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Isomorphism Elimination
by Zero-Suppressed Binary Decision Diagrams

Takashi Horiyama2,a) MasahiroMiyasaka2,b) Riku Sasaki1,c)

Abstract: In this paper, we focus on the isomorphism elimination. More precisely, our problem is as follows: Given
a graph G with labeled edges and a family F of its subgraphs, we extract all automorphisms AutG = {π1, π2, . . . , } on
the given graph, define the lexicographically largest subgraph for each set of the mutually isomorphic subgraphs on
each automorphism πi, and select the lexicographically largest subgraphs on any of the automorphisms. In this paper,
both of the given and resulting families of subgraphs are in the form of ZDDs, and the computation are performed on
ZDDs. Experimental results show that the proposed method is 300 times faster and 3,000 times less memory than the
conventional method in the best case.

1. Introduction
Suppose that we are given a cube. By cutting along the set of

edges {e2, e3, e4, e6, e10, e11, e12} of the cube as in Fig. 1(a), we
can obtain the development in Fig. 1(c). When we rotate the po-
sitions of cutting edges by 90 degrees, i.e., by cutting along the
set of edges {e1, e3, e4, e7, e9, e11, e12}, we can also obtain the de-
velopment in Fig. 1(c). Are these the same? If we assume the
edges are labeled, the positions of cutting edges are different, and
thus we can say they are different. If we assume the edges are
unlabeled, the shape of the developments are the same, and thus
we can say they are isomorphic.

A cube has 384 labeled developments, and they are classified
into 11 nonisomorphic developments (we identify mirror shapes
as isomorphic). In [4], a technique for counting the number
of nonisomorphic developments of any polyhedron (including
nonconvex polyhedron) is given. They also listed the number
of labeled and nonisomorphic developments of all regular-faced
convex polyhedra (i.e., Platonic solids, Archimedean solids,
Johnson-Zalgaller solids, Archimedean prisms, and antiprisms)
Catalan solids, bipyramids and trapezohedra. For example,
while a truncated icosahedron (a Buckminsterfullerene, or
a soccer ball fullerene) has 375,291,866,372,898,816,000
(approximately 3.75 × 1020) labeled developments, it has
3,127,432,220,939,473,920 (approximately 3.13 × 1018) noni-
somorphic developments. A truncated icosidodecahedron has
21, 789, 262, 703, 685, 125, 511, 464, 767, 107, 171, 876, 864, 000
(approximately 2.18 × 1040) labeled developments, and has
181, 577, 189, 197, 376, 045, 928, 994, 520, 239, 942, 164, 480
(approximately 1.82 × 1038) nonisomorphic developments. We
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Fig. 1 Different cut edges (a) and (b) have isomorphic developments.

here note that the technique in [4] counts the number of noniso-
morphic developments without enumerating developments.

As for the enumeration of nonisomorphic developments, a
technique using BDDs (Binary Decision Diagrams) is given
in [3]. A BDD [1] is a graph representation of a family of sets.
The cut edges of a development of a polyhedron form a spanning
tree of the 1-skeleton (i.e., the graph formed by the vertices and
the edges) of the polyhedron (See, e.g., [[2], Lemma 22.1.1]),
and vice versa. In [3], they constructed a BDD corresponding to
a family of labeled developments, where each development cor-
responds to a spanning tree represented by a set of labeled edges.
Then, by omitting mutually isomorphic developments, they ob-
tained nonisomorphic developments.

Later, a sophisticated method called a “frontier-based
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search” [5] is proposed for constructing BDDs/ZDDs represent-
ing all constrained subgraphs. A ZDD (Zero-suppressed Binary
Decision Diagram) [3] is a variant of BDDs, and also represents
a family of sets. The frontier-based search is an extension of
Simpath algorithm [6] by Knuth for enumerating all st-paths
in a given graph. The method can be considered as one of
DP-like algorithms, and it constructs the resulting BDDs/ZDDs
in a top-down manner. By applying this method to the first
step in [3], we can speed-up the construction of the BDD/ZDD
representing a family of spanning trees.

