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In this paper, we propose a high-level synthesis method targeting
distributed/shared-register architectures. Our method repeats (1) schedul-
ing/FU binding, (2) register allocation, (3) register binding, and (4) module
placement. By feeding back floorplan information from (4) to (1), our method
obtains a distributed/shared-register architecture where its scheduling/binding
as well as floorplaning are simultaneously optimized. Experimental results show
that the area is decreased by 13.2% while maintaining the performance of the
circuit equal with that using distributed-register architectures.

1. Introduction

It is very effective to make use of high-level synthesis methodologies to im-
prove the productivity of LSI design, in which we can automatically synthesize a
hardware architecture from an abstract behavior description. Since conventional
high-level synthesis deals with floorplan as its postprocessing, informations on
placement and interconnection among modules (i.e., functional unit, register,
controller, and multiplexer) are not able to be considered in a high-level synthe-
sis stage. In recent years, as device feature size decreases, interconnection delay
becomes the dominant factor of total delay, and it is predicted that this trend
will continue over the next few years. This means that it is necessary to deal
with floorplan informations such as placement and interconnection delay even in
a high-level synthesis stage.

Several researchers have considered floorplaning in high-level synthe-
sis 2),3),12),15). These approaches reduce clock period by decreasing wire delay
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on a critical path by considering module floorplaning. In Refs. 4), 7), 11), 16),
both wiring length and power consumption are decreased. But execution time of
a given application running on a synthesized hardware is not referred.

In Refs. 5), 6), they consider the situation in which wire delay becomes a
bottleneck, and propose a distributed-register architecture. This architecture
places local registers only for the functional unit close to it. The wire length
between the functional unit and the register is reduced. The clock period is able
to be occupied almost entirely by the delay of the functional unit. Clock period
is shortened and the execution time of a given application using this architecture
can be decreased. Furthermore, if there is data transfer between two functional
units placed apart, register-to-register data transfer can be used. However, the
number of registers increases because this architecture requires local registers
placed for each functional unit.

Another architecture, RDR (Regular Distributed Register) is proposed in
Ref. 1). This architecture divides a chip into a uniform size, and arranges func-
tional units, a register file, and a controller in one island. Because a chip is
divided into a constant size, wire delay may become smaller than a conventional
shared-register architecture, and its design is simplified. However area overhead
is increased.

In Ref. 13), a high-level synthesis algorithm for distributed-register architec-
tures is proposed in which it can deal with a control-data flow graph with condi-
tion structures and also it gives a detailed algorithm for register binding.

Although a distributed-register architecture has an advantage of reducing crit-
ical path delays by placing local registers close to a functional unit, the number
of local registers will be increased since local registers cannot be shared by mul-
tiple functional units. It is desirable that “shared registers” will be used in a
non-critical path between functional units. A mixture of distributed-register ar-
chitecture and shared-register architecture is strongly required in next-generation
high-level synthesis.

Based on the above discussions, this paper proposes a high-level synthesis
method for distributed/shared-register architecture, which decreases area while
maintaining performance of a distributed-register architecture. The proposed
method can reflect floorplan information in scheduling by using feedback synthe-
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sis flow. In addition to that, it can automatically select local register or shared
register for each functional unit based on a signal flow between functional units.
Thus it finally synthesizes an RT-level description with its floorplaning assuming
a distributed/shared-register architecture.

This paper is organized as follows. Section 2 introduces a distributed/shared-
register architecture. Section 3 proposes a new high-level synthesis flow. Section 4
proposes details of a scheduling/FU binding algorithm. In Section 5, we propose
a register allocation algorithm. In Section 6, we propose a register binding algo-
rithm. Section 8 presents and discusses experimental results. We conclude this
paper in the last section.

2. Distributed/Shared-Register Architecture

Our high-level synthesis targets a distributed/shared-register architecture
which has a combination of a distributed-register architecture and a shared-
register architecture.

A distributed-register architecture is an architecture where each FU (functional
unit) has local registers. The local register is placed near its FU, and then
interconnection delay is reduced because the wire length from an FU to a local
register is reduced. The FU uses register-to-register data transfer when data is
transferred to distant FUs. In this case, since all the clock cycle time can be used
for data transfer, a clock cycle can go up. However, using complete distributed-
register architecture would increase local registers significantly, which is far away
from realistic design.

