Isomorphism Elimination by Zero-Suppressed Binary Decision Diagrams

Takashi Horiyama ${ }^{2, a)}$ Masahiro Miyasaka ${ }^{2, b}$ (Riku Sasaki ${ }^{1, c}{ }^{\text {c }}$

Abstract

In this paper, we focus on the isomorphism elimination. More precisely, our problem is as follows: Given a graph G with labeled edges and a family \mathcal{F} of its subgraphs, we extract all automorphisms Aut $G=\left\{\pi_{1}, \pi_{2}, \ldots,\right\}$ on the given graph, define the lexicographically largest subgraph for each set of the mutually isomorphic subgraphs on each automorphism π_{i}, and select the lexicographically largest subgraphs on any of the automorphisms. In this paper, both of the given and resulting families of subgraphs are in the form of ZDDs, and the computation are performed on ZDDs. Experimental results show that the proposed method is 300 times faster and 3,000 times less memory than the conventional method in the best case.

1. Introduction

Suppose that we are given a cube. By cutting along the set of edges $\left\{e_{2}, e_{3}, e_{4}, e_{6}, e_{10}, e_{11}, e_{12}\right\}$ of the cube as in Fig. 1(a), we can obtain the development in Fig. 1(c). When we rotate the positions of cutting edges by 90 degrees, i.e., by cutting along the set of edges $\left\{e_{1}, e_{3}, e_{4}, e_{7}, e_{9}, e_{11}, e_{12}\right\}$, we can also obtain the development in Fig. 1(c). Are these the same? If we assume the edges are labeled, the positions of cutting edges are different, and thus we can say they are different. If we assume the edges are unlabeled, the shape of the developments are the same, and thus we can say they are isomorphic.
A cube has 384 labeled developments, and they are classified into 11 nonisomorphic developments (we identify mirror shapes as isomorphic). In [4], a technique for counting the number of nonisomorphic developments of any polyhedron (including nonconvex polyhedron) is given. They also listed the number of labeled and nonisomorphic developments of all regular-faced convex polyhedra (i.e., Platonic solids, Archimedean solids, Johnson-Zalgaller solids, Archimedean prisms, and antiprisms) Catalan solids, bipyramids and trapezohedra. For example, while a truncated icosahedron (a Buckminsterfullerene, or a soccer ball fullerene) has $375,291,866,372,898,816,000$ (approximately 3.75×10^{20}) labeled developments, it has $3,127,432,220,939,473,920$ (approximately 3.13×10^{18}) nonisomorphic developments. A truncated icosidodecahedron has $21,789,262,703,685,125,511,464,767,107,171,876,864,000$ (approximately 2.18×10^{40}) labeled developments, and has $181,577,189,197,376,045,928,994,520,239,942,164,480$ (approximately 1.82×10^{38}) nonisomorphic developments. We

[^0]

Fig. 1 Different cut edges (a) and (b) have isomorphic developments.
here note that the technique in [4] counts the number of nonisomorphic developments without enumerating developments.