In this paper, we focus on the isomorphism elimination. More
precisely, our problem is as follows: Given a graph G with la-
beled edges and a family F of its subgraphs, we extract all auto-
morphisms AutG = {π1, π2, . . . , } on the given graph, define the
lexicographically largest subgraph for each set of the mutually
isomorphic subgraphs on each automorphism πi, and select the
lexicographically largest subgraphs on any of the automorphisms.
In this paper, both of the given and resulting families of subgraphs
are in the form of ZDDs, and the computation are performed on
ZDDs. This is because (1) ZDDs can compactly represent a fam-
ily of sets, (2) the enumeration by ZDDs are faster than other
methods in many cases.

In general, the first step for extracting all automorphisms on a
given graph is not tractable: It is still open whether the graph au-
tomorphism problem (i.e., the problem deciding whether a given
graph has a nontrivial automorphism or not) is in P or in NP-
complete [8]. Fortunately, however, we can solve the problem in
polynomial time if the degrees of vertices in a graph graph are
bounded by a constant [7].

Our main issue is to select the lexicographically largest sub-
graphs on any of the automorphisms. In [3], they constructed
BDDs G1,G2, . . ., where Gi represents a family of the lexico-
graphically largest subgraphs on automorphism πi, and then took
the intersection of the BDDs for selecting a family of subgraphs
that appear in all of the families of G1,G2, . . .. Since the method
was proposed before the era of the frontier-based search algo-
rithms, similarly to the BDD/ZDD algorithms in those days, it
obtains the resulting BDD by the repetition of apply operations.
In this paper, we renovate this step by introducing the framework
of the frontier-based search: We propose algorithms for the top-
down construction of the ZDD representing a family of the lexi-
cographically largest subgraphs on πi.

2. Enumeration by Zero-Suppressed Binary
Decision Diagrams

A zero-suppressed binary decision diagram (ZDD) [9] is di-
rected acyclic graph that represents a family of sets. As illustrated
in Fig. 2, it has the unique source node*1, called the root node, and
has two sink nodes 0 and 1, called the 0-node and the 1-node, re-
spectively (which are together called the constant nodes). Each
of the other nodes is labeled by one of the variables x1, x2, . . . , xn,
and has exactly two outgoing edges, called 0-edge and 1-edge,
respectively. On every path from the root node to a constant node
in a ZDD, each variable appears at most once in the same order.

*1 We distinguish nodes of a ZDD from vertices of a graph (or a 1-skeleton).
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Fig. 2 A ZDD representing {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}.

The size of a ZDD is the number of nodes in it.
Every node v of a ZDD represents a family of sets Fv, de-

fined by the subgraph consisting of those edges and nodes reach-
able from v. If node v is the 1-node (respectively, 0-node),
Fv equals to {{}} (respectively, {}). Otherwise, Fv is defined as
F0-succ(v) ∪ {S | S = {var(v)} ∪ S ′, S ′ ∈ F1-succ(v)}, where 0-succ(v)
and 1-succ(v), respectively, denote the nodes pointed by the 0-
edge and the 1-edge from node v, and var(v) denotes the label
of node v. The family F of sets represented by a ZDD is the
one represented by the root node. Fig. 2 is a ZDD representing
F = {{1, 2}, {1, 3, 4}, {2, 3, 4}, {3}, {4}}. Each path from the root
node to the 1-node, called 1-path, corresponds to one of the sets
in F.

