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In this paper, we propose an approximation method for the statistical MAX
operation such that it results in a normal distribution good for the worst-case
delay analysis. The important operation in SSTA is SUM and MAX of distri-
butions. In general, the delay variation is modeled as normal distribution. The
result of SUM operation of two normal distributions is also normal distribution.
On the other hand, the result of MAX operation is not normal distribution.
Thus approximation to normal distribution is commonly used. We also explain
that the proposed MAX operation at each gate also contributes to the accurate
estimation in the worst-case delay analysis of the whole circuit. Experimental
results show that the proposed method leads to a good approximation for a
normal distribution resulted from MAX operation of normal distributions with
and without correlation, and the approximation improves the accuracy of the
worst-case delay analysis. In a circuit example, the errors of worst-case delay
computed by the previous method are about 20%, and the errors computed by
the proposed method are under 5%.

1. Introduction

With the rapid progress of technology scaling, the number of components on
a circuit explodes exponentially. It is becoming more and more difficult to pre-
dict a timing behavior of a circuit for accurate estimation of its timing yield.
A transistor-level circuit simulation such as SPICE can be used for accurate es-
timation of a circuit behavior under a specific input transition. However, its
cost is expensive and it is prohibitive to cover all possible combinations of input
transitions. At this time, static timing analysis (STA) is an only viable method
to predict a timing characteristic of a whole circuit where the latest arrival time
(LAT) and the earliest arrival time (EAT) at each gate are propagated from the
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primary inputs to the primary outputs of the circuit.
In recent years, variability of scaled devices becomes a big concern 1). A con-

ventional STA estimates the worst-case delay of a circuit based on the perfor-
mance corner characteristic of each component. This treatment is effective on
the assumption of global variability (die-to-die, wafer-to-wafer, lot-to-lot) where
all components deviate toward the same direction. However, random variability
within a die becomes dominant in a scaled technology, and hence the assumption
of the global variability results in an overly pessimistic estimation. In order to
consider random variability within a die, statistical static timing analysis (SSTA)
has been attracting a wide attention 2)–7).

Most of the SSTA techniques fall into one of two categories: block-based timing
analysis or path-based timing analysis 8). In this paper, we focus on the block-
based approach which is a natural extension of conventional STA algorithm.

The SSTA deals with the LAT and EAT as random variables with certain
probability distributions. Fundamental operations in SSTA are the statistical
sum and maximum (SUM and MAX) of LAT/EAT distributions at each gate. In
many cases, delay distributions are assumed to be Gaussian (normal) and LAT
and EAT are also expressed in normal distributions. The Gaussian approximation
greatly simplifies statistical operations on random variables. For example, under
the assumption of normal distributions, SUM operation can be performed in an
exact way, since the operation is linear and hence a resulting distribution becomes
normal. In contrast, MAX is a non-linear operation and a resulting distribution
does not become normal in a strict sense. Therefore we need to approximate it
to a normal distribution.

A conventional method for the approximation is to match the first and second
order moments of the two distributions such that the mean and the variance
of the two distributions becomes the same. This is a natural approach from
the standpoint of fitting the whole shape to a normal distribution. However, in
SSTA especially for the timing analysis of application specific circuits (ASICs),
important information to be analyzed is timing yield or, in another word, the
worst-case delay that corresponds to a certain value of CDF such as 99% or
99.87%. From the standpoint of the worst-case delay analysis, the conventional
method for statistical MAX operation that produces a normal distribution with
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117 Accurate Estimation of the Worst-case Delay in Statistical Static Timing Analysis

matched mean and variance does not lead to a good approximation, which will
be shown later.