As for the enumeration of nonisomorphic developments, a technique using BDDs (Binary Decision Diagrams) is given in [3]. A BDD [1] is a graph representation of a family of sets. The cut edges of a development of a polyhedron form a spanning tree of the 1 -skeleton (i.e., the graph formed by the vertices and the edges) of the polyhedron (See, e.g., [[2], Lemma 22.1.1]), and vice versa. In [3], they constructed a BDD corresponding to a family of labeled developments, where each development corresponds to a spanning tree represented by a set of labeled edges. Then, by omitting mutually isomorphic developments, they obtained nonisomorphic developments.
Later, a sophisticated method called a "frontier-based
search" [5] is proposed for constructing BDDs/ZDDs representing all constrained subgraphs. A ZDD (Zero-suppressed Binary Decision Diagram) [3] is a variant of BDDs, and also represents a family of sets. The frontier-based search is an extension of Simpath algorithm [6] by Knuth for enumerating all st-paths in a given graph. The method can be considered as one of DP-like algorithms, and it constructs the resulting BDDs/ZDDs in a top-down manner. By applying this method to the first step in [3], we can speed-up the construction of the BDD/ZDD representing a family of spanning trees.
In this paper, we focus on the isomorphism elimination. More precisely, our problem is as follows: Given a graph G with labeled edges and a family \mathcal{F} of its subgraphs, we extract all automorphisms Aut $G=\left\{\pi_{1}, \pi_{2}, \ldots,\right\}$ on the given graph, define the lexicographically largest subgraph for each set of the mutually isomorphic subgraphs on each automorphism π_{i}, and select the lexicographically largest subgraphs on any of the automorphisms. In this paper, both of the given and resulting families of subgraphs are in the form of ZDDs, and the computation are performed on ZDDs. This is because (1) ZDDs can compactly represent a family of sets, (2) the enumeration by ZDDs are faster than other methods in many cases.
In general, the first step for extracting all automorphisms on a given graph is not tractable: It is still open whether the graph automorphism problem (i.e., the problem deciding whether a given graph has a nontrivial automorphism or not) is in P or in NPcomplete [8]. Fortunately, however, we can solve the problem in polynomial time if the degrees of vertices in a graph graph are bounded by a constant [7].
Our main issue is to select the lexicographically largest subgraphs on any of the automorphisms. In [3], they constructed BDDs G_{1}, G_{2}, \ldots, where G_{i} represents a family of the lexicographically largest subgraphs on automorphism π_{i}, and then took the intersection of the BDDs for selecting a family of subgraphs that appear in all of the families of G_{1}, G_{2}, \ldots. Since the method was proposed before the era of the frontier-based search algorithms, similarly to the BDD/ZDD algorithms in those days, it obtains the resulting BDD by the repetition of apply operations. In this paper, we renovate this step by introducing the framework of the frontier-based search: We propose algorithms for the topdown construction of the ZDD representing a family of the lexicographically largest subgraphs on π_{i}.

2. Enumeration by Zero-Suppressed Binary Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [9] is directed acyclic graph that represents a family of sets. As illustrated in Fig. 2, it has the unique source node ${ }^{* 1}$, called the root node, and has two sink nodes 0 and 1 , called the 0 -node and the 1 -node, respectively (which are together called the constant nodes). Each of the other nodes is labeled by one of the variables $x_{1}, x_{2}, \ldots, x_{n}$, and has exactly two outgoing edges, called 0 -edge and 1 -edge, respectively. On every path from the root node to a constant node in a ZDD, each variable appears at most once in the same order.

[^1]

Fig. 2 A ZDD representing $\{\{1,2\},\{1,3,4\},\{2,3,4\},\{3\},\{4\}\}$.
The size of a ZDD is the number of nodes in it.
Every node v of a ZDD represents a family of sets \mathcal{F}_{v}, defined by the subgraph consisting of those edges and nodes reachable from v. If node v is the 1 -node (respectively, 0 -node), \mathcal{F}_{v} equals to $\left\{\}\}\right.$ (respectively, $\left\}\right.$). Otherwise, \mathcal{F}_{v} is defined as $\mathcal{F}_{0-\text { succ }(v)} \cup\left\{S \mid S=\{\operatorname{var}(v)\} \cup S^{\prime}, S^{\prime} \in \mathcal{F}_{1-\operatorname{succ}(v)}\right\}$, where $0-\operatorname{succ}(v)$ and $1-\operatorname{succ}(v)$, respectively, denote the nodes pointed by the 0 edge and the 1 -edge from node v, and $\operatorname{var}(v)$ denotes the label of node v. The family \mathcal{F} of sets represented by a ZDD is the one represented by the root node. Fig. 2 is a ZDD representing $\mathcal{F}=\{\{1,2\},\{1,3,4\},\{2,3,4\},\{3\},\{4\}\}$. Each path from the root node to the 1-node, called 1 -path, corresponds to one of the sets in \mathcal{F}.
The frontier-based search [5] constructs ZDDs in a top-down manner, and it can be considered as one of DP-like algorithms. We can modify DP algorithms for recognition (i.e., testing whether a given instance satisfies some property) to the frontierbased search algorithm that construct a ZDD representing the family of the yes-iinstances. Thus, in Section 3, we only show our algorithms as in the form of DP algorithms. The key of the frontier-based search is to share ZDD-nodes by simple "knowledge" of partially given input, and not to traverse the same subproblems more than once. In the context of DP, this means that "internal state" for partially given input should be small. For more details, see [5].