The frontier-based search [5] constructs ZDDs in a top-down
manner, and it can be considered as one of DP-like algorithms.
We can modify DP algorithms for recognition (i.e., testing
whether a given instance satisfies some property) to the frontier-
based search algorithm that construct a ZDD representing the
family of the yes-iinstances. Thus, in Section 3, we only show
our algorithms as in the form of DP algorithms. The key of the
frontier-based search is to share ZDD-nodes by simple “knowl-
edge” of partially given input, and not to traverse the same sub-
problems more than once. In the context of DP, this means that
“internal state” for partially given input should be small. For
more details, see [5].

3. Isomorphism Elimination
Let pi be a permutation on {1, 2, . . . , n}, and ⪯ be a lexicograph-

ical order on x = (xn, xn−1, . . . , x1) ∈ {0, 1}n. For any x, we can
obtain π(x) = (xπ(n), xπ(n−1), . . . , xπ(1)), and thus we can define a
family Fπ of lexicographically larger x’s as

Fπ = {x | x ⪰ π(x)} .

Here, we regard a vector x as a set {xi | xi = 1}, which im-
plies that Fπ can be regarded as a family of sets {xi1 , xi2 , . . .}
(⊆ {xn, xn−1, . . . , x1}) that are lexicographically larger than their π-
mapped set {xπ(i1), xπ(i2), . . .}. Given a set of permutations AutG =
{π1, π2, . . .}, by taking the intersection of Fπ1 ,Fπ2 , . . ., we can ob-
tain a family of sets, each of which is the lexicographically largest
on AutG. Later in this section, we discuss a DP algorithm that
outputs 1 if and only if input x satisfies x ⪰ π(x).

The outline of the algorithm is as follows. The algorithm
consists of two phases. In Phase I, xn, xn−1, . . . , x1 are given
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Algorithm 1: Preparation of Phases I and II
Input : n, π
Output: UpdateMemory[ ], cutwidth, Compare[ ]

1 Prepare an empty array until[ ]
2 for i := n, n − 1, . . . , 1 do
3 if i > min{π(i), π−1(i)} then

// It is necessary to store xi in the memory

4 k :=
{

min{ j | i ≤ until[ j]} if ∃ j s.t. i ≤ until[ j]
(cardinality of until[ ]) + 1 otherwise

5 position[i] := k // xi is stored in M[k]
6 until[k] := min{π(i), π−1(i)}

// M[k] should be kept until the level of xπ(i) or xπ−1(i)

7 UpdateMemory[i] := UpdateMemory[i] ∪ {(k, ‘store′)}
8 UpdateMemory[until[k]] :=

UpdateMemory[until[k]] ∪ {(k, ‘erase′)}

9 cutwidth := cardinality of until[ ]
10 for i := n, n − 1, . . . , 1 do
11 if i > π(i) then // xi is stored until xπ(i) is given
12 Compare[π(i)] := Compare[π(i)] ∪ {(i, position[i], ‘input′)}
13 else if i < π(i) then // xπ(i) is stored until xi is given
14 Compare[i] := Compare[i] ∪ {(i, ‘input′, position[π(i)])}
15 else // xi and xπ(i) are the same variable
16 Compare[i] := Compare[i] ∪ {(i, ‘input′, ‘input′)}

Algorithm 2: Phase I
Input : UpdateMemory[ ], cutwidth, Compare[ ], x = (xn, xn−1, . . . , x1)
Output: (cn, cn−1, . . . , c1)

1 Prepare an array M[ ] of size cutwidth
2 for i := n, n − 1, . . . , 1 do
3 foreach (i′, p0, p1) ∈ Compare[i] do

4 m0 :=
{

xi if p0 = ‘input′

M[p0] otherwise

5 m1 :=
{

xi if p1 = ‘input′

M[p1] otherwise

6 ci′ :=


‘ >′ if m0 > m1
‘ <′ if m0 < m1
‘ =′ if m0 = m1

7 foreach (k, behavior) ∈ UpdateMemory[i] do
8 if behavior = ‘store′ then
9 M[k] := xi // Store xi in M[k]

10 else
11 M[k] := 0 // In case behavior = ‘erase′, erase M[k]