In this paper we propose an approximation method for the statistical MAX
operation such that it results in a normal distribution good for the worst-case
delay analysis. A similar concept has been proposed in Ref. 5) where the normal
approximation is made that matches the CDF values at the best and the worst-
cases of μ± 3σ where μ and σ represent the mean and the standard deviation of
the approximated normal distribution. However, the method in Ref. 5) handles
only the MAX of independent normal distributions without correlation. Also,
the rationale of the approximation is not discussed. In this paper we explain
that the proposed MAX operation at each gate also contributes to the accurate
estimation in the worst-case delay analysis of the whole circuit. Experimental
results show that the proposed method leads to a good approximation for a
normal distribution resulted from MAX operation of normal distributions with
and without correlation, and the approximation improves the accuracy of the
worst-case delay analysis.

The remainder of this paper is organized as follows. In Section 2 we discuss a
conventional approximate method of SUM and MAX operations for normal dis-
tributions. In Section 3, we propose a method for MAX operation that improves
the accuracy for the worst-case analysis. In Section 4, we evaluate the accuracy
of the proposed method in comparison with the conventional approach based on
the Monte Carlo analysis. In Section 5, we discuss the reason why the proposed
method for MAX operation at each gate leads to the improvement of the overall
accuracy in the worst-case delay analysis of the whole circuit, followed by an
experimental demonstration using a simple circuit model. Section 6 concludes
the discussion.

2. Statistical Operations of Normal Random Variables

In this section, we describe fundamental operations in SSTA; SUM and MAX,
and explain a conventional approximation method for MAX operation.

The purpose of SSTA is the statistical analysis of the latest (and the earliest)
signal arrival time. In SSTA, similar to STA, statistical SUM and MAX oper-
ations are repeated from primary inputs to outputs and the LAT of the whole

circuit is finally calculated. The EAT is also obtained in a similar way by using
the minimum operation of the distribution (MIN operation) instead of the MAX
operation. From now on, for simplicity, we focus our discussion on the LAT
analysis with MAX operation. The same discussion can be made on the EAT
analysis with the MIN operation. Also, we assume that all delay distributions
are normal.

We first look at a SUM operation. Given two normal distributions x =
N(μx, σ2

x) and y = N(μy, σ2
y), the mean E[s] and the variance V [s] of the sum

s =SUM[x, y] are represented as follows:

E[s] = μx + μy (1)
V [s] = σ2

x + σ2
y + 2ρxyσxσy (2)

where ρxy is a correlation coefficient between x and y. The SUM operation is
linear and hence this treatment is exact.

Next, we explain a conventional method of MAX operation 9). Given two nor-
mal distributions x and y, the maximum h =MAX[x, y] is approximated to a
normal distribution that has the mean E[h] and the variance V [h] as follows:

E[h] = μxΦ(β) + μyΦ(−β) + αφ(β) (3)
V [h] = (μ2

x + σ2
x)Φ(β) + (μ2

y + σ2
y)Φ(−β) + (μx + μy)αφ(β) − E[h]2 (4)

where φ and Φ are the probability density function (PDF) and the cumulative
distribution function (CDF) of the normal distribution, respectively, defined as
follows:

φ(x) =
1√
2π

exp
[
−x2

2

]
(5)

Φ(x) =
∫ x

−∞
φ(y)dy. (6)

Parameters α and β are defined as follows:

α =
√

σ2
x + σ2

y − 2σxσyρxy (7)

β =
μx − μy

α
. (8)

Then, the correlation coefficient between h and an arbitrary normal distribution

IPSJ Transactions on System LSI Design Methodology Vol. 1 116–125 (Aug. 2008) c© 2008 Information Processing Society of Japan



118 Accurate Estimation of the Worst-case Delay in Statistical Static Timing Analysis

w is derived as follows where the correlation coefficients between x and w, y and
w are ρxw, ρyw, respectively:

ρh,w =
σxρxwΦ(β) + σyρywΦ(−β)

σh
. (9)

3. Worst-case Oriented Approximation of MAX Operation

Among the fundamental operations of SUM and MAX for normal distributions,
the SUM can be calculated exactly. However, an error may be observed in the
MAX operation when the resulting non-normal distribution is approximated to
normal. In this section we discuss the approximation error in the resulting normal
distribution by the MAX operation. Then we propose an approximate method
that put emphasis on the accuracy of the worst-case value.