3. Isomorphism Elimination

Let $p i$ be a permutation on $\{1,2, \ldots, n\}$, and \leq be a lexicographical order on $x=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right) \in\{0,1\}^{n}$. For any x, we can obtain $\pi(x)=\left(x_{\pi(n)}, x_{\pi(n-1)}, \ldots, x_{\pi(1)}\right)$, and thus we can define a family \mathcal{F}_{π} of lexicographically larger x 's as

$$
\mathcal{F}_{\pi}=\{x \mid x \geq \pi(x)\} .
$$

Here, we regard a vector x as a set $\left\{x_{i} \mid x_{i}=1\right\}$, which implies that \mathcal{F}_{π} can be regarded as a family of sets $\left\{x_{i_{1}}, x_{i_{2}}, \ldots\right\}$ $\left(\subseteq\left\{x_{n}, x_{n-1}, \ldots, x_{1}\right\}\right)$ that are lexicographically larger than their π mapped set $\left\{x_{\pi\left(i_{1}\right)}, x_{\pi\left(i_{2}\right)}, \ldots\right\}$. Given a set of permutations $\operatorname{Aut} G=$ $\left\{\pi_{1}, \pi_{2}, \ldots\right\}$, by taking the intersection of $\mathcal{F}_{\pi_{1}}, \mathscr{F}_{\pi_{2}}, \ldots$, we can obtain a family of sets, each of which is the lexicographically largest on AutG. Later in this section, we discuss a DP algorithm that outputs 1 if and only if input x satisfies $x \geq \pi(x)$.
The outline of the algorithm is as follows. The algorithm consists of two phases. In Phase $\mathrm{I}, x_{n}, x_{n-1}, \ldots, x_{1}$ are given

```
Algorithm 1: Preparation of Phases I and II
    Input : \(n, \pi\)
    Output: UpdateMemory[ ], cutwidth, Compare[ ]
    Prepare an empty array until[ ]
    for \(i:=n, n-1, \ldots, 1\) do
        if \(i>\min \left\{\pi(i), \pi^{-1}(i)\right\}\) then
        // It is necessary to store \(x_{i}\) in the memory
            \(k:= \begin{cases}\min \{j \mid i \leq \text { until }[j]\} & \text { if } \exists j \text { s.t. } i \leq \text { until }[j] \\ (\operatorname{cardinality~of~until[~}[])+1 & \text { otherwise }\end{cases}\)
            position[i] := \(\quad / / x_{i}\) is stored in \(M[k]\)
            until \([k]:=\min \left\{\pi(i), \pi^{-1}(i)\right\}\)
            \(/ / M[k]\) should be kept until the level of \(x_{\pi(i)}\) or \(x_{\pi^{-1}(i)}\)
            UpdateMemory \([i]:=\) UpdateMemory \([i] \cup\{(k\), 'store' \()\}\)
            UpdateMemory[until[k]] :=
                UpdateMemory[until \([k]] \cup\{(k\), 'erase' \()\}\)
    9 cutwidth := cardinality of until[]
10 for \(i:=n, n-1, \ldots, 1\) do
            if \(i>\pi(i)\) then \(\quad / / x_{i}\) is stored until \(x_{\pi(i)}\) is given
            Compare \([\pi(i)]:=\) Compare \([\pi(i)] \cup\{(i\), position \([i]\), 'input' \()\}\)
        else if \(i<\pi(i)\) then \(/ / x_{\pi(i)}\) is stored until \(x_{i}\) is given
            Compare \([i]:=\) Compare \([i] \cup\{(i\), 'input', position \([\pi(i)])\}\)
        else \(\quad / / x_{i}\) and \(x_{\pi(i)}\) are the same variable
            Compare \([i]:=\) Compare \([i] \cup\{(i\), 'input', 'input' \()\}\)
```

```
Algorithm 2: Phase I
    Input : UpdateMemory[ ], cutwidth, Compare[ ], \(x=\left(x_{n}, x_{n-1}, \ldots, x_{1}\right)\)
    Output: \(\left(c_{n}, c_{n-1}, \ldots, c_{1}\right)\)
    Prepare an array \(M[\) ] of size cutwidth
    for \(i:=n, n-1, \ldots, 1\) do
        foreach \(\left(i^{\prime}, p_{0}, p_{1}\right) \in\) Compare \([i]\) do
            \(m_{0}:= \begin{cases}x_{i} & \text { if } p_{0}=\text { 'input' } \\ M\left[p_{0}\right] & \end{cases}\)
            \(m_{1}:= \begin{cases}x_{i} & \text { if } p_{1}=\text { 'input' }\end{cases}\)
            \(m_{1}:= \begin{cases}x_{i} & \\ M\left[p_{1}\right] & \text { otherwise }\end{cases}\)
            \(c_{i^{\prime}}:= \begin{cases}{ }^{\prime}>^{\prime} & \text { if } m_{0}>m_{1} \\ \cdot{ }^{\prime} & \text { if } m_{0}<m_{1} \\ \cdot{ }^{\prime} & \text { if } m_{0}=m_{1}\end{cases}\)
        foreach \((k\), behavior) \(\in\) UpdateMemory \([i]\) do
            if behavior \(=\) 'store' then
                \(M[k]:=x_{i} \quad / /\) Store \(x_{i}\) in \(M[k]\)
            else
            L \(M[k]:=0 \quad / /\) In case behavior \(=\) 'erase', erase \(M[k]\)
```