In order to reduce the number of registers without degrading performance, we
introduce shared registers. In this paper, we define our architecture model which
uses local register and a single shared-registers group. A distributed/shared-
register architecture has a single shared-register group and several local registers
as shown in Fig. 1. A shared-register group has its own controller in it and FUs
also have their own controller. If “FU delay” + “wire delay between the FU and
the shared-register group” exceeded a given clock period constraint, the FU needs
local registers. Otherwise the FU use shared-registers. This architecture can
reduce the number of registers while maintaining the performance of a synthesized
hardware equal to that using a distributed-register architecture.

Fig. 1 Distributed/shared-register architecture.

3. Synthesis Flow

In this section, we first define our high-level synthesis problem with floorplan-
ing, and then we propose a new synthesis flow targeting a distributed/shared-
register architecture.

3.1 Problem Definition
A control-data flow graph (CDFG) G(V, E) is a directed graph, where a node

set V is an operation node set No and a branching control node set Nc (beginning
and termination of condition branches), and an edge set E is a data-flow edge set
Ed and a control-flow edge Ec set. Figure 2 shows an example of our CDFG.
A circle node represents operation, such as ‘+’ and ‘<’. A fork node, depicted
by an upward triangle node, indicates the beginning of a condition branch. A
join node, depicted by a downward triangle node, indicates the termination of a
condition branch. A solid line represents a data-flow. A dotted line represents
a control dependency. Operation nodes are associated with their CV (Condition
Vector) 14). CVs show the execution conditions of resources.

Our high-level synthesis problem is, for a given CDFG and the number of
FUs, to assign each operation node to a Control Step and an FU, to assign each
variable to a register, and to arrange modules, under clock period constraint.
The first objective is to minimize the execution time of the application given by
the CDFG. The second objective is to minimize the chip area of a synthesized
hardware.
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Fig. 2 An example of CDFG.

Fig. 3 High-level synthesis flow. (a) The flow proposed in Ref. 13). (b) The improved flow
proposed in this paper.

3.2 Synthesis Flow
Figure 3 (a) shows the synthesis flow proposed in Ref. 13) which targets

distributed-register architecture. The method proposed in Ref. 13) uses register-

to-register data transfer and interconnection delay information is needed at the
scheduling process. Thus, it feeds back the interconnection delay and module
placement information to its next iteration.

However, if we consider a distributed/shared-register architecture, we must
determine which register type (local register or shared register) is used for each
functional unit. We improved the synthesis flow and showed it in Fig. 3 (b). We
determine a register type in “register allocation” based on placement information,
for each FU after the scheduling process. Then we determine which variable is
bound to which register according to the register allocation process.

Moreover, we extend the scheduling/FU binding algorithm so that it can deal
with local registers and shared registers and also we propose a new register bind-
ing algorithm which takes into account both shared registers and local registers.

We roughly summarize each step in the flow as follows:
In the scheduling/FU binding process, we use an algorithm based on CVLS

(Condition Vector based List Scheduling) 14) and it executes scheduling and FU
binding simultaneously.

In the register allocation process, register type that each FU uses is determined
referring to the placement information from the floorplan process done in the pre-
vious iteration to satisfy clock period constraint as in the scheduling/FU binding
stage. At the initial step of the synthesis flow, all FUs are assumed to use shared
registers because interconnect delay information cannot be referred.

In the register binding process, to minimize the number of total registers, vari-
ables extracted from a scheduled CDFG are bound to shared registers or local
registers.

In the controller synthesis process, we use Synopsys Design Compiler to obtain
control circuits.