3.1 Approximation Error
In a conventional method, the mean and the variance of an approximated

normal distribution resulted from the MAX operation are derived from the first
moment and the second moment of the MAX-operated distribution 9). From
another point of view, the conventional method approximates the shape of the
whole distribution to normal. However, in ASIC design, the most important
timing information is the worst-case value of the LAT that corresponds to a
certain value of the CDF such as 99% or 99.87%. The 99.87% point of the CDF
corresponds to μ+3σ of a normal distribution, and one of frequently used values
for the worst-case delay. In this paper, we also use 99.87% point of the CDF for
the worst-case delay, but we can use any other values for the definition.

The LAT of a circuit can be obtained by repetitive operations of SUM and MAX
over all the gate in the circuit. The result of the MAX operation has a non-normal
distribution due to non-linear nature of the operation. There is no guarantee that
the 99.87% point of the CDF for a MAX-operated distribution corresponds to the
μ+3σ point of the normal distribution derived from the moments. In other words,
the mean and the variance obtained by the conventional method are not adequate
for the estimation of the worst-case value. Therefore, in the next subsection we
propose a method for approximating a result of the MAX operation to a normal
distribution such that the estimate error of the worst value of the distribution
becomes minimal.

3.2 Proposed Method
We propose a method to obtain the mean and the variance of an approximated

normal distribution of the MAX operation in order to minimize the error at
the worst-case value. In the proposed method, the mean value is obtained from
the first moment of the distribution because it is the primary parameter that
characterizes the shape of the distribution. This is the same with the conventional
method and the mean is expressed by Eq. (3). On the other hand, the variance
is derived from the actual value of the worst-case delay such that the distance
from the estimated mean and the actual worst-case delay is equal to a pre-defined
value such as 3σ in this case. The worst-case value can be accurately obtained
in the case that the correlation coefficient is either 0, 1, or -1. If the correlation
has a value between those discrete values, the worst-case value is approximated
as a weighted average of them, as explained next.

Given two normal random variables A = N(μA, σ2
A), B = N(μB, σ2

B) and
maximum of them MAX[A, B], the probability that MAX[A, B] is larger than a
certain value x is equal to the probability that either A or B is larger than x.
That is, assuming q(x) be the probability that both A and B are larger than x,
and PA(x), PB(x) be the probabilities that each of A and B is larger than x, the
probability P (x) that MAX[A, B] is larger than x is expressed as follows:

P (x) = PA(x) + PB(x) − q(x). (10)
If the correlation coefficient between A and B is 0 (non-correlation), q(x) can

be expressed as follows:
q(x) = PA(x)PB(x). (11)

If the correlation coefficient is 1,
q(x) = min[PA(x), PB(x)] (12)

where min[PA(x), PB(x)] is the smaller value of PA(x) and PB(x). If the corre-
lation coefficient is -1, q(x) is as follows:

q(x) = 0. (13)
If A and B has a positive correlation coefficient ρ(0 < ρ < 1), we approximately

derive q(x) from the q(x) values at ρ = 0 and ρ = 1 according to the value of ρ

on a prorate basis, that is
if PA(x) ≥ PB(x)

q(x) = ρPB(x) + (1 − ρ)PA(x)PB(x) (14)
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if PA(x) < PB(x)
q(x) = ρPA(x) + (1 − ρ)PA(x)PB(x). (15)

PA(x), PB(x) is calculated as

PA(x) = 1 − CDF
(

x − μA

σA

)
(16)

PB(x) = 1 − CDF
(

x − μB

σB

)
(17)

where CDF(x) represents a CDF of a normal distribution 10).
In Eq. (10), the x that satisfies P (x) = 0.13% is the worst-case value of

MAX[A, B]. There is no analytical solution for a reverse-function of P (x), and
therefore we need a numerical search or an approximation method.