on-the-fly. In other words, x_{i} is given in time slot $n+1-i$ $(i=n, n-1, \ldots, 1)$. In the comparison of x and $\pi(x), x_{i}$ is compared with $x_{\pi(i)}$. In case $i<\pi(i)$, since $x_{\pi(i)}$ will be given in the future, we store x_{i} in the memory until $x_{\pi(i)}$ is given. On the other hand, in case $i>\pi(i), x_{\pi(i)}$ is already stored in the memory, and thus we can compare x_{i} and $x_{\pi(i)}$. We transfer the result of the comparison c_{i} to Phase II. In case $i=\pi(i)$, we compare x_{i} and $x_{\pi(i)}$, and transfer c_{i} is ' $=$ ' (i.e., equivalent) to Phase II.

In Phase II, the results of the comparisons $C=\left\{c_{n}, c_{n-1}, \ldots, c_{1}\right\}$ are given from Phase I. Note that the given order of c_{i} is not $c_{n}, c_{n-1}, \ldots, c_{1}$. The order is defined by π. Let π^{\prime} denote the order of c_{i} 's given to Phase II: c_{i} 's are given in the order of $c_{\pi^{\prime}(n)}, c_{\pi^{\prime}(n-1)}, \ldots, c_{\pi^{\prime}(1)}$. We also note that no c_{i} may be given in some time slot, and that two c_{i} and $c_{i^{\prime}}$ may be given in the same time slot. In Phase II, by checking such c_{i} 's, we conclude whether $x \geq \pi(x)$ holds or not.

Now, we move to the details of the algorithm. In Phase I, x_{i} is stored until $x_{\pi(i)}$ appears. At the same time, x_{i} is required to compare with $x_{\pi^{-1}(i)}$. Thus, precesely speaking, x_{i} is stored into the memory if $i>\min \left\{\pi(i), \pi^{-1}(i)\right\}$ holds, and it is stored until $x_{\min \left\{\pi(i), \pi^{-1}(i)\right\}}$ is given. The amount of memory to store x_{i} 's is the cut width of the graph $G=(V, E)$ where $V=\left\{x_{n}, x_{n-1}, \ldots, x_{1}\right\}$ and $\left(x_{i}, x_{\pi(i)}\right) \in E$.

Algorithm 1 summarizes the preparation necessary for Phases I and II. If $i>\min \left\{\pi(i), \pi^{-1}(i)\right\}$ holds in Line 3, we plann to store x_{i} in $M[k]$ and keep $M[k]$ until $x_{\min \left\{\pi(i), \pi^{-1}(i)\right\}}$ is given (Lines 4-6). In Lines 7 and 8, we record the plan for storing/erasing $M[k]$, and the plan UpdateMemory[[]i] is actually executed in Lines 7-11 of Algorithm 2 (Phase I). The plan for comparing x_{i} and $x_{\pi(i)}$ is recorded in Lines 10-16, and it is actually executed in Lines 3-6 of Algorithm 2.