In the floorplan process, module placement is optimized by using simulated
annealing with Sequence-pair 9) representation. The cost function is

cost = αA + βW + γV

where A is the rectangle area which includes all the modules (dead space may
be included), W is the wire length, V is the sum of violation of clock period
constraint, and α, β, γ are parameters. Initial temperature Ti in floorplan at the
i-th iteration of the synthesis flow is computed as
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Ti = Ti−1/K

where K is also a parameter and set to be K ≥ 1. The initial solution of floorplan
at each iteration is the floorplan solution represented by its Sequence-pair of the
last iteration. Note that in this floorplanning, we have FU modules, a shared-
register module, and a controller module, where each FU module includes local
registers, MUXs, and an FU itself. Thus if the number of local registers changes
in each iteration, we can use Sequence-pair representation of the last iteration as
the initial solution of the current iteration. By repeating this iteration, module
placement becomes fixed and the solution will converge �1.

We repeat the above mentioned process until the convergence condition is met.
The convergence condition is that the solution of floorplan and its area are equal
to these of the last iteration. If the count of iterations exceeds M , we consider
that the solution doesn’t converge and the output best solution �2.

In the rest of the paper, we propose a scheduling/FU binding algorithm in
Section 4, a register allocation algorithm in Section 5, and a register binding
algorithm in Section 6.

4. Scheduling/FU Binding

We first define out scheduling/FU binding problem. For given a CDFG, the
number of FUs, and interconnection delays between modules, a scheduling/FU
binding problem is to assign each operation node to an FU and a Control Step
(CS) under clock period constraint. The objective is to minimize the number of
Control Steps.

4.1 The Basic Algorithm
We extend the scheduling/FU binding algorithm proposed in Ref. 13) so that it

can deal with a distributed/shared-register architecture. This original algorithm
is based on CVLS (Condition Vector based List Scheduling) and considers multi-
cycle interconnection delay. First, it calculates minimum clock cycle counts to
transfer data between FUs. Second, it performs scheduling/FU binding from
start nodes to end nodes, based on the priority function which is calculated by

�1 In the experiment in Section 8, we set α = 1, β = 1, γ = 10,000, and K = 10.
�2 M is the constant number. In the experiment, we set M = 30.

the critical path length. Since the original algorithm in Ref. 13) is based on
CVLS, it can deal with control flow including conditional branches as well as
data flow.

4.2 The Proposed Scheduling/FU Binding Algorithm for a
Distributed/Shared-Register Architecture

In order to extend the scheduling/FU binding algorithm proposed in Ref. 13) to
a distributed/shared-register architecture, we first propose a data transfer table.
Then we propose our algorithm for a distributed/shared-register architecture.
Note that, in the beginning of our synthesis flow, we assume that all the FUs use
shared registers. In a scheduling/FU binding process in a subsequent iteration,
we use shared register or local register for each FU which is determined by the
previous iteration.

4.2.1 Data Transfer Table
The number of clock cycles to transfer data between FUs is calculated based

on the placement result of the previous iteration.
Let fi and fj be two functional units. Let di,j be an interconnection delay be-

tween fi and fj . Let rdi,j be an interconnection delay between the register which
fi uses and the register which fj uses. An interconnection delay is assumed to be
proportional to the square of the Manhattan distance between two FUs/registers.
Let treg and tCLK be a register read/write time and clock period, respectively.
When dfi

is delay of FU fi, Slacki can be defined as (tCLK − treg − dfi
).

Further, a required clock cycle idi,j for the data transfer from an FU fi to an
FU fj can be expressed as follows: if both fi and fj use shared registers, idi,j is
0. Otherwise idi,j is defined as

idi,j =

{
0 (Slacki ≥ di,j)
�(rdi,j + treg)/tCLK� (Slacki < di,j)

For example, if an FU fi uses a shared register and an FU fj uses a local
register, rdi,j is c × lshare,j × lshare,j, where c is a constant and lshare,j is the
Manhattan distance between a shared register and fj . The distance between
modules can be calculated by the positions of modules, which are determined in
the module placement process in the previous iteration. idi,j constructs a data
transfer table for any two FUs fi and fj .
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Fig. 4 An example of a data transfer table. We assume that tCLK = 2, treg = 0, dFUX
=

1 (X = 1, · · · , 4). When we obtain a placement result as shown in (a) in (i − 1)-th
iteration, then we can obtain a data transfer table as shown in (b) in i-th iteration.