An example of the method for approximately obtaining x that satisfies P (x) =
0.13% is explained next. If μA + 3σA > μB + 3σB holds, it can be thought
that the point that corresponds to the worst-case value of MAX[A, B] is in the
neighborhood of μA +3σA. Therefore, in the region around the worst-case value,
we approximate MAX[A, B] to a normal distribution with the mean of μA and
the standard deviation of σm which is slightly larger than μA. This assumption
leads to the following equation:

P (x) = 1 − CDF
(

x − μA

σm

)
= CDF

(
−x − μA

σm

)
. (18)

By calculating P (x) at μA + 3σA, we have

P (μA + 3σA) = CDF
(−3σA

σm

)
(19)

which results in

σm = − 3σA

CDF−1(P (μA + 3σA))
. (20)

Therefore, x can be obtained by the following expression:

x = μA + 3σA
−3

CDF−1(P (μA + 3σA))
. (21)

If μA + 3σA < μB + 3σB, x is obtained accordingly by replacing A in Eq. (21)
with B.

When the cumulative probabilities in certain two points are given, a normal
distribution is uniquely defined. We assume the mean obtained by Eq. (3) to be

μmax, and calculate standard deviation σmax from the following equation:
x = μmax + 3σmax. (22)

The correlation coefficient between an arbitrary normal distribution and
MAX[A, B] is derived in the same way as Eq. (9).

In the calculation of the MAX operation, the computations of CDF and CDF−1

requires more time than simple mathematical operations such as addition and
multiplication. The calculation of CDF can be done by a polynomial approxi-
mation 10). Also, CDF−1 can be obtained by an initial guess using a polynomial
approximation followed by a numerical search with quick convergence 11). In our
experiment, the cost of CDF−1 calculation is about twice of CDF. The proposed
method needs three CDF and one CDF−1 calculations whereas the conventional
method requires one CDF calculation, which approximately indicates the cost
impact of the MAX operations.

In this subsection, we have assumed that the 3σ point of the CDF as the worst-
case delay. As explained earlier, we can choose any other points for the worst-case
delay. For example, if we use another σ point, the same algorithm can be applied
except for changing the sigma values in Eqs. (19)–(22) to the corresponding value.

4. Accuracy Evaluation

In this section, the accuracy of estimated worst-case values of the MAX[A, B]
obtained by the proposed method and the conventional method are examined in
comparison with the worst-case value derived by Monte Carlo analysis.

Given the normal distributions A and B, the accuracy may depend on the
differences in the means, variances, and correlation of the two distributions. We
therefore evaluate the accuracy in the following three conditions.

Purpose and condition of evaluation
( 1 ) Error versus Difference of μA and μB

μB − μA is set to a variable, while μA = 0, σA = 3, σB = 2, and ρ = 0 or
0.5.

( 2 ) Error versus Ratio of σB to σA

σB is set to a variable, while μA − μB = 0, σA = 3, and ρ = 0 or 0.5.
( 3 ) Error versus Correlation coefficient between A and B

ρ is set to a variable, while μA − μB = 0, σA = 3, and σB = 2.
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Fig. 1 Worst-case estimation error versus μB − μA.

Fig. 2 Worst-case estimation error versus σB/σA.

We assume the distribution of MAX[A, B] obtained by Monte Carlo method
(1,000,000 trials) to be the true value and compared an error of our method and
the conventional method under these three conditions. The amount of error is
normalized by the variation of A (3σA).

We show a result in Figs. 1, 2 and 3. In Fig. 1, the error of the conventional
method increases with a decrease in the difference of the means (|μB − μA|).
In Fig. 2, the error of the conventional method increases with a decrease in the
ratio of σB to σA. In Fig. 3, the error of the conventional method becomes
large when the correlation coefficient is negative. From those figures, the error
of the conventional method reaches 25% in some cases, whereas the error of the

Fig. 3 Worst-case estimation error versus Correlation coefficient between A and B.