Algorithm 3 describes Phase II. Recall that $c_{n}, c_{n-1}, \ldots, c_{1}$ may not be given in this order. For convinience, we introduce permutation π^{\prime} for denoting the ordering $c_{\pi^{\prime}(n)}, c_{\pi^{\prime}(n-1)}, \ldots, c_{\pi^{\prime}(1)}$. (The ordering is implicitly given by Lines 2 and 3 of Algorithm 2, and thus, it is just for convinience, and we will avoid it by combining Phases I and II.) By updating ($i_{s}, c_{i_{s}}$) in Lines 4-9, we can check whether $x \geq \pi(x)$ holds or not in Lines 10-13 (Details are omitted).

Now, we combine Phases I and II. Line 1 of Algorithm 3 is an initialization of state $\left(i_{s}, c_{i_{s}}\right)$, and it should be inserted in the begining of Algorithm 2. Lines 4-9 of Algorithm 3 receive $c_{i^{\prime}}$, and thus they should be inserted just after Line 6 in the foreach-loop of Algorithm 2. Lines $10-13$ of Algorithm 3 decide the output according to the final $c_{i_{s}}$, and thus they should be inserted after the last part of Algorithm 2.

4. Experimental Results

Experimental results are given in Tables 4 and 4. In table 4, the developments of 5 Platonic solids and 5 out of 13 Archimedean solids (a cuboctahedron, a truncatedtetrahedron, a truncatedoctahedron, a truncatedcube, a rhombicuboctahedron) are enumerated. A development of a polyhedron is a simple polygon obtained by cutting along the edges of the polyhedron and unfolding it into a plane. The cut edges of a development of a polyhedron form a spanning tree of the 1 -skeleton (i.e., the graph formed
by the vertices and the edges) of the polyhedron (See, e.g., [[2], Lemma 22.1.1]). The second column $|E|$ in Table 4 gives the number of edges in the 1 -skeleton of a polyhedron. The third column |Aut| gives the number of automorphisms of a polyhedron. The fourth and fifth columns give the number of labeled and unlabeled developments, respectively. For example, as for a rhombicuboctahedron, we have $301,056,000,000$ labeled developments. By checking the graph isomorphism for all of these labeled developments among 48 automorphisms, we obtained $6,272,012,000$ unlabeled developments. The size of the required memory is summarized in the eigth and ninth column. The proposed method requires less memory than the conventional method. As for a rhombicuboctahedron, however, requires much memory even for the proposed method.

In table 4, the developments of n-dimensional hypercubes are enumerated. As in the case of a cube (i.e., $n=3$), given an unfolding of a n-dimensional hypercube, we can define its dual whose vertices and edges corresponds to the $(n-1)$-dimensional hypercubes and their adjacency of the original hypercube. The dual has $2 n$ vertices and $4\binom{n}{2}$ edges. The automorphism Aut has $2^{n}\binom{n}{2}$ permutations.

5. Conclusion

We have address the issue of the isomorphism elimination by proposing the top-down construction method for the ZDDs of lexicographically largest instances. Experimental results show that the proposed method is 300 times faster and 3,000 times less memory than the conventional method in the best case.

References

[1] R. E. Bryant, Graph-based algorithms for Boolean function manipulation, IEEE Transactions on Computers, vol.C-35, pp. 677-691 (1986).
[2] E. D. Demaine, J. O' Rourk, Geometric Folding Algorithms: Linkages, Origami, Polyhedra, Cambridge University Press (2007).
[3] T. Horiyama and W. Shoji, Edge Unfoldings of Platonic Solids Never Overlap, In Proc. of the 23rd Canadian Conference on Computational Geometry (CCCG 2011), pp. 65-70, 2011.
[4] T. Horiyama and W. Shoji, The Number of Different Unfoldings of Polyhedra, In Proc. of the 24th International Symposium on Algorithms and Computation (ISAAC 2013), Lecture Notes in Computer Science, 8283, pp. 623-633, Springer-Verlag, 2013.
[5] J. Kawahara, T. Inoue, H. Iwashita, and S. Minato. Frontier-based Search for Enumerating All Constrained Subgraphs with Compressed Representation. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. E100-A, no. 9, pp. 1773-1784 (2017).
[6] D. E. Knuth, The Art of Computer Programming, vol. 4, fascicle 1, Bitwise Tricks \& Techniques, Binary Decision Diagrams, Addison-Wesley (2009).
[7] E. M. Luks, Isomorphism of graphs of bounded valence can be tested in polynomial time, Journal of Computer and System Sciences, 25 (1), pp. 42-65 (1982).
[8] A. Lubiw, Some NP-complete problems similar to graph isomorphism, SIAM Journal on Computing, 10 (1), pp. 11-21 (1981).
[9] S. Minato. Zero-Suppressed BDDs for Set Manipulation in Combinatorial Problems. In Proc. of the 30th ACM/IEEE Design Automation Conference (DAC'93), pp. 272-277, 1993.