Figure 4 shows an example of a data transfer table. The first column in
Fig. 4 (b) shows source FUs. The first row in Fig. 4 (b) shows destination FUs.
We assume that tCLK = 2, treg = 0, dFUX

= 1 (X = 1, · · · , 4). When we obtain a
placement result as shown in Fig. 4 (a) in (i− 1)-th iteration, then we can obtain
a data transfer table as shown in Fig. 4 (b) in i-th iteration. Since the FU2 and
FU3 use shared registers, the required clock cycle for data transfer between these
two FUs, idFU2,FU3 and idFU3,FU2, become 0. As in Fig. 4, we assume that
the interconnection delay between FU1 and FU4 dFU1,FU4 is 3. We also assume
that the interconnection delay between register used FU1 and register used FU4

rdFU1,FU4 is 3. Thus the required clock cycle for data transfer from FU1 to FU4,
idFU1,FU4 is computed as �3/2� = 2, which means that we need two clock cycles
to transfer data from FU1 to FU4. In the same way, idFU1,FU2 is computed as
�2/2� = 1.

As mentioned above, we set idi,j to be 0 if both an FU fi and an FU fj use
shared registers. This means that we assume that fi, fj , and shared registers are
close enough and then data transfer from fi to fj can be done within one clock
cycle. If this assumption is violated, we change the register type of fi or fj in
the register allocation process. By introducing this strategy, FUs on the critical
path tend to use local registers and those not on the critical path tend to use
shared registers.

Note that, at the initial step of the synthesis flow, interconnect delay informa-
tion cannot be referred. Interconnect delay between any two modules assumed
to be 0.

4.2.2 The Algorithm
The algorithm is based on CVLS and employs the strategy that it picks up

the most “critical node” one by one and then assigns it to a Control Step and a
functional unit so that the total number of expected Control Steps is minimized.

Critical path length of a CDFG is defined as follows. Critical path length
cp(ni, fj) refers to the longest path length from each node ni to any end node if
ni is assigned to an FU fj . Let ne be one of the end nodes in a given CDFG. If
ne is bound to an FU fj , cp(ne, fj) is defined as cfj

, where cfj
is the number of

clock cycles to execute FU fj . In recursive manner from an end node to a start
node, we can calculate cp(ni, fj) for each node ni and each FU fj as:

cp(ni, fj) = cfj
+ max

nk∈succ(ni)

[
min

fl∈FUs
(idj,l + cp(nk, fl))

]
where succ(ni) is a set of immediate successors of ni. In the above expression,
idj,l is given by our data transfer table.

We show how to calculate critical path length using the example DFG as shown
in Fig. 5 (a). Assume that placement of the last iteration and its data transfer
table are given as shown in Figs. 5 (b) and (c) and all FUs are able to be executed
in one cycle. Then we start the scheduling/FU binding of the current iteration as
follows: Since “+5” is an end node, both cp(+5, Add1) and cp(+5, Add2) are 1.
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Fig. 5 An example of scheduling/FU binding.

As for cp(∗, Mul), if the node “+5” is bound to Add1, cp(∗, Mul) is calculated as
cMul + idMul,Add1 + cp(+5, Add1) = 1 + 1 + 1 = 3. If the node “+5” is bound to
Add2, cp(∗, Mul) is calculated as cMul+idMul,Add2+cp(+5, Add2) = 1+2+1 = 4.
Since the number of Control Steps from the node “∗” to the end node is minimized
when the node “+5” is bound to Add1, cp(∗, Mul) becomes 3. As for the nodes
“+2”, “+3” and “+4”, their critical path lengths are similarly calculated as in
Table 1. As for cp(+1, Add1), the path length of path(“+1”→“+4”→“+5”)
is calculated as cAdd1 + idAdd1,Add1 + cp(+4, Add1) = 3 and the path length of
path(“+1”→“∗”→“+5”) is calculated as cAdd1 + idAdd1,Mul + cp(∗, Mul) = 5.
The minimum number of Control Steps to execute from the node “+1” to the
end node is expected to be 5 when the node“+1” is bound to Add1. Then
cp(+1, Add1) is calculated as 5.

We first calculate cp(ni, fj) for each node ni and each FU fj from an end node
to a start node. For each node ni, priority(ni) is set to be

priority(ni) = min
k∈FUs

cp(ni, fk)

as the priority function of CVLS.