Fig. 4 CDF of MAX[A, B], near the worst-case value.

proposed method is less than 1% on average and 2% at the maximum. In all cases
except for some exceptions, the proposed method provides far better accuracy
over the conventional method. A possible source of errors in the proposed method
includes the approximated derivation of the worst-case value by Eq. (21). Also,
the limited number of trials in the Monte Carlo analysis may contribute to some
amount of the errors in this experiment.

An example of the distribution shapes near the worst-case value is shown in
Fig. 4. Three lines correspond to the CDF of MAX[A, B] obtained by the Monte
Carlo, the proposed, and the conventional methods when μA = μB = 0, σA = 3,
σB = 2, and ρ = 0. The proposed method provides a good approximation around
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the worst corner.

5. Application to SSTA

In the previous section, experimental results show that the proposed method
improves the approximation accuracy of MAX operation in the vicinity of the
worst-case value compared with the conventional method. However, in SSTA,
what is of prime importance is the accurate LAT estimation of the whole circuit,
especially the worst-case value at primary outputs. In this section, we first explain
that the accurate estimation of the worst-case delay at each gate also contributes
to the accurate estimation of the worst-case delay for the whole circuit using a
graphical representation of MAX and SUM operations. We then evaluate the
accuracy of the worst-case delay of a circuit experimentally using a simple circuit
model.

5.1 Graphical Representation of MAX and SUM Operations
In SSTA, we assume that each gate has delay distributions with correlation

and we calculate the worst-case LAT value of the circuit that corresponds to a
certain value of CDF by repetitive application of MAX and SUM operations.
In the proposed method for MAX operation, resulting MAX-ed distribution is
approximated to a normal distribution that has the same CDF value at the worst-
case point. This provides a good approximation around the worst-case corner.
However, the approximation is not necessarily good in the area far from the worst-
case corner. In this subsection, we examine the characteristics of the MAX and
SUM operations, and show that a good approximation emphasizing the accuracy
around the worst-case corner is also important for accurate calculation of MAX
and SUM operations in SSTA.

5.1.1 MAX Operation
We examine the accuracy of the worst-case value estimation obtained from a

sequence of MAX operations.
Figure 5 shows a concept of Eq. (10) using two-dimensional PDF of distri-

butions A and B. The ellipsoids in Fig. 5 represent contours with equal prob-
abilities. The cumulated probability of the upward-hatched area corresponds
to PA(x), that of the downward-hatched area corresponds to PB(x), and the
intersection of the two hatched areas corresponds to q(x). That is, the upper

Fig. 5 Concept of upper probability P (x) of MAX[A, B].

probability of MAX[A, B] with respect to x, which is Eq. (10), is the cumulated
probability of the whole hatched area in Fig. 5, and its value is independent from
the distribution shape in the area without hatching.

The worst-case value of MAX[A, B] is the x that satisfies P (x) = 0.13%. From
Fig. 5 it is clear that PA(x) ≤ P (x) and PB(x) ≤ P (x) hold. Therefore such x

is located outside the worst-case values of the two distributions. In other words
it is not necessary to know the distribution shape inside the worst-case values of
A and B for the calculation of the worst-case value x. Instead, we should know
accurate distribution outside the worst-case value for the MAX operation, which
is achieved by the proposed method.

5.1.2 SUM Operation
In SSTA, the SUM operation is performed on the result of MAX operation and

another normal distribution that represents gate or interconnect delay. Figure 6
shows a concept of the sum of distributions A and B (S = A + B) using two-
dimensional PDF. When we assume the worst-case value of S to be μS + 3σS ,
its upper probability is the cumulated probability of the shaded area shown in
Fig. 6. To obtain the worst-case value of S accurately, the distributions A and B

should be approximated to normal such that the distribution shape in the shaded
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Fig. 6 Concept of upper probability of SUM[A, B].