Algorithm 3: Phase II
Input : (cn, cn−1, . . . , c1) and a permutation π′

Output:
{

1 : if x ⪰ π(x)
0 : otherwise

1 (is, cis ) := (∞, ‘ =′)
// Set the initial state

2 for j := n, n − 1, . . . , 1 do
3 i′ := π′( j)
4 if i′ > is then

// The position of ci′ is higher than that of cis

5 if ci′ = ‘ >′ or‘ <′ then
6 (is, cis ) := (i′, ci′ )

7 else
// The position of cis is higher than that of ci′

8 if cis = ‘ =′ then
9 (is, cis ) := (i′, ci′ )

10 if cis = ‘ >′ or ‘ =′ then
11 Output 1

// x ⪰ π(x)
12 else
13 Output 0

// x ⪰̸ π(x)
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on-the-fly. In other words, xi is given in time slot n + 1 − i
(i = n, n − 1, . . . , 1). In the comparison of x and π(x), xi is com-
pared with xπ(i). In case i < π(i), since xπ(i) will be given in the
future, we store xi in the memory until xπ(i) is given. On the other
hand, in case i > π(i), xπ(i) is already stored in the memory, and
thus we can compare xi and xπ(i). We transfer the result of the
comparison ci to Phase II. In case i = π(i), we compare xi and
xπ(i), and transfer ci is ‘=’ (i.e., equivalent) to Phase II.

In Phase II, the results of the comparisons C = {cn, cn−1, . . . , c1}
are given from Phase I. Note that the given order of ci is not
cn, cn−1, . . . , c1. The order is defined by π. Let π′ denote the
order of ci’s given to Phase II: ci’s are given in the order of
cπ′(n), cπ′(n−1), . . . , cπ′(1). We also note that no ci may be given in
some time slot, and that two ci and ci′ may be given in the same
time slot. In Phase II, by checking such ci’s, we conclude whether
x ⪰ π(x) holds or not.

Now, we move to the details of the algorithm. In Phase I, xi

is stored until xπ(i) appears. At the same time, xi is required to
compare with xπ−1(i). Thus, precesely speaking, xi is stored into
the memory if i > min{π(i), π−1(i)} holds, and it is stored until
xmin{π(i),π−1(i)} is given. The amount of memory to store xi’s is the
cut width of the graph G = (V, E) where V = {xn, xn−1, . . . , x1}
and (xi, xπ(i)) ∈ E.

Algorithm 1 summarizes the preparation necessary for Phases
I and II. If i > min{π(i), π−1(i)} holds in Line 3, we plann to store
xi in M[k] and keep M[k] until xmin{π(i),π−1(i)} is given (Lines 4–6).
In Lines 7 and 8, we record the plan for storing/erasing M[k], and
the plan UpdateMemory[[]i] is actually executed in Lines 7–11
of Algorithm 2 (Phase I). The plan for comparing xi and xπ(i) is
recorded in Lines 10–16, and it is actually executed in Lines 3–6
of Algorithm 2.

Algorithm 3 describes Phase II. Recall that cn, cn−1, . . . , c1 may
not be given in this order. For convinience, we introduce permu-
tation π′ for denoting the ordering cπ′(n), cπ′(n−1), . . . , cπ′(1). (The
ordering is implicitly given by Lines 2 and 3 of Algorithm 2, and
thus, it is just for convinience, and we will avoid it by combin-
ing Phases I and II.) By updating (is, cis ) in Lines 4–9, we can
check whether x ⪰ π(x) holds or not in Lines 10–13 (Details are
omitted).

Now, we combine Phases I and II. Line 1 of Algorithm 3 is an
initialization of state (is, cis ), and it should be inserted in the be-
gining of Algorithm 2. Lines 4–9 of Algorithm 3 receive ci′ , and
thus they should be inserted just after Line 6 in the foreach-loop
of Algorithm 2. Lines 10–13 of Algorithm 3 decide the output
according to the final cis , and thus they should be inserted after
the last part of Algorithm 2.