Table 1 An example of critical path lengths. Each value in this Table shows cp(ni, fj) for
node ni and FU fj . Each underlined value shows priority(ni) for node ni.

Step 1. Calculate cp(ni, fj) for each node ni and
each FU fj .

Step 2. Calculate priority(ni) for each node ni.
Control Step k ← 0.

Step 3. If all the nodes are scheduled, finish.
Step 4. k ← k + 1, and make the ready list L.
Step 5. Pick up the node ni ∈ L whose

priority(ni) is maximum. Let fj be the FU
whose l(ni, fj) is the minimum. If fj is avail-
able at Control Step k, then assign ni to Con-
trol Step k, bind it to FU fj , and remove ni

from L. Otherwise, just remove ni from L.
Step 6. If L �= φ, go to Step 5. Otherwise, go to

Step 3.

Fig. 6 A scheduling/FU binding algorithm.

Then from a start node to an end node, we pick up a node ni whose priority(ni)
is the maximum. After that, we bind it to the FU fj so that estimated latency
l(ni, fj) is minimized. Estimated latency l(ni, fj) is calculated as:

l(ni, fj) = c step(ni, fj) + cp(ni, fj)
where c step(ni, fj) is the earliest Control Step where node ni can be bound
to the FU fj . The estimated latency l(ni, fj) means the maximum number of
Control Steps to execute CDFG when a node ni is bound to an FU fj

Figure 6 shows our proposed scheduling/FU binding algorithm. We show
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our algorithm using the example as shown in Fig. 5 (a). First of all, the pri-
ority of each node is set to the underlined value in Table 1. Then, the nodes
“+1” and “+2” are put into the ready list. We pick up the node “+2” be-
cause its priority is the highest. We calculate estimated latency of node “+2”.
c step(+2, Add1) and c step(+2, Add2) are 1 because “Add1” and “Add2” is un-
used in CS1. l(+2, Add1) and l(+2, Add2) can be calculated as 1 + 6 = 7 and
1+7 = 8, respectively. Then, we bind node “+2” to “Add1” because l(+2, Add1)
is lower than l(+2, Add2). The node “+2” is removed from the ready list. Next,
we pick up node “+1”. c step(+1, Add1) is 2 because “Add1” is already used in
CS1. l(+1, Add1) and l(+1, Add2) can be calculated as 2 + 5 = 7 and 1 + 6 = 7,
respectively. Since “Add1” is not able to be bound in CS1, we bind the node
“+1” to “Add2”. We finally have a scheduling/FU binding result as shown in
Fig. 7 (b) to repeat this procedure. Note that in CS3, we pick up node “∗” from

Fig. 7 An example of scheduling/FU binding result.

the ready list. However, c step(∗, Mul) becomes 4, i.e., we can use the “Mul”
in CS4 and cannot use it in CS3. This is because data transfer from “Add1”
(which is assigned to node “+3” in CS2) to “Mul” requires one clock cycle as in
Fig. 5 (c) and them we cannot use “Mul” right now in CS3.

By introducing the data transfer table which deals with shared registers, we
can successfully perform our extended scheduling/FU binding.

Note that, as in the original algorithm 13), our extended algorithm can deal
with control flow including conditional branches as well as data flow.

5. Register Allocation

It is necessary to decide for each FU whether to use a local register or a shared
register in a distributed/shared-register architecture. In this section, we propose
a register allocation algorithm.

A register allocation problem is, for given a scheduled CDFG, interconnection
delay between modules, and the number of FUs, to determine whether to use
shared registers or to add local registers for each FU under clock period con-
straint. The objective is to minimize the number of local registers.

In the proposed method, the number of registers is minimized by using shared
registers as much as possible. However, when the operation execution time (total
delay time required from a source register to a destination register) violates clock
period constraint, it is necessary to add local registers.

Let us pick up a functional unit fj and assume that fj is used in Control Step
(CS) k. We add local registers in the following three cases:
Case (a): Assume that the source registers and the destination registers of fj

are shared registers as shown in Fig. 8 (a). If the operation execution time of
fj exceeds clock period constraint in Control Step k, we add local registers
for fj for its input ports and output ports.

