.

8ⓒ 2018 Information Processing Society of Japan

Vol.2018-SE-198 No.14
2018/3/9