Table 1 Summary of the results for Platonic and Archimedian solids.

| Polyhedron | $\|E\|$ | \|Aut| | $\text { \#(Uabeled } \begin{aligned} & \text { Unfoldings }) \end{aligned}$ | \#Unfoldings | $\begin{aligned} & \text { Computation } \\ & \text { Time (s) } \end{aligned}$ | | $\begin{aligned} & \text { Required } \\ & \text { Memory (MB) } \\ & \hline \end{aligned}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Conventional | Proposed | $\begin{aligned} & \text { Conven- } \\ & \text { tional } \end{aligned}$ | Proposed |
| Tetrahedron | 6 | 24 | 16 | 1 | 0.01 | 0.00 | 30 | 2 |
| Cube | 12 | 48 | 384 | 11 | 0.02 | 0.01 | 30 | 2 |
| Octahedron | 12 | 48 | 384 | 11 | 0.02 | 0.01 | 30 | 2 |
| Dodecahedron | 30 | 120 | 5,184,000 | 43,380 | 9.10 | 0.54 | 529 | 5 |
| Icosahedron | 30 | 120 | 5,184,000 | 43,380 | 5.73 | 0.51 | 282 | 10 |
| Cuboctahedron | 24 | 48 | 331,776 | 6,912 | 0.35 | 0.06 | 36 | 3 |
| Truncatedtetrahedron | 18 | 24 | 6,000 | 261 | 0.03 | 0.01 | 30 | 2 |
| Truncatedoctahedron | 36 | 48 | 101,154,816 | 2,108,512 | 75.59 | 2.67 | 11,192 | 23 |
| Truncatedcube | 36 | 48 | 32,400,000 | 675,585 | 133.63 | 2.10 | 2,078 | 35 |
| Rhombicuboctahedron | 48 | 48 | 301,056,000,000 | 6,272,012,000 | | 1,913.97 | | 11,182 |

Table 2 Summary of the results for n-dimensional hypercubes.

| n | $\|E\|$ | \|Aut| | \#(Labeled Unfoldings) | \#Unfoldings | $\begin{aligned} & \text { Computation } \\ & \text { Time (s) } \end{aligned}$ | | Required
 Memory (MB) | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | Conventional | Proposed | Conventional | Proposed |
| 2 | 4 | 8 | 4 | 1 | 0.02 | 0.00 | 36 | 2 |
| 3 | 12 | 48 | 384 | 11 | 0.10 | 0.01 | 36 | 2 |
| 4 | 24 | 384 | 82,944 | 261 | 3.00 | 0.09 | 150 | 2 |
| 5 | 40 | 3,840 | 32,768,000 | 9,694 | 1166.52 | 3.96 | 36,036 | 10 |
| 6 | 60 | 46,080 | 20,736,000,000 | 502,110 | $>3 \mathrm{H}$ | 478.39 | > 140,000 | 208 |

[^0]: Faculty of Engineering, Saitama University, Japan
 Graduate School of Science and Engineering, Saitama University, Japan horiyama@al.ics.saitama-u.ac.jp
 m.miyasaka.020@ms.saitama-u.ac.jp
 c) r.sasaki.297@ms.saitama-u.ac.jp

[^1]: *1 We distinguish nodes of a ZDD from vertices of a graph (or a 1-skeleton).