area is accurate.
In the shaded area, the highest probability appears at the closest point to the

center of the two-dimensional Gaussian distribution. In the case that the corre-
lation between A and B is positive, the point with the highest probability locates
near the point of (μA + 3σA, μB + 3σA). Because the proposed method provides
accurate estimation of the distribution shape in the neighborhood of the worst
corner, we can expect a good accuracy in the SUM operation. Should the correla-
tion between A and B be negative, the accuracy might degrade because the point
with the highest probability moves away from the point of (μA +3σA, μB +3σA)
toward the center of the distribution. However, it is not clear whether negative
correlation between adjacent gates may happen in a practical situation. We can
conclude that the proposed method is also effective for the SUM operation.

5.2 Accuracy Evaluation of Circuit-level LAT Analysis
In this subsection we experimentally show that the proposed method improves

the estimation accuracy of the worst-case LAT value of the whole circuit. Using
a simple delay model and a circuit that includes small number of two-input
gates, we calculate the distribution of LAT by the proposed and the conventional
method, and evaluate the accuracy at the worst-case value.

We can handle the problem to obtain the LAT of a combinational circuit as

Fig. 7 2-input gate delay model and MAX operation.

Fig. 8 Circuit model of 3-stage 2-input gates.

the longest path problem of a graph. For example in Fig. 7, if we assume delays
from input to output of each gate are represented by A and B and assign these
variables to each branch of the graph, the LAT of the circuit is MAX[A, B].

In this evaluation, we examine the graph of a circuit that consists of three
stages of two input gates shown in Fig. 8. The leftmost eight nodes are inputs,
and the rightmost node is the output. We assign the normal distributions A(μA =
10, σA = 1) and B(μB = 10, σA = 2) to each branch of the graph, and calculate
the LAT of the whole circuit by MAX and SUM operations. We assume the
correlation coefficient ρ between two delays of each gate. The same value is
used for the coefficient ρ at each gate. The true distribution is obtained by the
Monte Carlo method (1M trials). We compare the LAT estimation error of the
proposed method to that of the conventional method at the worst-case value
(99.87% point). The amount of error is normalized by the variation of LAT (50%
to 99.87%).
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Fig. 9 Estimated distribution, ρ = 0.5.

Fig. 10 Error at the worst-case, ρ = 0.5.

The estimated CDF at ρ = 0.5 is shown in Figs. 9 and 10. The whole CDF
is shown in Fig. 9 and a magnified view around the worst corner is displayed
in Fig. 10. There is 19.5% error at the worst-case value of the LAT by the
conventional method. In contrast, the error of the proposed method is 3.4%. We
also evaluate under the condition of ρ = 0.2 and 0.8, and the error is shown in
Table 1. The error of the proposed method is 5-6 times less than that of the
conventional method. Both methods have smaller error when the correlation is
stronger. From these experimental results, we confirm that the proposed method
estimates the worst-case LAT value of the circuit accurately.

Table 1 Error at worst-case [%].

ρ Conventional Proposed
0.2 21.0 4.6
0.5 19.5 3.4
0.8 17.8 3.1

6. Conclusion

In this paper we propose an approximation method for the statistical MAX
operation such that it results in a normal distribution good for the worst-case
delay analysis.

We examine the accuracy of estimated worst-case values of the MAX[A, B]
obtained by the proposed method and the conventional method in comparison
with the worst-case value derived by Monte Carlo analysis. While the conven-
tional method has up to 25% error at the worst-case value, the proposed method
reduces the error to less than 2%.

We also explain that the proposed MAX operation at each gate also contributes
to the accurate estimation in the worst-case delay analysis of the whole circuit.

Then, using a simple delay model and a circuit that includes small number of
two-input gates, we calculate the distribution of LAT by the proposed and the
conventional method, and evaluate the accuracy at the worst-case value. There
is 20% error at the worst-case value of the LAT by the conventional method. In
contrast, the error of the proposed method is less than 5%. From these exper-
imental results, we confirm that the proposed method estimates the worst-case
LAT value of the circuit accurately.
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