Case (b): Assume that the source registers of fj are shared registers and the
destination registers of fj are local registers as shown in Fig. 8 (b). If the
operation execution time of fj exceeds the clock period constraint in Control
Step k, we add local registers for fj for its input ports and output ports.

Case (c): Assume that the source registers of fi used in Control Step k − 1
are local registers and the destination registers of fi are shared registers as
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Fig. 8 Register allocation.

shown in Fig. 8 (c). If the operation execution time of fi exceeds the clock
period constraint in Control Step k − 1 and the distance from FU fi to
shared registers is longer than the distance from FU fi to FU fj , we add
local registers for fj for its input ports and output ports.

In case (a) and (b), since the type of input registers of fj is changed from
“shared” to “local”, the distance from the input registers to the FU fj can be
reduced. In case (c), since the type of input registers of fj is changed from
“shared” to “local”, the distance from the FU fi to the input registers of fj

can be reduced. We can expect that violation of clock period constraint can be
relaxed by this register allocation strategy.

The algorithm is as follows: At first, we assume that every functional unit uses
shared registers at the register allocation process in each iteration. (Step 1) For
each FU fl in a scheduled CDFG, if Case (a) holds true for fl, we actually change
the register type from shared registers to local registers for fl. (Step 2) After

that, for each FU fl in a scheduled CDFG, if Case (b) and (c) holds true for fl,
we actually change the register type from shared registers to local registers for
fl. (Step 3) We repeat Step 2 until there are no FUs satisfying Case (b) and (c)
or all the FUs have local registers.

6. Register Binding

Our architecture can use register-to-register data transfer. It is necessary to
determine when and where data transfer should be done.

A register binding problem is, for given a scheduled CDFG and a register type
of each FU, to assign each variable to a particular register in order to minimize the
number of registers. In register binding, CVs are used for conditional branches.

In the proposed algorithm, variables are stored in its source registers �1 as late
as possible when the variables are bound to local registers. When collisions occur,
we use shared registers temporarily. But we try to move variables from shared
registers to local registers as soon as possible when the variables are bound to
shared registers. We expect that, by increasing utilization of shared registers, the
total number of required registers can be reduced. Note that, the variables which
are allocated to shared registers are finally bound to actual shared registers by
means of the left edge algorithm.

We show our algorithm using the example as shown in Fig. 9. Assume that
module placement is given as in Fig. 9 (a) where the FU enclosed with the dotted
line uses shared registers, and the other FUs use local registers.

Before starting register binding, we assume that each FU which uses local
registers has one local register for each of its input ports and outputs ports.

In the first step in our algorithm, we allocate the “beginning” and “end” of the
lifetime of all variables so that we can satisfy the scheduling result. Otherwise, if
lifetime of a variable is less than 1 clock cycle, it is allocated to the register that
their destination FU uses (v4 in Fig. 9 (c)). We allocate the “beginning” of the
lifetime of all variables to the register which their source FU uses. The “end” of
the lifetime of all variables is allocated to the register which their destination FU

�1 The source register of the variable v is the local register of the functional unit that generates
the variable v.
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Fig. 9 Register binding example. XXin shows the input local registers and XXout shows the
output local registers. Shared shows the shared registers.

uses. Figure 9 (c) shows the result of the first step. Here, ADDin and ADDout are
the input local register and output local register of the adder “+”, respectively,
and SUBin is the input local register of the subtractor “−” �1.

Second, we allocate each variable to registers in each control step from begin-
ning to end of its lifetime. As for variable v1, it is first bound to the output local
register ADDout of the adder “+” in CS1-2 (CS1-2 means the boundary between
CS1 and CS2). Since the output local register of the adder is used in CS2-3

�1 For simplicity, the adder “+” and the subtractor “−” have one local register for its input
port and one local register for its output port in the example of Fig. 9. Our FUs have two
or more input/output ports in the experiments.

by variable v3, then we try to bind v1 to the input local register SUBin of the
subtractor “−”. However, since SUBin is also used in CS2-3 by v4, v1 is bound
to a shared register in CS2-3. Since SUBin is unused in CS3-4, then we bind v1
to SUBin in CS3-4.