4. Experimental Results
Experimental results are given in Tables 4 and 4. In table 4, the

developments of 5 Platonic solids and 5 out of 13 Archimedean
solids (a cuboctahedron, a truncatedtetrahedron, a truncatedoc-
tahedron, a truncatedcube, a rhombicuboctahedron) are enumer-
ated. A development of a polyhedron is a simple polygon ob-
tained by cutting along the edges of the polyhedron and unfold-
ing it into a plane. The cut edges of a development of a polyhe-
dron form a spanning tree of the 1-skeleton (i.e., the graph formed

by the vertices and the edges) of the polyhedron (See, e.g., [[2],
Lemma 22.1.1]). The second column |E| in Table 4 gives the num-
ber of edges in the 1-skeleton of a polyhedron. The third column
|Aut| gives the number of automorphisms of a polyhedron. The
fourth and fifth columns give the number of labeled and unlabeled
developments, respectively. For example, as for a rhombicuboc-
tahedron, we have 301,056,000,000 labeled developments. By
checking the graph isomorphism for all of these labeled develop-
ments among 48 automorphisms, we obtained 6,272,012,000 un-
labeled developments. The size of the required memory is sum-
marized in the eigth and ninth column. The proposed method
requires less memory than the conventional method. As for a
rhombicuboctahedron, however, requires much memory even for
the proposed method.

In table 4, the developments of n-dimensional hypercubes are
enumerated. As in the case of a cube (i.e., n = 3), given an
unfolding of a n-dimensional hypercube, we can define its dual
whose vertices and edges corresponds to the (n − 1)-dimensional
hypercubes and their adjacency of the original hypercube. The
dual has 2n vertices and 4

(
n
2

)
edges. The automorphism Aut has

2n
(

n
2

)
permutations.

5. Conclusion
We have address the issue of the isomorphism elimination by

proposing the top-down construction method for the ZDDs of lex-
icographically largest instances. Experimental results show that
the proposed method is 300 times faster and 3,000 times less
memory than the conventional method in the best case.
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Table 1 Summary of the results for Platonic and Archimedian solids.

Computation
Time (s)

Required
Memory (MB)

Polyhedron |E| |Aut| #
(
Labeled
Unfoldings

)
#Unfoldings Conven-

tional Proposed Conven-
tional Proposed

Tetrahedron 6 24 16 1 0.01 0.00 30 2
Cube 12 48 384 11 0.02 0.01 30 2

Octahedron 12 48 384 11 0.02 0.01 30 2
Dodecahedron 30 120 5,184,000 43,380 9.10 0.54 529 5

Icosahedron 30 120 5,184,000 43,380 5.73 0.51 282 10
Cuboctahedron 24 48 331,776 6,912 0.35 0.06 36 3

Truncatedtetrahedron 18 24 6,000 261 0.03 0.01 30 2
Truncatedoctahedron 36 48 101,154,816 2,108,512 75.59 2.67 11,192 23

Truncatedcube 36 48 32,400,000 675,585 133.63 2.10 2,078 35
Rhombicuboctahedron 48 48 301,056,000,000 6,272,012,000 1,913.97 11,182

Table 2 Summary of the results for n-dimensional hypercubes.

Computation
Time (s)

Required
Memory (MB)

n |E| |Aut| #
(
Labeled
Unfoldings

)
#Unfoldings Conven-

tional Proposed Conven-
tional Proposed

2 4 8 4 1 0.02 0.00 36 2
3 12 48 384 11 0.10 0.01 36 2
4 24 384 82,944 261 3.00 0.09 150 2
5 40 3,840 32,768,000 9,694 1166.52 3.96 36,036 10
6 60 46,080 20,736,000,000 502,110 > 3 H 478.39 > 140,000 208
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