As for variable v2, it is first bound to a shared register in CS2-3. In CS3-4,
since the input local register ADDin of the adder is unused, v2 is bound to it. In
CS4-5, v2 is still bound to ADDin.

The same discussion can be applied to the variable v3 and v4 as in Fig. 9 (d).
If the register binding mentioned above fails, we increase the number of local

registers by one for the FUs which causes the register collision and re-start the
above register binding again.

7. Computational Complexity

Because our method repeats scheduling/FU binding, register allocation, reg-
ister binding, controller synthesis and placement until a solution converges, the
number of iterations changes depending on a target application. So we calculate
the computational complexity of each of the proposed algorithms (scheduling/FU
binding, register allocation and register binding) in our method.

First we calculate the computational complexity of the scheduling/FU binding
algorithm. Let Nn be the number of nodes in a given CDFG and Nf be the num-
ber of functional units. In each control step, we require O(NfNn + Nn log Nn)
time. The number of control steps is at most O(Nn). Therefore, the computa-
tional complexity can be calculated as O(NfNn

2 + Nn
2 log Nn).

Next we calculate the computational complexity of the register allocation al-
gorithm. In this algorithm, we require O(Nn

2) time to search clock period con-
straint violation for a CDFG. When this algorithm starts, we need this search
first. Furthermore, we need this search every time we change the register type
from “shared” to “local”. Since the number of searches is at most Nf , the com-
putational complexity of this algorithm can be calculated as O(NfNn

2).
Finally we calculate the computational complexity of the register binding al-

gorithm. Let Nv be the number of variables and Ns be the number of control
steps. Since we require O(Ns) time to assign each variable to registers, we re-
quire O(NsNv) time for all variable assignments. When the result of the register
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Table 2 Experimental results.

Area Execution #Total #Local #Shared CPU
App. FUs Architecture [μm2] time [ns] Regs. Regs. Regs. #MUXs time[s]

Ours 22,950 32.4 18 9 9 60 307

+2,*2 Distributed 13) 23,655 32.4 23 23 - 57 100
Shared 25,116 57.6 18 - 18 74 145

DCT Ours 29,336 25.2 21 15 6 72 356

+3,*3 Distributed 13) 36,750 25.2 26 26 - 67 100
Shared 29,915 30.6 17 - 17 77 155
Ours 17,125 73.8 6 0 6 35 413

+2,*2 Distributed 13) 18,576 73.8 18 18 - 27 350
Shared 17,125 73.8 6 - 6 35 180

FIR Ours 24,603 59.4 12 6 6 40 352

+3,*3 Distributed 13) 27,072 59.4 23 23 - 33 142
Shared 24,705 64.8 7 - 7 52 436
Ours 12,110 50.4 10 0 10 32 97

+1,*1 Distributed 13) 13,244 50.4 13 13 - 31 78
Shared 12,110 50.4 10 - 10 32 73

EWF Ours 11,625 37.8 6 0 6 31 67

+2,*1 Distributed 13) 13,493 37.8 13 13 - 29 77
Shared 11,625 37.8 6 - 6 31 67
Ours 15,982 106.2 14 9 5 48 204

+2,*1 Distributed 13) 17,136 106.2 15 15 - 45 327
Shared 16,848 165.6 10 - 10 64 304

EWF3 Ours 24,235 93.6 17 12 5 66 724

+3,*2 Distributed 13) 26,640 95.4 22 22 - 67 310
Shared 25,440 151.2 10 - 10 86 976
Ours 4,048 18.0 6 0 6 14 88

+1,−1,<1 Distributed 13) 5,499 18.0 11 11 - 14 69
Shared 4,048 18.0 6 - 6 14 73

Parker Ours 5,320 12.6 7 0 7 18 57

+2,−2,<1 Distributed 13) 7,448 12.6 17 17 - 18 52
Shared 5,320 12.6 7 - 7 18 56

+3,−1,<1, Ours 112,797 257.4 119 47 72 354 1,008

COPY AND1,*5, Distributed 13) 127,260 266.4 145 145 - 381 1,798
Shifter2 Shared 114,975 396.0 82 - 82 514 703

binding cannot satisfy the clock period constraint, this algorithm re-assigns vari-
ables to registers after increasing local registers. Since this re-assignment occurs
at most Nv times, its computational complexity becomes O(NsNv

2). After local
register binding, the proposed algorithm executes the left edge algorithm, which
requires O(Nv

2) time. Therefore, the computational complexity of the register
binding algorithm becomes O(NsNv

2).

Note that, our experimental results in Section 8 shows that the number of
iterations is up to 25 times.

8. Experimental Results

We have implemented the proposed method in C++ on UNIX 3.0 GHz with
2 GB of memory. The method has been applied to an FIR filter (75 nodes),
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Table 3 The area and the delay of functional units.

Functional unit Area [μm2] Delay [ns]
Adder 287 1.36

Multiplier 4,507 2.93
Comparator 148 0.88

AND 68 0.03
Shifter 270 0.48

DCT (48 nodes), EWF (34 nodes), EWF3 (102 nodes), Parker 10) (22 nodes,
including conditional branches) and COPY (378 nodes, including conditional
branches) where COPY is a real application. The proposed method target-
ing a distributed/shared-register architecture was compared with a distributed-
register architecture (“Distributed” in Table 2) and a shared-register architec-
ture (“Shared” in Table 2). Table 2 summarizes the experimental results. “Dis-
tributed” in Table 2 means the approach proposed in Ref. 13) which uses the
synthesis flow shown in Fig. 3 (a). The number of Control Steps of “Distributed”
is almost the same as “Ours”. This is because our scheduling/FU binding algo-
rithm is the extension of the one proposed in Ref. 13). “Shared” in Table 2 also
uses the synthesis flow shown in Fig. 3 (a). Scheduling/FU binding of “Shared”
uses CVLS proposed in Ref. 14). Register binding of “Shared” uses the left edge
algorithm. In “Shared”, after module placement, we decide required cycles to
execute an operation for each FU based on the placement result.

All the functional units were assumed to have a bit width of 16, and the ar-
eas and the delays were obtained by synthesizing them beforehand based on the
CMOS 90 nm technology. Table 3 summarizes the area and the delay of func-
tional units.

The area and the delay of one bit register were assumed to be 13 [μm2] and
0.09 [ns], and those of 2-1 multiplexer were assumed to be 7 [μm2] and 0.04 [ns].
The area of the controllers was synthesized by Synopsys Design Compiler in each
iteration of Fig. 3. The wire delay was assumed to be a proportion to square of
the wiring length, and set wire delay as 1 [ns] when wiring length is 250 [μm] �1.

�1 Estimate of wire delay in high-level synthesis cannot be the same as that in physical design.
However, even in physical design, especially in placement, wire delay is generally estimated
by a proportion to the square of the distance between modules (for example, Ref. 8)). In
our method, we use the same estimation for wire delay.

The I/O port of each module was assumed to be at the center of the module,
and the clock period constraint was given to be 1.8 [ns].

The area of the experimental results is the minimum rectangle which includes
the FUs, registers, MUXs, and the controller. The execution time shows the
execution time of the application (“clock period” × “the number of Control
Steps”). In our experiment, the convergence condition is met within 30 iterations
for all given applications.

The experimental results show that the execution time of the proposed method
is almost equal to that for distributed-register architectures and is reduced by
a maximum of 44.7% and an average of 16.2% compared with shared-register
architectures. The area of the proposed method is reduced by a maximum of
28.5% and an average of 13.2% compared with distributed-register architectures.
These results demonstrate that the proposed method can reduce the area while
maintaining the execution time equal to the distributed-register architectures.

9. Conclusions

In this paper, we proposed a new high-level synthesis method for
distributed/shared-register architectures. The proposed method reduced by an
average of 16.2% execution time compared with shared-register architectures and
reduced by an average of 13.2% area compared with distributed-register archi-
tectures.

In the future, we will consider an architecture that has a distributed arrange-
ment of shared registers and develop its dedicated high-level synthesis algorithms.
Further, we will develop the method to reduce the number of MUXs for our high
level synthesis system.
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